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Abstract

In a randomized experiment, treatment and control groups should be roughly the
same — balanced — in their distribution of pre-treatment variables. But how nearly
so? Can descriptive comparisons meaningfully be paired with significance tests? Should
there be several such tests, one for each pre-treatment variable, or should there be a
single, omnibus test? Is there a large-sample test that is reliable in samples of moderate
size, notwithstanding recent evidence to the contrary about one natural large-sample
procedure, or is simulation needed for reliable appraisals of balance? What new concerns
are introduced by random assignment of clusters? Which tests of balance are optimal?

To address these questions, Fisher’s randomization inference is applied the question
of balance. The procedures that result are not new, although certain arguments for them
are. Its application suggests the reversal of published conclusions about two studies, one
clinical and the other a field experiment in political participation.

Key words: cluster; contiguity; community intervention; group randomization; match-
ing; randomization inference

∗The author thanks Jake Bowers, Alan Gerber, Donald Green, Nancy Reid and Paul Rosenbaum for helpful
discussions. Portions of this work were presented at the 2005 meetings of the Political Methodology Society
and in seminars at the Department of Medicine, Case Western Reserve University, and at the Department of
Biostatistics, Yale University. The author is grateful for comments received at these venues.
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1 Introduction

In a controlled, randomized experiment, treatment and control groups should be roughly
the same — balanced — in their distribution of pre-treatment variables. But how nearly
so? Reports of clinical trials are urged to present tables of treatment and control group
means of x-variables (Campbell et al. 2004), and often do. These greatly assist qualitative
assessments of similarity and difference between the groups, but in themselves they are silent
as to whether, given the design, the discrepancies between the groups are large or small. Can
the descriptive comparisons meaningfully be paired with significance tests? If so, must there
be several, one for each variable, or can there be a single omnibus test? Would the omnibus
test always require a simulation experiment, as proposed at some places in the literature
on random assignment by group (Raab and Butcher 2001)? Is there a large-sample test
that is reliable in samples of moderate size, notwithstanding recent evidence to the contrary
about one natural procedure (Gerber and Green 2005)? At the level of foundations, some
authors note that to posit a data-generating model for x-variables is somewhat antithetic to
the removal of parametric assumptions (Ho et al. 2005). Does testing for balance require
such a model, as these authors also claim, or are there tests that narrowly probe data’s
conformity to the experimental ideal? At the level of technical detail, tests based differences
of group means require precise instructions for combining differences across strata or blocks,
with the optimal approach appearing to depend on within- and between-block variation in x
— population variation, not sample variation (Kalton 1968). Doesn’t the fine-tuning of these
instructions require assumptions about, or estimation of, variability in the superpopulation,
introducing sources of uncertainty that are generally ignored at the stage of inference (Yudkin
and Moher 2001)? Without speculative superpopulations of x-values, how are alternatives to
the null hypothesis to be conceived? What tests are optimal against these alternatives?

The most familiar randomized comparisons of human subjects, perhaps, are drug and
vaccine studies. Generally these are randomized at the level of individuals. But interventions
upon neighborhoods, classrooms, clinics, and families are increasingly the objects of study,
and are increasingly studied experimentally; and even non-experimental interventions at the
group level may analyzed using a combination of poststratification and analogies with hypo-
thetical experiments. Might it be safe to ignore the group structure (as outcome analyses of
cluster-randomized data often do [MacLennan et al. 2003; Isaakidis and Ioannidis 2003], in
some conflict with the recommendations of methodologists [Gail et al. 1996; Murray 1998;
Donner and Klar 2000]) if interest focuses on individual-level outcomes, if correlations within
group are low, or if the groups are small? Or do methods appropriate to individual-level
assignment readily generalize to assignment by group? If so, then how is this best done?
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1.1 Example: a clinical trial with randomization at the clinic level

In order to study the benefit of up-to-date, best practices in monitoring and treatment of
coronary heart disease, the assist trial randomized 14 of 21 participating clinics to receive
new systems for the regular review of heart disease patients (Yudkin and Moher 2001). For
external validity of outcome analyses, treatment and control groups would have to be well bal-
anced, at baseline, on the proportion of patients adequately assessed, and on other outcome
variables. As is evident from Table 1 this aim is somewhat complicated by the fact that clin-
ics varied greatly in size and in patient characteristics. Seemingly sizable differences between
treatment and control groups’ proportions of adequately assessed patients may still com-
pare favorably with differences that would have obtained in alternate random assignments.
Viewed in isolation, such a difference would appear to threaten external validity, although
the appearance would be misleading. A principled means of distinguishing threatening and
unthreatening cases is needed.

Numbers of coronary heart disease patients. . .
adequately treated with

Practice in total assessed aspirin hypotensives lipid-reducers
3 38 6 30 17 6
6 58 19 38 31 16
9 91 23 60 56 22

12 114 46 86 60 35
15 127 58 103 86 30
18 138 68 106 86 57
21 244 93 181 93 63

Table 1: Sizes of a subset of the 21 clinics participating in the ASSIST trial of register and
recall systems for heart disease patients, along with baseline measurements of primary and
secondary outcome variables. Despite the great variation in practice sizes, and in practice
benchmarks the intervention sought to improve, a balanced allocation of practices to treat-
ment conditions was sought. Adapted from Yudkin and Moher (2001, Table II).

A related need is for metrics with which to appraise the likely benefit, in terms of balance,
of randomizing within blocks of relative uniformity on baseline measures.
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1.2 Example: a field experiment on political participation

A second case in point is A. Gerber and D. Green’s Vote ’98 campaign, a voter turnout
intervention in which get-out-the-vote (GOTV) appeals were randomly assigned. Gerber
and Green’s original report assumed the targeting of appeals to be independent of subjects’
covariates, finding that in-person appeals effectively stimulated voting whereas solicitations
delivered over the telephone, by professional calling firms, had little or no effect (2000).
Criticizing this analysis, Imai observes that data Gerber and Green made available alongside
their publication did not accord with the assumption of independence (2005). So poorly
balanced are the groups, writes Imai, that the hypothesis of independence can be rejected at
the 10−4 level (2005, Table 6). Had experimental protocol broken down, effectively spoiling
the random assignment? Imai deduces that it must have, dismissing the original analysis and
instead mounting another upon very different assumptions. Contrary to Gerber and Green,
Imai’s revision attaches significant benefits to paid GOTV calls.

In a pointed response, Gerber and Green (2005) shift doubt from the implementation
of their experiment to Imai’s methodology — particularly, the method by which he checks
for balance. Their counter-attack has three fronts. First, they explain that the original
experiment’s randomization was performed at the household level, rather than the individual
level. Since Imai’s independence check assumed independence at the subject level, no theory
supports tests associated with it. Second, they present results from a replication of the
telephone GOTV experiment on a much larger scale, now randomizing individuals rather than
households. The replication results were consistent with those of the the original study. Third,
they present simulation evidence that would cast doubt on Imai’s recommended balance tests
even had randomization been as he assumed. Those tests carried an asymptotic justification,
for which the Vote ’98 sample appears to have been too small — even though it comprised
some 30,000 subjects, in more than 20,000 households!

The manifold nature of this argument makes methodological lessons difficult to draw. If
the conclusion that the Vote ’98 treatment assignment lacked balance is mistaken, then did
the mistake lie in the conflation of household and individual level randomization, in the use
of an inappropriate statistical test, or both?

1.3 Structure of the paper

This and Section 2 introduce the paper. Section 3 describes the Fisherian model for com-
parative studies and its consequences for the difference of group means and variations on it,
arguing for one such variation as a general measure of balance on a covariate. Section ??

adapts this measure to studies with group assignment to treatment, and to testing for balance
on several variables simultaneously. Section 5 develops theoretical arguments for the opti-
mality of this approach, and for the setting of a tuning constant, which Section 6 illustrates
uses of the methodology at design and at analysis stages. Section 7 concludes.
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2 Two ways not to check for balance

This section examines appealing but ad-hoc adaptations of two standard techniques, the
method of standardized differences and goodness-of-fit testing with logistic regression, to the
problem of testing for balance after random assignment of groups. To illustrate, I use the rich
and publicly available Vote ’98 dataset (Gerber and Green 2005). It describes some 31,000
voters, falling in about 23,000 households; to complement this unusually large randomized
experiment with a smaller one, we consider a simple random subsample of voters falling in 100
households. Telephone reminders to vote were attempted to roughly a fifth of the subjects,
and it is around the putative randomness of this treatment assignment that Gerber, Green,
and Imai’s debate centers; we study the association of this treatment assignment z with
covariates x, which include age, ward of residence, registration status at the time of the
previous election, whether a subject had voted in that election, and whether he had declared
himself a member of a major political party.

2.1 Standardized differences of measurement units

Let us contrast observation or measurement units, here voters, with clusters or assignment
units, here households containing one or two voters. The standardized difference of measure-
ment units in a numeric variable x is a scaled difference of the average of x-values among
measurement units in the treatment group and the corresponding average for controls. To
facilitate interpretation, the difference is scaled by the reciprocal of one s.d. of measurement
x’s, so that 100 × (standardized difference) can be read as a percent fraction of an s.d.’s
difference.

Setting aside this scaling for the purpose of mounting a statistical test, one has differences
x̄t − x̄c, or, in vector notation, ztx/zt1 − (1 − z)tx/(1 − z)t1, where z ∈ {0, 1}n indicates
assignment to the treatment group. See this as a random variable, conditioning on the
measurement units’ x values and on the numbers of measurement units mt = Zt1 and mc =
(1− Z)t1 in the treatment and control groups gives the random sum

Ztx
mt

− (1− Z)tx
mc

= kZtx− 1tx/mc, (1)

k = m−1
c + m−1

t . Were treatment-group measurement units a simple random subsam-
ple of the sample as a whole, this difference would have mean zero and variance equal to
(mtmc/m)s2(x), for s2(x) = (m− 1)−1

∑
i(xi − x̄)2. Consider instead the case where a sim-

ple random sample of clusters of measurement units, not of measurement units themselves,
are selected for treatment, but the analysis pretends the opposite. Gerber and Green (2000)
make this simplification — perhaps because the Vote ’98 data have as little clustering as one
might hope to find in a group randomized study, with never more than two subjects, and
often only just one, to a cluster.
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With this simplification, differences x̄t − x̄c are readily converted to z-scores. Table 2
appraises accuracy of the resulting approximate p-values, comparing them to simulation p-
values and to p-values attached to the statistic ztx by an approximation to be discussed
below. The simulation mimics the structure of the experiment’s actual design, forming sim-
ulated treatment groups from random samples of 5,275 of the 23,450 households, calculating
differences d∗x in means of measurement unit x-values in the simulated treatment and control
groups, and comparing these differences to the treatment-control group difference, dx, ob-
served in the actual sample. The comparisons are summarized with two-sided mid-p values,
averages of the proportion of simulated differences d∗x of greater magnitude than dx and the
proportion of d∗x’s of magnitude at least as large as that of dx. The treatment group was
reshuffled 106 times, so the mid-p values are accurate to within .001.

I had expressed the nominal “Ward” variable as 29 indicator variables, one for each
ward, and the age measurement in terms of cubic B-splines with knots at quintiles of the
age distribution, yielding six new x-variables. The table displays the four of the 29 ward
indicators, and the four of the six spline basis variables, for which the approximate p-values
ignoring groups were most and least discrepant from actual p-values in the subsample and
the full sample.

100 households (m = 133) All households (m = 31K)
Accounting
for groups?

Accounting
for groups?

x No Yes Actual No Yes Actual
num.voters.in.hh .12 .24 .21 .85 .82 .82
voted.prev.elec .40 .22 .22 .23 .39 .39
maj.pty.member .45 .14 .16 .24 .18 .18
age.Bspline.2 .68 .59 .60 .06 .31 .31
age.Bspline.4 .82 .39 .40 .68 .68 .68
age.Bspline.5 .72 .24 .24 .39 .22 .22
age.Bspline.6 .19 .62 .62 .56 .89 .89
Ward.2 1.00 1.00 .50 .81 .87 .87
Ward.5 .89 .98 .89 .44 .47 .48
Ward.10 .58 .54 .65 .95 .97 .97
Ward.11 .75 .92 .87 .27 .42 .42

Table 2: Effect of accounting for assignment by groups on approximations to p-values, in the
full Vote ’98 sample and in a subsample of 100 households.

The approximation ignoring the clustered nature of the randomization is not particularly
good. Its p-values differ erratically from the actual p-values, at some points incorrectly
suggesting departures from balance and elsewhere exaggerating it. Increasing the sample size
from 133 to 31 thousand appears to improve the approximation somewhat, but not nearly
as much as it does the approximation that accounts for clustering. It is noteworthy that so
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striking a discrepancy arises even with only half the experimental subjects assigned as part
of a cluster, and with no clusters larger than two.

2.2 The p-value from logistic regression of z on x’s

With or without treatment assignment by clusters, and with or without analytic adjustments
to account for clusters, the method of standardized differences has the limitation that it
produces a long list of non-independent p-values, one for each x-variate studied. In order
either to decide prospectively whether a possible treatment assignment is balanced enough
for use, or to retrospectively appraise the need for post-stratification, just a few p-values,
ideally one, would be more convenient.

Logistic regression seems well suited to the task. Regress treatment assignment, z, on
covariates x and a constant, then on the constant alone, then compare the two fits using a
standard asymptotic likelihood-ratio test. Should the asymptotics of this deviance test apply,
it will reject (at the .05 level) no more than about 5% of treatment assignments, presumably
the ones in which, by coincidence, covariate balance failed to obtain. The problem with this
procedure is that its sample-size requirements are more stringent than one might think, are
difficult to ascertain, and are typically incompatible with checking for balance thoroughly.

Size of test
Asymptotic

Method .001 .01 .05 .10
Actual

Logistic regression-based .0281 .0620 .16 .24
Standardized differences .0000 .0003 .018 .064

Table 3: Small-sample (n = 21) Type I error rates of two types of test, one based on logistic
regression and another, to be described in Section 4, based on standardized differences.
The actual size of the logistic regression tests well exceed their nominal levels, while the
alternate test is somewhat conservative but holds to advertised levels. Based on 106 simulated
assignments to treatment of 14 of the 21 assist clinics.

Table 3 shows the small-sample performance of the logistic regression deviance test, pre-
senting the actual sizes of asymptotic level .001, .01, .05, and .10 tests as applied to assign-
ments of 14 of Yudkin and Maher’s 21 clinics to treatment. The test’s Type I error rates
are markedly too high. Perhaps poor performance of asymptotic tests is to be expected,
given the small sample size; but it is noteworthy that another asymptotic test, Section 4’s
method of combined standardized differences, succeeds in maintaining sizes no greater than
advertised levels of significance.

Figure 1 illustrates the limited accuracy of the logistic regression approach in samples
of moderate size. It compares asymptotic and actual null distributions of p-values from
the logistic regression deviance test, effecting the actual distribution by simulation. One
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Figure 1: Theoretical and actual p-values of omnibus tests of covariate balance. With 100
assignment units and 38 degrees of freedom (dark trace), logistic regression’s p-values are
markedly too small, whereas p-values from the method to be described in § 4 err towards
conservatism, and to a lesser degree. With the same 38 degrees of freedom and with the full
23,000 assignment units (lighter trace), both methods perform well.

thousand simulation replicates are shown, both for the 100-household subsample and for the
full sample. The covariates x(1), . . . , x(k) are those described in Section 2.1, with x-values for
two-person households determined by summing x-values of individuals in each household.

While p-values based on the asymptotic approximation appear accurate for the full sam-
ple, with its 23 thousand-someodd households, those for the subsample are quite exaggerated.
In it, the nominal .05-level test has an actual size of about .37. Would an alert applied statis-
tician have identified the 100-household subsample as too small for the likelihood ratio test?
Perhaps; it has only 21

2 times as many observations as x-variables, once the Age and Ward
variables have been expanded as in Table 2. But how large a ratio of observations to covari-
ates would be sufficient? Principles to settle the question are not forthcoming, particularly for
regression with binary rather than continuous outcomes, and intuition may be a poor guide.
To explore the difference in information carried by binary and continuous outcomes, Braz-
zale, Davison, and Reid (2006, §4.2; see also Davison 2003, ex. 10.17) construct artificial data
sets from a real one with a binary independent variable, some retaining the binary outcome
structure but increasing the apparent information in the data set by replicating observations,
and others imputing continuous outcomes according to a logistic distribution. The results
are striking; one observation with continuous response carries about as much information as
eight observations with binary response, and deviance tests are found to be unreliable even
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with eleven times as many observations as x-variables.
For contrast, the right panel of Figure 1 offers an analogous comparison between asymp-

totically approximate and actual p-values of a test statistic to be introduced in Section 4.
Even with relatively few observations as compared to x-variables, its size never exceeds its
nominal level (if it errs somewhat toward conservatism).

Let us suppose, somewhat implausibly, a statistician whose feel for sample size is precisely
calibrated to the demands of the asymptotic deviance test for logistic regression. Such a
statistician would insist on large sample sizes relative to the number of x-variables, much
larger than would those of use whose intuitions are calibrated to regression with continuous
outcomes. Confronted with too few observations relative to the number of variables, she’d
sooner whittle down the number of variables, surely, than collect more observations for the
sole purpose of making herself more comfortable using a favored balance-checking technique.
But this arbitrarily reduces the scope of her check; wouldn’t it be better to check all the x-
variables that seemed important, selecting a technique appropriate to the data, rather than
the reverse?

3 Randomization tests of balance, with and without clusters

A common form of frequentism, often traced to Neyman (1990), posits that subjects arrive in a
study through random sampling from a broader population, and takes as its goal to articulate
how much the sample and population may differ. In Fisher’s model of a comparative study,
in contrast, no background population is supposed; but randomization is supposed to govern
division of the sample into comparison groups, and inference asks only whether chance alone
could explain differences between the groups. One need not side with Fisher over Neyman
in general, nor even prefer frequentism to Bayesianism, to adopt Fisher’s conceptualization
when appraising balance.

3.1 Simple randomized experiments

To illustrate, consider the question of whether in the Vote ’98 experiment, subjects assigned to
receive a telephone reminder, or not, had voted in the previous election in similar proportions.
Since past voting is predictive of future voting, differences to the advantage of either group
would have prejudged the outcome of the experiment.

Let the index i = 1, . . . , n run over assignment units, so that zi indicates the treatment
assignment of the ith cluster of observation units. Interpret xi as the total of x-values for
observation units in cluster i, in this case the number of subjects in the household who voted in
the previous election, and letmi be the size of that cluster, here 1 or 2, in observation units. z,
x, and m are n-vectors recording these data for each assignment unit. The observed difference
of the proportions of treatment and control group subjects who had cast votes in 1996 can
be written as a function dp(z,x) of the treatment-group indicator vector z and indicators x

of voting in the previous election. In symbols, dp(z,x) = ztx/ztm − (1 − z)tx/(1 − z)tm;
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for general measurement variables v, dp(z,v) is the difference of treatment and control group
means. Let A be the set of treatment assignments from which the actual assignment z was
randomly selected; for each member z∗ of A, it is straightforward to compute the amount
dp(z∗,x) by which treatments and controls would have differed had assignment z∗ been
selected. A (two-sided) randomization p-value attaching to the hypothesis of balance on x is

#{z∗ ∈ A : |dp(z∗,x)| > |d(z,x)|}+ 1
2#{z∗ ∈ A : |dp(z∗,x)| = |d(z,x)|}

#A
(2)

= P(|dp(Z,x)| > |d(z,x)|) +
1
2
P(|dp(Z,x)| = |d(z,x)|),

where Z is a random vector that is uniformly distributed on possible treatment assignments
A. (Weighting by one-half those z∗ ∈ A for which |dp(z∗,x)| = |d(z,x)| makes this a mid-p
value, the null distribution of which will be more nearly uniform on [0, 1] than would a p-
value without this weighting. Agresti and Gottard discuss merits of the mid-p value.) This
appraisal of balance on x does involve probability; but note carefully that only treatment
assignment, not the covariate, is modeled as stochastic.

Such p-values can in principle be calculated by enumeration; in practice, one approximates
them by simulation. Under favorable designs, fast and accurate Normal approximation are
also available. Consider first the case in which

(A) the assignment scheme allocates a fixed and predetermined number nt of the n clusters
to treatment, and

(B) each cluster contains the same number m̄ of measurement units.

Then the ratios Ztx/Ztm and (1 − Z)tx/(1 − z)tm of which dp(Z,x) is a difference have
constants, respectively m̄nt and m̄nc, as denominators, so that, as in (1), dp(Z,x) has an
equivalent of the form kZtx− 1tx/m̄nc. Then it is necessary only to approximate the distri-
bution of Ztx, an easier task than approximating the distribution of its ratio with another
random variable. Indeed, if {i ∈ {1, . . . , n} : Zi = 1} is a simple random sample of size nt,
then Ztx is simply the sample sum of a simple random sample of nt from n cluster totals
x1, . . . , xn. Common results for simple random sampling give that E(Ztx) = ntx̄ = nt

n

∑
xi;

that Var(Ztx) = nt

(
1− nt

n

)
s2(x), where s2(x) =

(∑n
1 (xi − x̄)2

)
/(n−1); and that if nt grows

to infinity while nt/n approaches a constant in (0, 1), and mean squares and cubes of |x| re-
main bounded, then the limiting distribution of Ztx is Normal (Hájek 1960; Erdős and Rényi
1959). Over and above this finite population central limit theorem, Höglund’s Berry-Esseen
principle for simple random sampling (1978) limits the error of the Normal approximation in
finite samples, suggesting that it should govern Zty similarly well for covariates y other than
x, and that it should be quite good even in samples of moderate size.

10



Cases in which (A) or (B) fails might appear to frustrate this argument. For instance,
suppose treatment were assigned, in violation of (A), by n independent Bernoulli(p) trials.
Then there would be some random fluctuation in treatment and control group sizes Ztm and
(1−Z)tm, and the denominators of the ratios of which dp(Z,x) is a difference would no longer
be constants, so that the argument by which Höglund’s Berry-Esseen principle bounded the
error of the Normal approximation would no longer be available.

This particular frustration is circumvented by referring observed differences dp(z,x) to
conditional, rather than marginal, distributions of dp(Z,x). For conditional on Zt1 = zt1 =
nt, condition (A) is restored, and provided (B) also holds the distribution of dp(Z,x) is close
to Normal, with mean and variance as previously indicated. What of departures from (B), i.e.
clusters that vary in size? Here the representation of dp(Z,x) as a linear transformation of Ztx

need not apply, even after conditioning on the number of clusters selected for treatment, since
then the number of treatment-group subjects Ztm may vary between possible assignments.
A modification to the standardized difference dp(·, ·) circumvents the problem. Writing mt

for the expected number of measurement units in the treatment group, set

d(z,x) :=
Ztx
mt

− (1− Z)tx
m−mt

(mt := E(Ztm), m = 1tm)

= m̄−1
[
kZtx− 1tx/(n− nt)

]
(k−1 := nt(1− nt/n))

This is equivalent to a difference of weighted means of cluster averages, rather than cluster
totals, of x, provided the clusters are weighted in proportion to the number of measurement
units they contain; Kerry and Bland (1998) recommend it for outcome analysis in cluster
randomized trials.

In designs with size variation among assignment units, d(z,x) and dp(z,x) = Ztx/Ztm−
(1−Z)tx/(m−Ztm) may differ. The differences will tend to be small, particularly if m, now
regarded as a covariate, is well balanced; and of course this balance is expediently measured
using d(z,m) and its associated p-value. These considerations recommend d(z,x) as a basic
measure of balance on a covariate x.

3.2 Simple randomization within blocks or matched sets

The approach extends to the case of block-randomized designs, and to designs that result
from poststratification or matching. Let there be blocks or poststrata b = 1, . . . , B con-
taining n1, . . . , nB clusters within which simple random samples of nt1, . . . , ntB clusters are
selected into the treatment group, for each b = 1, . . . , B; let Z = (Zt

1, . . . ,Z
t
b, . . . ,Z

t
B)t =

(Z11, . . . , Z1n1 , . . . , Zb1, . . . , Zbnb
, . . . , ZB1, . . . , ZBnB

) be a vector random variable of which
the experimental assignment was a realization, and let m = (mt

1, . . . ,m
t
b)

t record sizes of
clusters in terms of observation units. For each b = 1, . . . , B let mtb = E(Zt

bmb) = m̄bntb be
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the expected number of observation units in the treatment group. Let x = (xt
1, . . . ,x

t
B)t and

v = (vt
1, . . . ,v

t
B)t be single covariates, either cluster-level measurements or cluster sums of

individual measurements.
Measures of balance should be made separately within each block and then aggregated.

Within a block b, the (modified) difference of treatment and control group means on x

is simply zt
bxb/mtb − (1 − zb)txb/(m − mtb); one can combine the differences by taking a

weighted average of them. Weights may be proportional to the number of subjects in each
block, proportional to the number of treatment-group subjects in each block, or selected so
as to be optimal under some model; this latter approached is developed below in Section 5.
For now, fix positive weights w1, . . . , wB such that

∑
iwi = 1. The w-weighted average of

within-block differences on the mean of x is the same as the difference of weighted average
of means on x, where treatment and control subjects in block b are weighted in proportion
to wb/mtb and wb/(m−mtb), respectively.

Considered as a random variable, the block-adjusted, modified difference of treatment
and control group means is

d(Z,x) =
B∑

b=1

wb

[
Zt

bxb/mtb − (1− Zb)txb/(m−mtb)
]

(3)

=
B∑

b=1

wbkbm̄
−1
b Zt

bxb −
B∑

b=1

wbm̄
−1
b 1txb/(nb − ntb), (4)

where kb = n−1
tb + (nb − ntb)−1 = [ntb(1 − ntb/nb)]−1. Within block b, Zt

bxb is the sample
total of a simple random sample of size ntb from (xb1, . . . , xbn). It follows that it has mean
ntb/nb1txb = ntbx̄b; that its variance is ntb(1−ntb/nb)s2(xb); and that its covariance with Zt

bvb

is ntb(1−ntb/nb)s(xb;vb), for s(xb;vb) = (xb−x̄b1)t(vb− v̄b1)/(nb−1) and s2(xb) = s(xb,xb).
In virtue of the design, for blocks b′ 6= b the treatment group totals Zt

bxb and Zt
bvb are

independent of Zt
b′xb′ and Zt

b′vb′ . Together, these facts entail the following description of the
first and second moments of d(Z,x) and d(Z,v).

Proposition 3.1 Suppose that within blocks b = 1, . . . , B, simple random samples of ntb

from nb clusters are selected for treatment, with the rest assigned to control. Let Z indicate

12



sample membership and let x and v denote covariates. For d(·, ·) as in (3), one has

Ed(Z,x) = Ed(Z,v) = 0;

Var(d(Z,x)) =
B∑

b=1

w2
b

kb

m̄b

s2(xb)
m̄b

; and

Cov(d(Z,x), d(Z,v)) =
B∑

b=1

w2
b

kb

m̄b

s(xb;vb)
m̄b

.

When d(Z,x) can be assumed Normal, Proposition 3.1 permits analysis of its distribution.
In fact, relevant central limit theorems do entail its convergence to the Normal distribution
as the size of the sample increases, and they suggest that the convergence should be fast
and uniform across covariates x, v, . . . . There are two cases. In the first case, the number
of strata tends to infinity, so that each stratum makes an independent contribution to the
sum that is d(Z,x). In this case ordinary central limit theory entails that its distribution
tends to Normal. Indeed, the ordinary Berry-Esseen lemma limits the difference between
the distribution function of d(Z,x) and an appropriate Normal distribution in terms of its
variance and its third central moment (Feller 1971, ch. 16), both of which are calculable
precisely from the design and from the configuration of x. In the second case, the number
of strata is bounded but the size of at least one stratum tends to infinity. Assume that in
each growing stratum the proportions of clusters assigned to treatment and to control tend
to non-zero constants. Then the contribution kbm̄

−1
b Zt

bxb from any growing stratum b is
a rescaled sum of a simple random sample from (xb1, xb2, . . . , xbnb

) and is governed by the
central limit theorem and Berry-Esseen principle for simple random sampling (see § 3.1).
Contributions from small strata that do not grow are asymptotically negligible (assuming
their weights shrink to a negligible fraction of the weights of growing strata), and it follows
that the overall sum of stratum contributions tends to normality.

Although any weighting of blocks is possible, some are more likely to reveal imbalances
than others. Section 5 shows weights w∗

b ∝ m̄b/kb to be optimal in an important sense; it
so happens that differences d(·, ·) weighted in this way have first and second moments with
particularly simple expressions.

Corollary 3.1 Suppose that within blocks b = 1, . . . , B, simple random samples of ntb from
nb clusters are selected for treatment, with the rest assigned to control. Let Z indicate sample
membership and let x and v denote covariates. For d(·, ·) as in (3), with wb ≡ w∗

b ∝ m̄b/kb =
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m̄bntb(1− ntb/nb), one has

d(z,x) =
(∑

m̄b/kb

)−1
[

B∑
b=1

Zt
bxb −

B∑
b=1

ntb(1txb/nb)

]
(5)

Ed(Z,x) = Ed(Z,v) = 0;

Var(d(Z,x)) =
(∑

m̄b/kb

)−2
B∑

b=1

m̄b

kb

s2(xb)
m̄b

; and (6)

Cov(d(Z,x), d(Z,v)) =
(∑

m̄b/kb

)−2
B∑

b=1

m̄b

kb

s(xb;vb)
m̄b

.

3.3 Accommodating independent assignment by conditioning

Proposition 3.1 assumes simple random sampling of treatment groups within blocks. Were
assignments within block b made by independent Bernoulli(pb) trials, the induced first and
second moments of d(Z,x) — understood as a wb-weighted sum of terms

Zt
bxb

m̄Zt
b1
− (1− Zb)txb

m̄(nb − Zt
b1)

,

since ntb would no longer be a fixture of the design — would be formally and numerically
similar to those of the proposition, as a simple argument shows. Bb := Zt

b1 is Bin(nb, pb),
independently of Bb′ ∼ Bin(nb′ , pb′), b′ 6= b, and conditionally on Bb = nbt the distribution
of Zt

bxb is that of a sample sum of a simple random sample of size nt from {xb1, . . . , xbnb
}.

In general, conditioning on B1, . . . , BB gives d(Z,x) and d(Z,v) distributions of the type
described in Proposition 3.1. Since they have mean zero under the conditional distribution,
their unconditional means vanish as well; and furthermore the unconditional variance of
d(Z,v) is an average of the conditional variances. The conditional variances, Var(Zt

bxb|Bb =
ntb) = ntb(1 − ntb/nb)s2(xb), average over Bb ∼ Bin(nb, pb) to nbpb(1 − pb)σ2(xb), where
σ2(x) := [(n − 1)/n]s2(x). These expressions can be expected to give quite similar results,
unless Bb far exceeds or falls short of its expectation. In sum, for typical configurations of
(Zt

11, . . . ,Z
t
B1), conditional and unconditional distributions of d(Z,x) will be nearly alike,

to second order.
Their differences are that, first, the unconditional distribution may differ from normality

more than the conditional one. Each block’s contribution to d(Z,x) differs in distribution
from normality to an extent bounded by Höglund’s theorem, if Zt1 is fixed, but if Zt1 is
permitted to vary then the difference is limited neither by Höglund’s theorem nor by ordinary
Berry-Esseen principles.

Second, conditional assessments of d(Z,x) are immune from disruption by the occurrence
of an atypical configuration of (Zt

11, . . . ,Z
t
B1). A conditionality argument shows that such
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an immunity is desirable. To pose the question of balance as a null hypothesis about the
value of a parameter, consider the broader model in which P(Zbi = 1) is not a constant for
all i = 1, . . . , nb, but instead logit (P(Zbi)) = ψb + ψx(xbi). The null holds that ψx ≡ 0. The
likelihood of the full model, with independent sampling of Zbi’s and possibly nonzero ψx, is

∏
b

exp

{
(

nb∑
i=1

Zbi)ψb +
nb∑
i=1

Zbiψx(xbi)−
nb∑
i=1

log[1 + exp(ψb + ψx(xbi))]

}
(7)

=
∏
b

exp

{
(

nb∑
i=1

Zbi)ψb +
nb∑
i=2

(Zbi − Zb1/(nb − 1))ψx(xbi)−
nb∑
i=1

log[1 + exp(ψb + ψx(xbi))]

}
,

which admits an alternate parametrization in terms of the function ψx(·) and moment pa-
rameters ηb = E(

∑
i Zbi|ψb, ψx), b = 1, . . . , B. Thus Zt

b1 reflects largely on (η1, . . . , ηB), not
ψx(·), since model parameters (η1, . . . , ηB) and ψx vary freely of one another, and the distri-
bution of Zb conditional on Bb depends only on ψx(·), not on (η1, . . . , ηB) (Barndorff-Nielsen
and Cox 1994, p.130, p.40 ff.). The statistic (Zt

11, . . . ,Z
t
B1) is an approximate ancillary for

inference about the functions ψx, b = 1, . . . , B, a consideration favoring tests conditional on it
over tests based on the marginal distribution. Whether treatment is assigned by independent
coin tosses or by sampling without replacement, one is led to the without-replacement model,
and to Proposition 3.1 and its associated Normal approximation, for tests of balance.

3.4 An example

The p-values that Table 2 contrasts with mistaken ones are calculated from test statistics
d(z,x) and distributional approximations developed in this section. Although it wasn’t men-
tioned in § 2.1, the Vote ’98 experiment involved blocks, since it combined telephone voting
reminders with two other GOTV interventions in a factorial design; Table 2 uses the method
of Section 3.2, specifically that described in Corollary 3.1, to combine balance measures across
the four blocks.

The first row of Table 2 gives results for the test as to whether ztm differed substantially
from E(Ztm), in a subsample of 100 clusters and in the full sample of some 23,0000. The
z-scores d(z,m)/

√
V (d) (not shown in the table) were 1.186 and 0.226 for the sub- and

full samples, respectively, which by Normal tables give approximate p-values of .236 and
.821. This suggests ztm was relatively quite close to its null expectation, a suggestion that
gains further support from simulations, which find the mid-p values to be .211 and .821,
respectively. Having confirmed balance on cluster sizes, the next row of the table asks about
voting in the previous election. It isn’t precisely the same in treatment and control groups,
either for the subsample or for the full sample, as indicated by normalized differences of
d(z,x)/

√
V (d) = 1.228 and −.853, respectively; but the p-values, .224 and .391, indicate

that voting in the previous election is as similar in the two groups as could be expected, and
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the Normal approximation locates them with some accuracy, .220 and .394.

4 Simultaneously testing balance on multiple x’s

Ordinarily there will be several, perhaps many, x-variables along which balance ought to be
checked. Write

d2(z;x1, . . . ,xk) := [d(z,x1), . . . , d(z,xk)]

Cov



d(Z,x1)

...
d(Z,xk)




− 

d(z,x1)
...

d(z,xk)

 , (8)

where Cov(d(Z,xi), d(Z,xj)) is as in Proposition 3.1 and M− denotes a generalized inverse
of M . This test has the desirable properties that: (i), it culminates in a single test statistic
and p-value; (ii), it inherits the desirable Normal approximability of the individual appraisals
d(z,x1),. . . , d(z,xk); and, (iii), it appraises balance not only on x1, . . . ,xk, but also on all
linear combinations of them.

Linearity of d(z, ·) immediately establishes (iii). Arguments of Sections 3.1 and 3.2 entail
that d(Z, β1x1+· · ·+βkxk), suitably scaled, must be asymptotically N(0, 1) provided the xi’s
are suitably regular, whatever be β1, . . . , βk. It follows that the vector [d(z,x1), . . . , d(z,xk)]
has the multivariate Normal distribution in large samples, showing (ii). Then d2(Z;x1, . . . ,xk)
is scalar-valued with a large-sample χ2 distribution on rank (Cov ([d(z,x1), . . . , d(z,xk)])) de-
grees of freedom.

The χ2-approximation seems to work reasonably well even in small samples. Its distri-
bution in one small simulation experiment is graphed in the right panel of Figure 1, while
Table 3 summarizes its distribution in another; in both cases it tends somewhat toward con-
servatism. As a practical tool for the data analyst, it has the important advantage that it
stably handles saturation with x-variables; one wouldn’t bring about a spurious rejection of
the hypothesis of balance by adding to the list of x-variables to be tested. One certainly
would decrease the test’s power to detect imbalance along individual xi’s included among
covariates tested, but that is to be expected. (An example is given in § 6.2.) This is in
important contrast with methods based on regression of z on x’s; as the left panel of Figure 1
shows, natural tendencies toward overfitting inflate the Type I errors of such tests.

As an omnibus measure of balance, d2(z;x1, . . . ,xk) is similar in form and spirit to a
statistic suggested by Raab and Butcher (2001), namely a weighted sum of squares of differ-
ences of means of cluster means: in present notation α1d(z,x1/m)2 + · · · + αkd(z,xk/m)2,
where α1, . . . , αk ≥ 0 sum to 1. The ability of the statistician to decide the relative weightings
α of the variables might in some contexts be an advantage, but in others it may be burden-
some. In all cases it lends some arbitrariness to the criterion. Also, the criterion directly
measures only imbalances in x1, . . . , xk. In contrast, d2(z;x1, . . . ,xk) measures imbalances
in linear combinations of x1, . . . ,xk as much as in these variables themselves, lets the data
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drive the weighting scheme, upweighting discrepancies along variables with less variation in
general, and has the advantage of ready appraisability against χ2 tables.

5 Optimizing local power

This section develops and analyzes a statistical model of the absence of balance that is
appropriate to randomization inference. Casting this model as an alternative to the null
hypothesis of balance, tests based on d or d2 are seen to have greatest power when weights
w∗

b ∝ m̄b/kb are used to combine differences across blocks or matched sets. A related analysis
justifies the decision, encoded in the definition (3) of d(·, ·), to combine cluster totals, rather
than cluster means, of individual measurements. Readers not seeking justification on these
points may prefer to skip it, as the discussion is more technical than in other sections.

5.1 Optimal weights

Say balance is to be assessed against a canonical model (§ 3.2) with B blocks, perhaps after
conditioning as in Section 3.3. What choice of weights w1, . . . , wB maximizes the power
of the test for balance? Common results give the answer for models positing that x is
sampled while z is held fixed. Kalton (1968), for instance, assumes random sampling from
2B superpopulations with means µt1, µc1, . . . , µtB, µcB. He finds that in order to maximize
power against alternatives to the effect that µtb ≡ µcb + δ, δ 6= 0, blocks’ differences of means
should be weighted in proportion to the inverse of the estimated variance of those differences.
With the simplifying assumption that individuals in the 2B superpopulations have a common
variance in x, and ignoring intra-cluster correlations and within-block fluctuations in cluster
sizes, this leads to wb ∝ m̄b/kb. To avoid these simplifications, weights might be set in
proportion to reciprocals of estimated variances. But such a procedure would seem to add
complexity, and to detract from the credibility of assessments of statistical significance, since
the sample-to-sample fluctuation it imposes on the weighting scheme is difficult to account
for at the stage of analysis (Yudkin and Moher 2001, p.347).

The randomization perspective leads to the same result, but by a cleaner route, avoiding
the need to estimate or make assumptions about dispersion in superpopulations. In support
of this claim, the present section analyzes the problem of distinguishing unbiased from bi-
ased sampling of Z’s, rather than differences in superpopulations from which treatment and
control x’s are supposed to be drawn. The result that wb = w∗

b ∝ m̄b/kb is optimal from a
randomization perspective is, to my knowledge, new, as is its justification for an analogue
of “inverse-variance weighting” that removes estimating or making assumptions about su-
perpopulation variances from the process of deciding weights. Our analysis is asymptotic,
assuming increasing sample size; since any non-trivial test would have overwhelming power
given a limitless stock of similarly informative observations, we mount an analysis of local
power, in which the observations become less informative as sample size increases. This is
modeled with x’s that cluster increasingly around a single value as their number increases.
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Let there be constants {x(l)bi}, {m(l)bi}, and random indicator variables {Z(l)bi}, arranged
in triangular arrays the lth rows of which contain n(l) entries, xt

(l) = (xt
(l)1, . . . ,x

t
(l)B(l)), m

t
(l) =

(mt
(l)1, . . . ,m

t
(l)B(l)) and Zt

(l) = (Zt
(l)1, . . . ,Z

t
(l)B(l)), respectively, where x(l)b = (x(l)b1, . . . , x(l)bn(l)b

)t,
m(l)b = (m(l)b1, . . . ,m(l)bn(l)b

)t and Z(l)b = (Z(l)b1, . . . , Z(l)bn(l)b
)t, for some whole numbers

B(l) and n(l)1, . . . , n(l)B(l). Within a given row l, x(l)b,m(l)b, and Z(l)b describe cluster totals
on a variable x, cluster sizes (averaging to m̄(l)b) and treatment assignments within block
b, any b ≤ B(l). Suppose 1 ≤ n(l)tb < n(l)b for all l, b, and assume of the random variables
Z(l)b that with probability 1, Zt

(l)b1 = n(l)tb for each l and b ≤ B(l); say vectors z(l) that lack
this property are excluded. The null hypothesis asserts that for each l and block b ≤ B(l),
P(Z(l)bi = 1) is the same for all indices i. Alternately put, its probability density P (z(l))
vanishes for excluded z(l) and otherwise is proportional to (7) with ψx ≡ 0. For alternatives Q
to this null, define (for non-excluded z(l)) a likelihood proportional to (7), with bias function
ψx(·) the same for all l. Assume of this sequence of models that:

A1 {m(l)bi} is uniformly bounded, and {n(l)tb/n(l)b} is uniformly bounded away from 0 and
1;

A2 weights w(l)b have the property that w(l)b/w
∗
(l)b is uniformly bounded away from 0 and

∞, where w∗
(l)b ∝ m̄(l)bn(l)tb(1− n(l)tb/n(l)b) and

∑
bw

∗
(l)b = 1;

A3 for some c, supb,i |x(l)bi − c| ↓ 0 and
∑

b≤B(l)

∑
i(x(l)bi − c)2 is O(1) as l→∞;

A4 ψx is differentiable at c, where c is the constant referred to in A3.

A1 limits the divergence of w∗
(l)b and other common weighting schemes; should weights w(l)b

be proportional to the number of subjects in a block, the number of treatment group subjects
in a block, or the total of controls by block, then by A1, w∗

(l)b/w(l)b will be universally bounded
away from 0 and ∞. In other words, given A1 condition A2 is not restrictive. A1 also ensures
that

∑
b m̄(l)b/k(l)b is O(n(l)). A3 ensures tightening dispersion of x’s around c. In particular,

combined with A1, A3 entails
∑

bw
∗
(l)bs

2
(l)b(x(l)b)/m̄(l)b is O(n−1

(l)b), or that with weighting by
either w∗

(l)b or w(l)b, the weighted average of block mean differences d(Zl,xl) has variance of
order O(n−2

(l)b) — see Proposition 3.1 and Corollary 3.1.
By narrowing attention, if necessary, to a subsequence of models, let there be positive

constants K, s0x, swx and vwx such that as l→∞,

n−1
(l)

∑
b

m̄(l)bn(l)tb

(
1−

n(l)tb

n(l)b

)
→ K and n(l)

∑
b

w∗
(l)b

s2(x(l)b)
m̄(l)b

→ s20x; (9)

n(l)

∑
b

w(l)b

s2(x(l)b)
m̄(l)b

→ s2wx and n2
(l)VarP

(
d(Z(l),x)

)
→ v2

wx, (10)

where d(Z(l),x) in (10) is understood in the sense of (11).
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Proposition 5.1 Let

d(Z(l),x(l)) =
∑

b

w(l)b

[
Zt

(l)bx(l)b

m̄(l)bn(l)tb
−

(1− Z(l)b)tx(l)b

m̄(l)b(n(l)b − n(l)tb)

]
. (11)

Assuming A1–A4, writing P and Q for distributions of Z(l) under the null and alternative
hypotheses, respectively, letting swx, vwx be as in (10), and writing β for ψ′(c),

PQ(d(Z(l),x(l)) > z∗VarP (d(Z(l),x(l)))
1/2) → 1− Φ

(
z∗ − β

s2wx

vwx

)
. (12)

Display (12) should be compared to

PP (d(Z(l),x(l)) > z∗VarP (d(Z(l),x(l)))
1/2) → 1− Φ(z∗),

a statement of the asymptotic normality of d(Z(l),x(l)) under the null hypothesis. For
power against alternatives with β > 0, the acceptance region will be limited from above
at zuVarP (d(Z(l),x(l)))1/2, zu > 0; this power is optimized by calibrating the stratum weights
(w(l)b) so as to maximize VarP

(
d(Z(l),x)

)−1/2 (∑
bw(l)bs

2(x(l)b)/m̄(l)b

)
, the limit of which

is s2
wx

vwx
. To effect this calibration, for the moment fix l and write s2b for s2(x(l)b)/m̄(l)b,

b = 1, . . . , B. Recall that kb = [ntb(1− ntb/nb)]−1 (§ 3.2). Then(∑
bw(l)bs

2(x(l)b)/m̄(l)b

)
VarP

(
d(Z(l),x)

)1/2
=

(∑
bwbs

2
b

)(∑
bw

2
b [kb/m̄b]s2b

)1/2
(13)

=

(
wb [kb/m̄b]

1/2 sb) : b ≤ B
)t∥∥∥(wb [kb/m̄b]

1/2 sb) : b ≤ B
)∥∥∥

2

·
(
[kb/m̄b]

−1/2 sb : b ≤ B
)
,

where ‖ · ‖2 is the Euclidean norm, ‖x‖2 = (
∑

i x
2
i )

1/2. Selecting (wb : b = 1, . . . , B) so as
to maximize this expression amounts to maximizing the correlation between B-dimensional
vectors (wb[kb/m̄b]1/2sb : b = 1, . . . , B) and ([kb/m̄b]−1/2sb : b = 1, . . . , B), which is achieved
by setting wb ∝ [kb/m̄b]−1 — that is, by w(l)b = w∗

(l)b.
Similarly, for power against alternatives with β < 0 one limits the acceptance region from

below at zlVarP (d(Z(l),x(l)))1/2 < 0. TheQ- and P -limits of P(d(Z(l),x(l)) < zlVarP (d(Z(l),x(l)))1/2)
are Φ(zl +(−β) s2

wx
vwx

) and Φ(zl), respectively, and again power is maximized by w(l)b = w∗
(l)b ∝

m̄(l)b/k(l)b.
We establish Proposition 5.1 using principles of contiguity (Le Cam 1960; Hájek and

Šidák 1967), which describe the limiting Q-distribution of a test statistic t(Z) in terms of the
limiting joint distribution, under P , of (t(Z), log dQ

dP (Z)). A technical lemma, Lemma 5.1, is

19



needed, after which contiguity results are invoked to establish Lemma 5.2 (from which the
proposition is immediate). Both lemmas are proved in the appendix.

Lemma 5.1 Under the hypotheses of Proposition 5.1,

log
dQ

dP
(Z) P⇒ N(−1

2
β2Ks20x, β

2Ks20x)

(where “ P⇒” denotes convergence in distribution under P .)

Lemma 5.2 Under the hypotheses of Proposition 5.1,

d(Z(l),x(l))√
VarP (d(Z(l),x(l)))

Q⇒ N(β
s2wx

vwx
, 1).

5.2 The summary of a cluster by its total of individual measurements

Section 3 recommends comparing means of cluster totals, rather than means of cluster means
or of some other summary of a cluster’s measurements, in order to better assess treatment
and control groups’ similarity in the composition of individuals, rather than clusters, that
they contain. This choice is also better suited to distinguish unbiased assignment, Z ∼ P ,
from treatment assignment with bias, Z ∼ Q, as in Section 5.1.

Under the null model, clusters are assigned without regard to cluster or individual-level
characteristics of units, but failures of this model might reflect bias along factors present at
either of these levels. To represent this possibility, suppose for this section that the indices
(l)bi in (14) refer to individuals rather than clusters. The assignment to treatment by group
amounts to an additional set of restrictions on z(l), to the effect that individuals (l)bi and
(l)bj belonging to the same group must have z(l)bi = z(l)bj . To formalize these restrictions,
for each l and block b let the sequence (bc1), . . . , (bc(l)bNb

) select the index of one individual
from each cluster and let C(l)b consist of all pairs of form (ci, j) such that individuals (bci)
and (bj) belong to the same cluster. Then the likelihood is (suppressing the index (n) and
supposing the constant c of A3 and A4 to be 0)

Q(z) ∝

{
exp{ztψx(x)} ≈ exp{βztx}, if ∀b,

∑
i zbci

= ntb and ∀b, ∀(ci, j) ∈ Cb, zbci
= zbj ;

0, otherwise.
(14)

An individual ((l)bi)’s likelihood contribution exp{βz(l)bix(l)bi− k(l)bi} represents the chance,
given possibly biased sampling, of that individual’s assignment to treatment in the absence
of clustering; the probability of his assignment to treatment in the presence of clustering
will depend also on the x’s of other members of his cluster. Indeed, if Qβ denotes the
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approximation to Q with βztx instead of ztψx(x) in its likelihood, then (14) gives

Qβ((zbci
: b, i)) ∝

{
exp{β

∑
b

∑
i zbci

tbci
}, if ∀b,

∑
i zbci

= ntb

0, otherwise,
(15)

where tbci
=
∑

(ci,j)∈C(l)b
xj records cluster totals of x. According to the Neyman-Pearson

lemma, the most powerful test of null hypothesis P against alternative Qβ is based on the
statistic

∑
b

∑
i zbci

tbci
— in the notation of preceding sections,

∑
b zt

bxb, which by (5) is
equivalent to basing the test on d(·, ·) with wb = w∗

b , as recommended in Section 5.1.

6 Applications to study design and analysis

6.1 Whether to stratify, and which stratification is best

Randomization within well-chosen blocks may lead to imbalances on baseline measures of
smaller absolute magnitude than unrestricted randomization, and smaller baseline imbalances
are preferable for various reasons. Raab and Butcher (2001) sought to avoid imbalances
large enough to create noticeable discrepancies between treatment effects estimated with and
without covariance adjustment. Such differences might be troubling to the policymakers who
were a central audience for their study, even if they fell within estimated standard errors.
Yudkin and Moher (2001) worry that designs in which sizable imbalances are possible may
sacrifice power.

To reduce this penalty, their assist team elected to randomize clinics within three blocks,
consisting of 6, 9, and 6 clinics, rather than to randomly assign treatment to 14 of 21 clinics
outright. It remained to be decided which baseline variable to block on. Yudkin and Moher
report deciding against blocking on clinic size after finding only weak correlations between
clinics’ sizes and baseline rates of adequate heart disease assessments; they feared that privi-
leging size in the formation of blocks could have “resulted in imbalance in the main prognostic
factor” (2001, p.345). While these correlations are certainly reasonable to consider, it might
have been more direct to compare candidate blocking schemes on the basis of the variance in
d(Z, ·)’s they would entail, preferring those schemes that offer lesser mean-square imbalances
on key prognostic variables.

Table 4 offers such a comparison. It emerges that, despite the weak relationship between
clinic size and baseline rate of adequate assessment, blocking on size balances the rate of
adequate assessment quite well, nearly as well as does blocking on the rate itself. Meanwhile,
to balance the baseline variables, rates of treatment with various drugs, that at follow-up
would be measured as secondary outcomes, it is much better to block on size. Perhaps the
investigators were too quick to reject this option. In any case, the comparison of Var(d(Z,x)),
from (6), for various blocking schemes and covariates, x, would more directly have informed
their decision.
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Adequately Treated with
Stratification assessed aspirin hypotensives lipid-reducers

None .46 .46 .46 .46
By rate of ade-

quate assessment .31 .42 .43 .36
By clinic size .33 .24 .24 .31

Table 4: Standard deviations of d(Z,x) under various stratification schemes, expressed as
fractions of an s.d. of x/m̄. Both stratification schemes offer distinctly better expected
balance than no stratification at all, and stratification on clinic size seems preferable to
stratification on clinics’ baseline rates of adequate assessment.

6.2 Whether to post-stratify, and whether a given post-stratification suffices

Comparative studies typically present a small number of covariates that must be balanced
in order for the study to be convincing, along with longer list of variables on which balance
would be advantageous. In the assist trial, the short list consists of baseline measures on
variables to be used as outcomes; in the Vote ’98 experiment, it comprises a “baseline”
measure of the outcome, voting in the previous election, along with party membership and
demographic data, age and neighborhood, that well predict voting. Were the treatment group
significantly older than controls, or more likely to have voted in past elections, then one would
suspect significant positive error in unadjusted estimates of the treatment effect — even in
the presence of randomization, which limits typical errors, but not all errors.

When discovered after treatments have been applied, the most direct remedy for such
an imbalance is post-stratification. If treatments are on the whole older than controls, then
compare older treatments only to older controls, and also compare younger subjects only
among themselves. There is the possibility that one could introduce imbalances on other
variables by subclassifying on age; to assess this, one might apply d2(z;x1, . . . ,xk), where
x1, . . . ,xk make up the short list, to the post-stratified design. Should subclassifying only on
age fail to sufficiently reduce d2(z;x1, . . . ,xk), or should there be a more complex pattern of
misalignment to begin with, propensity-score methods are a reliable alternative (Rosenbaum
and Rubin 1984). Indeed, with the option of propensity score subclassification, there’s little
reason to restrict one’s attention entirely to the short list; one can reasonably hope to relieve
gross imbalances on any of a longer list of covariates, as well as marginal imbalances on the
most important ones.

Perhaps with this in mind, Imai (2005) suggests checking the Vote’98 data for imbalance
twice, once focusing on short-list variables and a second time considering also second-order
interactions of them. As discussed by Arceneaux et al. (2004), his logistic-regression based
check gives misleading results. Despite this technical impediment, however, the spirit of the
suggestion is sound; one might hope the check based on d2 would perform more reliably. In
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fact it does: in 106 simulated reassignments of telephone GOTV, the d2 statistic combining
imbalances on all first- and second-order interactions of x-variables exceeded nominal .001,
.01, .05, and .10 levels of the χ2(363) distribution in .09%, .9%, 4.8%, and 9.7% of trials,
respectively. The treatment assignment actually used gives, for the long list, d2 = 360.6,
with theoretical and simulation p-values .526 and .527, respectively, and for the short list,
d2 = 26.6 on 38 d.f.’s, with p-values .918 and .918, respectively; it is well balanced.

7 Discussion and summary

Clinical trials methodologists note, with some alarm, how few cluster randomized trials ex-
plicitly make note of cluster-level assignment and account for it in the analysis (Divine et al.
1992; MacLennan et al. 2003; Isaakidis and Ioannidis 2003). We have seen the need for
such an accounting even when indications for it might appear to be at their weakest, with
clusters that are small, uniform in size, and numerous. We have also seen that one natural
model-based test for balance along covariates, the test based on logistic regression, is prone
to spuriously indicate lack of balance when there are too many covariates relative to obser-
vations, and that this condition obtains for surprisingly large ratios of observations to the
number of covariates.

Tests of balance are important in observational studies that subclassify on the propensity
score (Rosenbaum and Rubin 1984). When treatments are administered at the clinic or
neighborhood level, it is appropriate to subclassify these clusters, rather than the elements
contained in them. Whether or not treatments are given to clusters, a subclassification is
adequate to remove bias on observed variables if it passes the balance test that would have
been appropriate had treatment assignment been random. When observational studies match
(Rosenbaum and Rubin 1985) or finely subclassify (Hansen 2004) on the propensity score,
tests of balance that accommodate large numbers of subclasses are needed; the d and d2

statistics presented here meet this requirement, although a likelihood ratio test after logistic
regression would not have (Agresti 2002, § 6.3.4).

Cluster-level randomization is said to confront investigators with “a bewildering array of
possible approaches to the data analysis” (Donner and Klar 1994). Randomization inference
presents a less cluttered field of options, and has the additional advantages of adaptation
specifically to comparative studies and of being non-parametric. With appropriate attention
to the form of the test statistic, it is quite possible in the randomization framework to
respect the study’s design while training attention on differences among individuals. This
aim also suggests conditioning strategies appropriate to the problem of assessing covariate
balance, and with these strategies special bounds on the error of large-sample approximations
become available. The result is a class of test statistics, for balance on a single covariate or
for balance on any number of covariates, that can be expediently appraised using Normal
approximations; the approximations are quite accurate in small and moderate samples. A
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noncommittal analysis of one parametric model suggests values for tuning parameters that
completely specify, indeed simplify, the form of the resulting nonparametric tests, ending
with a simple proscription that is suitable for general use: assess balance along individual
covariates x using d(z,x) with optimal weights, as in (5), then fold these comparisons into
an overall χ2-statistic d2(z;x1, . . . ,xk), as in (8).
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Erdős, P. and Rényi, A. (1959), “On the central limit theorem for samples from a finite
population,” Magyar Tud. Akad. Mat. Kutató Int. Közl., 4, 49–61.
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A Appendix

A.1 Proof of Lemma 5.1

Without loss of generality, the c named in A3 and A4 is 0. Then one has ψx(x) = ψ′x(0)x+
o(|x|) = βx+ xE(x), where, because of A3, maxb,i |E(x(l)bi)| ↓ 0 as l ↑ ∞. Since Q is defined
by (7) and P is defined by (7) without the ψx term, one can write

log
dQ

dP
(Z(l)b) = β

∑
b

Zt
(l)b(x(l)b − x̄(l)b) +

∑
b

Zt
(l)b(x(l)bE(x(l)b)− x(l)bE(x(l)b)) + κlP − κlQ

=: Xl + Yl − (κlQ − κlP ), (16)

for appropriate constants κlP , κlQ.
By similar calculations as those justifying Proposition 3.1, VarP (Xl) = β2

∑
b k

−1
(l)bs

2(x(l)b) =
β2
∑

b(m̄(l)b/k(l)b)s2(x(l)b)/m̄(l)b. By A3 and (9), this variance approaches β2Ks20x. By the
discussion following (3), VarP (Yl) =

∑
b n(l)tb(1− n(l)tb/n(l)b)s2(x(l)bE(x(l)b)). By A3, this is

O(E2
l ) as l ↑ ∞, where El := supb,i |E(x(l)bi)|. By A3 and A4, of course, El ↓ 0 as l ↑ ∞;

thus VarP (Yl) ↓ 0 as l ↑ ∞. Since (as we have seen) VarP (Xl) is O(1), it follows also that
CovP (Xl, Yl) = O(El), and overall VarP (Xl + Yl) → β2Ks20x as l ↑ ∞.

Clearly both Xl and Yl have expectation 0, under P. Since the random term Xl + Yl is,
as in Section 3.2, a sum of totals of simple random samples, its limiting law (under P ) must
be N(0, β2Ks20x).

It remains to be shown that κlQ−κlP → 1
2β

2Ks20x. Since EP (dQ/dP )(Z) = 1, exp{κlQ−
κlP } = EP e

Xl+Yl . From what was just shown it follows immediately that eXl+Yl
P⇒ eN(0,β2Ks2

0x),
the expectation of which equals the moment generating function of the standard Normal dis-
tribution evaluated at βK2s20x, or exp{1

2β
2s20x}. So the conclusion follows if we can establish

that EP e
Xl+Yl converges to EeN(0,β2Ks2

0x). This would follows from uniform integrability of
the random variables eXl+Yl , which would follow in turn from supn EP e

(1+ε)(Xl+Yl) <∞, any
ε > 0.
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The rest of the argument verifies this by establishing the technical condition that lim supl EP exp{
√

2(Xl+
Yl)} <∞. We make use of a theorem of Hoeffding (1963), to the effect that the expectation
of a convex continuous function of a sum of a simple random sample is bounded above by the
expectation of the same function of a similarly sized with-replacement sample from the same
population, and of the fact from calculus that if for a triangular array {cij} of nonnegative
numbers, maxj cij ↓ 0 while

∑
j cij → λ, then

∏
j(1+cij) → eλ. Writem(l)b(t) for the moment

generating function of Zt
(l)b(ψx(x(l)b)−ψx(x)(l)b), so that EP e

t(Xl+Yl) =
∏

bm(l)b(t). Under P ,
Zt

(l)b(ψx(x(l)b)−ψx(x)(l)b) is the sum of a simple random sample of size n(l)tb, and by Hoeffd-
ing’s theorem m(l)b(t) ≤ (m̃(l)b(t))n(l)tb , where m̃(l)b(t) is the moment generating function of a
single draw, D(l)b, from {ψx(x(l)bi)−ψx(x)(l)bi : i ≤ n(l)b}. By Taylor approximation, for each
l and b, m̃(l)b(

√
2) = 1 + EpD

2
(l)b exp{t∗(l)bD(l)b}, some t∗(l)b ∈ [0,

√
2]. We now need to show

that maxb EpD
2
(l)b exp{t∗(l)bD(l)b} ↓ 0 and

∑
b n(l)tbEpD

2
(l)b exp{t∗(l)bD(l)b} is O(1). By A3, as l

increases D2
(l)b exp{t∗(l)bD(l)b} is deterministically bounded by constants tending to 0, entailing

maxb EpD
2
(l)b exp{t∗(l)bD(l)b} ↓ 0. exp{t∗(l)bD(l)b} also declines to 0 deterministically, so that the

sum of n(l)tbEpD
2
(l)b exp{t∗(l)bD(l)b} is O(1) if

∑
b n(l)tbEpD

2
(l)b =

∑
b n(l)tbσ

2(ψx(x(l)b)) is. Now∑
b n(l)tbσ

2(ψx(x(l)b)) =
∑

b n(l)tbβ
2σ2(x(l)b)+

∑
b n(l)tbσ

2(ψx(x(l)b)−βx(l)b)+2
∑

b n(l)tbβσ(x(l)b, ψx(x(l)b)−
βx(l)b). Invoking A3, the first of these three sums may be seen to be O(1), and the latter
two O(E2

l ) and O(El), respectively, as l ↑ ∞. It follows that
∏

b(m̃(l)b(
√

2))n(l)tb , and hence∏
bm(l)b(

√
2) , are O(1), confirming that {eXl+Yl : l = 1, . . .} is uniformly integrable. �

A.2 Proof of Lemma 5.2.

Write Tl := VarP (d(Z(l),x(l)))−1/2d(Z(l),x(l)). By arguments of Section 3.2, Tl
P⇒ N(0, 1).

Combining this with Lemma 5.1, one has that

(Tl, log
dQ

dP
(Z(l)))

P⇒ N

[
(0,−σ2/2),

(
1 r

r σ2

)]
,

for some as yet to be determined r. This establishes the premise of Le Cam’s Third Lemma
(Le Cam 1960; Hájek and Šidák 1967), the conclusion of which is that the limit law under Q
of the random variable Tl is N(r, 1). We now calculate r.

Using the notation of (16), Cov(Tl, log dQ
dP (Z(l))) = Cov(Tl, Xl)+Cov(Tl, Yl). Now |Cov(Tl, Yl)| ≤

(Var(Tl)Var(Yl))
1/2 = Var(Yl)1/2, which was shown in the proof of Lemma 5.1 to decline to
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0 as l increases. Considering only non-excluded treatment assignments Z(l),

CovP (Tn, Xl) = V −1/2CovP

(
B∑

b=1

w(l)b(k(l)b/m̄(l)b)Z
t
(l)bx(l)b,

∑
b

βZt
(l)bx(l)b

)
= βV −1/2

∑
b

wb(k(l)b/m̄(l)b)VarP

(
Zt

(l)bx(l)b

)
= βV −1/2

∑
b

wbs
2(x(l)b)/m̄(l)b,

writing V for VarP (d(Z(l),x(l))), invoking independence of Zb and Zb′ , b 6= b′, and evalu-
ating VarP (Zt

bxb) in the same manner as led to Proposition 3.1. According to (10), then,
CovP (Tl, Xl) → β s2

wx
vwx

. It follows that r = β s2
wx

vwx
.�

29


