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Experiments

Phenomena

• Unpredictable in detail

• The set of possible outcomes in known.

Examples a) Scientific experiments

b) Games of chance

c) Human performace

d) Financial indices

e) The Weather

Events and The Sample Space

The Sample Space. Let Ω denote the set of

possible outcomes for a given experiment.

Events: Susbsets of the sample space,

A, B, C ⊆ Ω.

Example: Coin Tossing. Ω = {hH, hT, tH, tT}

and A = {hT, tH}.

The Algebra of Events Set theory operations

on events–for example,

A ∪ B = {ω : ω ∈ A or ω ∈ B},

AB = {ω : ω ∈ A and ω ∈ B},

Ac = {ω : ω /∈ A}.

B − A = BAc

The Model

Three Elements

• The sample space: Ω 6= ∅.

• Events: Subsets of A, B, C, · · · ⊆ Ω.

• Probability: Let A be the class of events,

and let P : A → IR must satisfy

P (Ω) = 1, (1)

0 ≤ P (A) ≤ 1, (2)

P (A ∪ B) = P (A) + P (B) (3)

whenever A and B are events for which AB = ∅.

Notes a). Probability is a property of events.

b). (1), (2), and (3) are axioms and admit

various interpretations.



The Classical Model

Games of Chance

The Model. Ω is a finite set; A is the class of all

subsets of Ω; and

P (A) =
#A

#Ω
.

Example: Roulette

Ω = {0,00,1,2,3,4, · · · ,35,36}

and

P ({Red Outcome}) =
18

38
=

9

19
.

The Birthday Problem

Q: If n people gather, what is the probability that

no two have the same birthday?

A: Regard the birthdays of the n people as a

sample w.r. from {1, 2, · · · , 365} (ignoring leap

year). Then Ω is all lists

ω = (i1, · · · , in)

and #Ω = 365n. Let

A = {ω : ij 6= ik all j 6= k}.

Then A consists of all permutations of n days,

#A = (365)n, and

P (A) =
(365)n

365n
= pn say.

Some Values

n 8 16 24 32 40

pn .924 .716 .462 .247 .109

Discrete Probability Models

Suppose Ω = {ω1, ω2 · · · }, finite or infinite; let

p : Ω → IR,

satisfy

p(ω) ≥ 0 for all ω,
∑

ω∈Ω

p(ω) = 1.

Let

P (E) =
∑

ω∈E

p(ω)

for E ⊆ Ω.

Notes a) Then (1), (2), and (3) hold.

b) p(ω) = P ({ω}).

Example. In the classical model, p(ω) = 1/#Ω.

On Infinite Sums

If x1, x2, · · · ∈ IR, then

∞
∑

k=1

xk = lim
n→∞

n
∑

k=1

xk,

provided that the limit exists.

Examples a). If −1 < x < 1, then

∞
∑

k=1

xk−1 =
1

1 − x
.

b). For any x,

∞
∑

k=0

1

k!
xk = ex.

Alternative Notation: If A = {x1, x2, · · · }, and

f : A → [0, ,∞), write

∑

x∈A

f(x) =
∞
∑

k=1

f(xk).



Waiting for Success

Play Roulette Until a You Win

Betting on Red

Let

r =
9

19
,

q = 1 − r =
10

19
,

and

Ω = {1, 2, · · · }

Then, intuitively,

p(1) = r,

p(2) = qr,

p(3) = q2r,

· · · ,

p(ω) = rqω−1.

Then

∑

ω∈Ω

p(ω) =
∞
∑

ω=1

rqω−1

=
r

1 − q

= 1.

Let

P (A) =
∑

ω∈A

p(ω).

Amusing Calculation: Let Odd = {1, 3, · · · }.

Then

P (Odd) =
∞
∑

k=0

rq(2k+1)−1

= r
∞
∑

k=0

q2k

=
r

1 − q2

=
19

29
.

What Does Probability Mean?

The Subjective Interpretation. Probabilities

reflect the opinion of the observer.

Strategy: Assess probabilities by imagining bets.

Examples a). Peter is willing to give two to one

odds that it will rain tomorrow. His subjective

probability for rain tomorrow is at least 2/3.

b). Paul accepts the bet. His subjective

probability for rain tomorrow is at most 1/3.

Applications Business.

The Objective Interpretation

Thought Experiment: Imagine the experiment

repeated N times. For an event A, let

NA = # occurrences of A.

Then

P (A) = lim
N→∞

NA

N
.

Example: Coin Tossing

N NH/N

100 .550

1000 .493

10000 .514

100000 .503

Note: Consistent with P (H) = .5.

Example. In many roulette games, about 9/19

will result in red.



Consequences of the Axioms

Suppose that P satisfies (1), (2), and (3).

If A and B are events for which A ⊆ B, then

P (B − A) = P (B) − P (A). (4)

For any event A,

P (Ac) = 1 − P (A). (5)

In particular,

P (∅) = 0. (6)

For any events A and B,

P (A ∪ B) = P (A) + P (B) − P (AB) (7)

If A1, · · · , Am are any m events, then

P (

m
⋃

i=1

Ai) ≤
m

∑

i=1

P (Ai), (8)

with equality if AiAj = ∅ whenever i 6= j.

Proofs

If A ⊆ B, then

B = A ∪ (B − A)

and A ∩ (B − A) = ∅. So,

P (B) = P (A) + P (B − A),

by (3) and, therefore,

P (B − A) = P (B) − P (A). (4)

For (5), Ac = Ω − A. So,

P (Ac) = P (Ω) − P (A) = 1 − P (A). (5)

For (6). P (∅) = P (Ωc) = 0.

Example. In the birthday problem, the

probability that at least two people have the same

birthday is Ac, and

P (Ac) = 1 − P (A) = 1 −
(365)n

365n
.

Proofs: Continued

For (7),

A ∪ B = A ∪ (B − AB),

and A ∩ (B − AB) = ∅. So,

P (A ∪ B) = P (A) + P (B − AB)

= P (A) + P (B) − P (AB).

If m = 2, then

P (

m
⋃

i=1

Ai) ≤
m

∑

i=1

P (Ai), (8)

by (7); and if A1A2 = ∅, then there is equality by

(3). The general case follows from mathematical

induction.

More on Unions

If A1, · · · , Am are events, let

σ1 =
m

∑

i=1

P (Ai),

σ2 =
∑

1≤i<j≤m

P (AiAj),

σ3 =
∑

1≤i<j<k≤m

P (AiAjAk),

· · · ,

σk =
∑

1≤i1···<ik≤m

P (Ai1 · · ·Aik
),

· · · ,

σm = P (A1A2 · · ·Am).

Then

P (
m
⋃

i=1

Ai) = σ1 − σ2 + · · · ± σm.

Proof. By induction–messy.



The Matching Problem

Let Ω be all permuations

ω = (i1, · · · , in)

of 1, 2, · · · , n. Thus,

Ω = n!.

Let

Aj = {ω : ij = j}

A =
n
⋃

i=1

Ai.

Then

σk =

(

n

k

)

P (A1 · · ·Ak),

by symmetry.

Examples. Gift exhange

Here

P (A1) =
1 × (n − 1)!

n!
=

1

n!
,

P (A1A2) =
(n − 2)!

n!
=

1

(n)2
,

· · · ,

P (A1 · · ·Ak) =
(n − k)!

n!
=

1

(n)k

,

for k = 1, · · · , n. So,

σk =

(

n

k

)

(n)k =
1

k!
,

P (A) = σ1 − σ2 + · · · ± σn

=
n

∑

k=1

1

k!
(−1)k−1,

and

P (A) = 1 −
n

∑

k=0

1

k!
(−1)k ≈ 1 −

1

e
.

Note: Accurate to three places if n ≥ 6.

Refinements

More on Events. Not all subsets of Ω need be

events; but the class of events must be closed

under union, intersection, and complementation.

More on the Third Axiom. A stronger version

of (3) requires

P (
∞
⋃

k=1

Ak) =
∞
∑

k=1

P (Ak), (3∗)

whenever A1, A2, · · · are mutually exclusive

events (that is, AiAj = ∅ for i 6= j).

Remark: (3*) implies (3).

Proposition. The discrete probability models

satisfy (3*), as well as (3).

Proof. Omitted

Some Indiscrete Models

Intervals

(a, b) = {x : a < x < b},

(a, b] = {x : a < x ≤ b},

[a, b) = {x : a ≤ x < b},

[a, b] = {x : a ≤ x ≤ b},

Densities. Let Ω be an interval and f a function

for which f(ω) ≥ 0 and
∫

Ω

f(ω)dω = 1.

Then let

P (I) =

∫

I

f(ω)dω

for intervals I and extend f to a larger class of

events using the axioms.

Example The Uniform Spinner. Let Ω = (−π, π]

and f(ω) = 1/2π. Then

P ((a, b)) = · · · = P ([a, b]) =
b − a

2π
.



Amusing Calculation

About the Extension Process

Note. For any ω,

P ({ω}) = P ([ω, ω]) =

∫ ω

ω

f(ω′)dω′ = 0.

If

C = {ω1, ω2, · · · },

then

P (C) =
∞
∑

i=1

P ({ωi}) = 0.

The probability of a rational outcome is zero.

Monotone Sequences

Events A1, A2, · · · are increasing if

A1 ⊆ A2 ⊆ · · ·

and decreasing if

A1 ⊇ A2 ⊇ · · · .

The limit of an increasing (respectively,

decreasing) sequence is

A∞ =
∞
⋃

k=1

Ak,

respectively,

A∞ =
∞
⋂

k=1

Ak.

Example. If Ω = IR and

Ak = (−∞,
1

k
) = {ω : ω <

1

k
},

then Ak are decreasing and

A∞ = {ω : ω <
1

k
for allk}

= (−∞, 0].

De Morgan’s Laws. For any events

Ai, i = 1, · · · , n,

(

n
⋃

i=1

Ai

)c
=

n
⋂

i=1

Ac
i ,

(

n
⋂

i=1

Ai

)c
=

n
⋃

i=1

Ac
i .

Also true if n = ∞. Proof-e.g.. ω ∈ (∪n
i=1Ai)

c iff

ω /∈ ∪n
i=1Ai iff ω /∈ Ai for any i iff ω ∈ cupn

i=1A
c
i .

Corollary. If A1, A2, · · · is increasing or

decreasing, then then

(A∞)c = (Ac)∞.

The Monotone Sequences Theorem

Suppose that P satisfies (1), (2), and (3o). Then

P satisfies (3) iff

P (A∞) = lim
n→∞

P (An),

whenever A1, A2, · · · is an increasing, or

decreasing, sequence of events.

Proof. Later, or see the text.

Remarks a). Type of continuity.

b). Equivalent to (3).

c). Useful.


