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Chapter 1

Combinatorial Probability

1.1 The Classical Model

In its simplest form, the theory of probability may be motivated by games of chance

such a card games and dice games. The resulting models are both simple and inter-

esting. They provide a good introduction to the subject and have wider applicability.

To understand the nature of the problems, consider the game of roulette.

Example 1.1 In this game a ball must fall into one of 38 boxes labelled 00, 0,

1,2,· · · ,36 of which 00 and 0 are green, 1,3,· · · ,35 are red, and 2,4,· · · ,36 are black. A

player may bet even money on either a red or black outcome against the house. If the

player bets on red, then there are thirty-eight possible outcomes, 00, 0,1,2,· · · ,36 of

which eighteen, 1,3,· · · ,35, are favorable (red), and it seems natural to call the ratio

18/38 = 9/19 the probability of winning. What does this number mean? To answer

this question, it is necessary understand the assumptions that have been made. It

was tacitly assumed that the thirty-eight outcomes are equally-likely; that is, that in

many repetitions of the game, the various outcomes will occur with approximately

the same frequency. The assumption seems reasonable here, if the wheel is balanced

and the boxes of equal size. It then follows that if the player plays a large number

of games, say N , and if W denotes the number of games that he/she wins, then the

ratio W/N will approximate the probability of winning; that is W/N ≈ 9/19. The
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6 CHAPTER 1. COMBINATORIAL PROBABILITY

qualifiecation ”approximately” is important here, since one should not expect exact

equality. The accuracy of this approximation is assessed in Example ?.?. ♦

A Mathematical Model. With the example in mind, consider a game which must

result in one of a finite number of possible outcomes which are equally likely. Denote

the set of possible outcomes by Ω, so that Ω = {00, 0, 1, 2, · · · , 36} in the example.

Subsets A ⊆ Ω, are called events, and an event is said to occur if the outcome is an

element of it. For example, A = {1, 3, · · · , 35} is the event of a red outcome in the

example. If A is any event, denote the number of outcomes in A by #A. Then the

probability of an event A is defined to be

P (A) =
#A

#Ω
(1.1)

for all events A ⊆ Ω; that is, the probability of an event is the ratio of the number

of favorable outcomes to the total number of outcomes. The model defined by (1) is

called the Classical Model.

Example 1.2 If two balanced dice are tossed, what is the probability that the sum

of spots is equal to seven? In this case an outcome may be represented by an ordered

pair ω = (i, j), where i and j are integers between one and six representing the

numbers of spots that appear on the two dices. Thus

Ω = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6)

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

,

and #Ω = 36, by inspection. The event that the sum of spots is seven is the off

diagonal, A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, and #A = 6. So, P (A) =

6/36 = 1/6. diamonduit
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As defined by (1.1), probability is a function defined on the power set of Ω, the set

of all subsets of Ω. Of course, several operations may be performed on sets, like unions,

intersection, and complementation. That is A ∪ B = {ω ∈ Ω : ω ∈ A or ω ∈ B},

A∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}, and A′ = {ω ∈ Ω : ω /∈ A} for events A,B ⊆ Ω.

Probability interacts with these operations and has the following obvious properties:

0 ≤ P (A) ≤ 1, for all A ⊆ Ω, (1.2)

P (Ω) = 1 (1.3)

and

P (A ∪B) = P (A) + P (B), if A ∩B = ∅, (1.4)

where ∅ denotes the emptyset.

Some simple consequences of (1.2), (1.3), and (1.4) are needed below. First, if

A′ denotes the complement of an event A. Then A ∪ A′ = Ω and A ∩ A′ = ∅. So,

P (A) + P (A′) = P (Ω) = 1, by (3) and (4), and

P (A′) = 1− P (A). (1.5)

Events A and B are said to be mutually exclusive if A ∩ B = ∅. Using (4) and

mathematical induction, it is easy to show that if A1, · · · , Am are (pairwise) mutually

exclusive, then

P (A1 ∪ · · · ∪ Am) = P (A1) + · · ·+ P (Am). (1.6)

1.2 Combinatorics

Calculations within the classical model are conceptually straightforward: To compute

the probability of an event A using Equation (1.1), one has only to count the number

outcomes in A, count the number of outcomes in Ω, and divde, as in Examples

4.5 and 1.2. The actual counting may be complicated, however, especially if Ω is

large. See Example 2 below. In order to use Equation (1.1) in complex situations,

an effecient method of counting is needed. The efficient method of counting is called

Combinatorics and is the subject of this section.
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Lists and Permutations. Some things are easy to count. If Z is a non-empty set,

then one may form an ordered pairs (x, y), where x, y ∈ Z. More generally, if n is a

positive integer, then a list of n-elements of Z is an array (z1, · · · , zn) with zi ∈ Z

for all i = 1, · · · , n. The order in which elements are listed in important here, so that

two lists, (z1, · · · , zn) and (w1, · · · , wm) say, are equal iff m = n and wi = zi for all

i = 1, · · · , n. A permutation of n-elements of Z is a special type of list in which no

element appears more than once; that is, zi 6= zj whenever i 6= j. For example, if

Z = {1, 2, 3}, then there are nine ordered pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3),

(3,1), (3,2), (3,3) of which six are permuations, (1,2), (1,3), (2,1), (2,3), (3,1), (3,2).

Lists and permutations are easy to count, and many interesting calculations may

be done using the following simple rule.

The Basic Principal of Combinatorics. Suppose that objects, x and y say,

are to be chosen from sets X and Y . If there are M choices for x and then N choices

for y, then there are M ×N choices for the ordered pair (x, y).

More generally, suppose that objects zi are to be chosen from sets Zi, i = 1, · · · , n.

If there are Ni choices for zi for i = 1, · · · , n, then there are N1×N2×· · ·×Nn choices

for the list (z1, · · · , zn).

In the Basic Principal, the set Y from which y is chosen may depend on x; only

the number of choices N must be fixed in advance. For a small example, nine ordered

pairs (x, y) may be chosen from {1, 2, 3}, since there are three choices for each of x

and y; and there are six permutations (x, y) with x 6= y, since then there are three

choices for x, but only two for y, which must be different from x Here is a larger

example.

Example 1.3 In a certain state, automobile license plates consist of a list of two let-

ters (a, · · · , z) followed by four digits (0. · · · , 9). Thus license plates may be identified

with lists (z1, · · · , z6), where z1 and z2 are letters and z3, z4, z5, and z6 are digits.

a) There are 262 = 676 ways to choose the two letters, since there are Ni = 26

choices for z1 and z2. Similarly, there are 104 = 10, 000 ways to choose the four digits,

since there are 10 choices for each of z3, · · · , z6. So, there are 262 × 104 = 6, 760, 000

distinct license plates.
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b) There are 26× 25× 10× 9× 8× 7 = · · · license plates with distinct letters and

distinct digits. For there are 26 choices for z1, but then only 25 for z2, which must

be different from z1. Similarly, there are 10 choices for z3, but then only 9 for z4, 8

for z5, and 7 for z6. ♦

The derivation used in the example generalizes easily. Let n and N are positive

integers and let Z be a set with N elements. Then there are Nn = n × · · · × n lists

(z1, · · · , zn) of n-elements of Z, since there are N choices for zi for all i = 1, · · · , n.

If n ≤ N , then there are N × (N − 1)× · · · × (N − n+ 1) permutations, since there

are N choices for z1, N − 1 for z2, which must be different from z1, etc.· · · . It is

convenient to have a notation for the latter product. Let

(N)n := N × (N − 1)× · · · × (N − n+ 1) (1.7)

for positive integers N and n, and let (N)0 = 1. The symbol (N)n defined in (??) is

called a it descending product. Observe that (N)n = 0 if n > N , since then one of the

factors is zero. Equation (??) is called the Permutations Formula, because there are

(N)n permutations of length n from a set of N elements. In the special case N = n,

the product (n)n is denoted by n! (read ”n-factorial”); thus, 0! = 1,

n! = n× (n− 1)× · · · × 2× 1 (1.8)

for positive integers n = 1, 2, · · · , and there are n! permutations of a set of n elements.

The numbers n! grow very rapidly. For example, 5! = 5 × 4 × 3 × 2 × 1 = 120, and

10! = 3, 628, 800. Stirling’s Formula asserts that

n! ∼
√

2πnn+ 1
2 e−n, (1.9)

as n → ∞, where ∼ means that the ratio of the two sides approaches one. It is

accurate to within 1% for n ≥ 10. A derivation is later.

Combinations Permutations may be contrasted with combinations. If Z is a

non-empty set, then a subset {z1, · · · , zn} of n distinct elements of Z is called a

combination of n-elements of Z. Like permutations, combinations must have distinct

elements, but for combinations the order in which these elements are listed is not
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important. That is, two combinations, {w1, · · · , wm} and {z1, · · · , zn} are equal iff

wi ∈ {z1, · · · , zn} for all i = 1 · · · ,m and zi ∈ {w1, · · · , wm} for all i = 1, · · · , n.

This implies m = n. For example, the two combinations {1, 2, 3} and {3, 2, 1} are the

same, but the permutations (1, 2, 3) and (3, 2, 1) are different. In fact, six differenct

permutations may be obtained from the combination {1, 2, 3, }.

If n and N is positive integers for which n ≤ N and if Z is a set with N elements,

then there are (N)n/n! combinations of n-elements from Z. To see this observe that a

permutation of n-elements of Z may be chosen in two step: first select a combination

of n-elements; then arrange them in a definite order. Let C denote the number of

combinations. Then, since there are (N)n permutations and n! ways to arrange it in

a definite order, (N)n = C × n!, by the Basic Principal. So, C = (N)n/n!.

Example 1.4 a) If a committee of three is to be chosen from a group of nine people,

then thre are (9)3/3! = 9× 8× 7/6 = 84 possible choices, if that all members of the

committee have equal status.

b) A menu at a resturant lists 30 entrees. If a large group decides to order 10

different ones, then there are (30)10/10! = 30, 045, 015 possible choices.

c) A bridge hand consists of a combination of thirteen card from a standard deck.

There are (52)13/13! = 635, 013, 559, 600 bridge hands. ♦

Binomial Coefficients. The numbers on the right side of are called binomial

coefficients and denoted by (
N

n

)
=

(N)n
n!

(1.10)

for n = 1, · · · , N . When n = 0, the right side of (5) is one, since 0! = 1, and if

n > N , then it is zero. Further, it is convenient to let
(
N
n

)
= 0 if n < 0. Then

(
N
n

)
combinations of n elements may be formed from a set of N elements for all integer

n and N . Equation(??) called the Combinations Formula below. Using the relation

N ! = (N)n × (N − n)!, the number of combinations may be written(
N

n

)
=

N !

n!(N − n)!
(1.11)
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for n = 0, · · · , N . The reader has undoubtedly encountered the binomial coefficients

in the context of the Binomial Theorem which states that

(a+ b)N =
N∑
n=0

(
N

n

)
anbn−n (1.12)

for real numbers a and b and non-negative integers N . In fact, the Binomial Theorem

follows easily from the combinations formula. For if the product (a+ b)N = (a+ b)×

· · · × (a+ b) is expanded, then anbN−n will appear as often as a may be chosen from

n of the factors and b from the remaining N − n, and there
(
N
n

)
such terms by the

Combinations Formula.

Partitions. If Z is a set and r is a positive integer, then a partition of Z into r

subsets is a list (Z1, · · · , Zr), where Zi, i = 1, · · · , r are mutually exclusive sets whose

union is Z; that is, Zi ∩ Zj = ∅ whenever i 6= j and ∪ri=1Zi = Z. The numbers of

elements Ni = #Zi, i = 1, · · · , r in the sets are called the partition numbers. Observe

that the order in which the sets Z1, · · · , Zr are written is important, but the order in

which elements are written within each Zi is not.

For an example, suppose that six toys are to be divided among three children in

such a manner that the youngest gets 3, the middle child gets 2, and the oldest gets

1. Then there are
(

6
3

)
= 20 ways to select three toys for the youngest. Then there are(

3
2

)
= 3 ways to select two toys for the middle child from the remaining three toys,

and then there is only one toy left for the oldest child. So, the number of possible

partitions is 20× 3× 1 = 60.

It is possible to count the number of partitions with given partition numbers quite

generally. If Z is a set with N elements, and if N1, · · · , Nr are non-negative integers

for which N1 + · · ·+Nr = N , then there are(
N

N1, · · · , Nr

)
:=

N !

N1!× · · · ×Nr!
(1.13)

partitions (Z1, · · · , Zr) of Z for which #Zi = Ni for all i = 1, · · · , r. To see this

observe that there are
(
N
N1

)
possible choices for Z1, which may be any combination

of size N1 from Z. Then there are
(
N−N1

N2

)
possible choices for Z2, which may be any

combination of size N2 from Z −N1, and so on. By the Basic Principal, the number
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of partitions is the product(
N

N1

)
×
(
N −N1

N2

)
× · · · ×

(
N −N1 − · · · −Nr−1

Nr

)
=

N !

N1!(N −N1)!
× (N −N1)!

N2!(N −N1 −N2)!
× · · · × (N −N1 − · · · −Nr−1)!

Nr!(N −N1 − · · · −Nr)!

=
N !

N1!× · · · ×Nr!
.

Example 1.5 How many distinguishable configurations can be made from the letters

in the word MISSISSIPPI? Label the positions of the eleven letter by 1, 2, · · · , 11.

Then a distinguishable configuration consists of a partition of the eleven places into

four subsets of sizes 4 for the I, 1 for the M, 2 for the P , and 4 for the S. Using (1.13),

the answer is
11!

4!× 1!× 2!× 4!
= · · · .

The symbol defined in (??) is called a multinomial coefficient, and the Multinomial

Theorem asserts that

(a1 + · · ·+ ar)
N =

∑(
N

N1, · · · , Nr

)
aN1

1 × · · · × aNr
r

for real a1, · · · , ar, where the summation extends over all non-negative integersN1, · · · , Nr

for which N1 + · · ·+Nr = N .

1.3 Sampling Experiments

The combinatorial formulas from the previous section may be combined with Equation

(1.1) to compute many interesting probabilities. In this section, they are used to study

sampling experiments. These are experiments in which a smaller group of objects,

called the sample, is selected from a larger group, called the population, and examined

in some way. The object of the exercise may be to learn about the population, or

simply to select a sample fairly. Here are two examples to illustrate the nature of the

calculations.

Example 1.6 a). If a committee of size five is selected at random from a group

of nine Democrats and six Republicans, what is the probability that the Committee
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consists of three Deomcrats and two Republicans? In this case, and outcome to the

experiment is a combination of five of the nine fifteen. So, there are #Ω =
(

15
5

)
= 3003

possible outcomes. Let A the the event that there are three Democrats and two

Republicans on the committee. Then #A =
(

9
3

)
×
(

6
2

)
= 84× 15 = 1260, since there

are
(

9
3

)
ways to select two of the six Democrats, and

(
6
2

)
ways to select two of the six

Republicans. So, the desired probability is

P (A) =

(
9
3

)(
6
2

)(
15
5

) =
1260

3003
= .4196,

by (??).

b). If the group consists of six Democrats, three Independents, and six Republi-

cans, what is the probability that the committee consists of two Democrats, one Inde-

pendent, and two Republicans. LetB be the latter event. Then #B =
(

6
2

)
×
(

3
1

)
×
(

6
2

)
=

675, since there are
(

6
2

)
ways to select two Democrats,

(
3
1

)
ways to select an Indepen-

dent, and
(

6
2

)
ways to select two Republicans. So,

P (B) =

(
6
2

)2(3
1

)(
15
5

) = .2248.

Box-Ticket Models for Sampling. In the last two examples, a smaller group is

selected from a larger group. There are many examples of this nature, and it is useful

to have some uniform terminology to discuss them. The larger group may be pictured

as a set of tickets in a box–for example, movie tickets in a shoe box. The box is given

a vigorous shake and some of the tickets are removed. The set of tickets in the box

is called the population, and those selected the sample. Several types of samples may

be identified. Let N denote the population size, the number of tickets in the box,

and let n denote the sample size.

Unordered Samples. If the tickets are drawn all at once, or if the order in which

they are drawn is unimportant, then an outcome may be described by a combination

of n of the N tickets, and the sample space Ω consists of all such combinations. Thus

there are #Ω =
(
N
n

)
possible outcomes. Example 1 is of this nature, if the fifteen

people are identified with tickets in a box.

Ordered Samples. Alternatively, the tickets may be drawn one at a time, and the

order in which they are drawn recorded. In this case, an outcome consists of a list of
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the n tickets drawn. For ordered samples, there is a further distinction to be drawn.

The tickets may be replaced after each drawing, or not.

Ordered Sampling With Replacement. If the tickets are replaced after each

drawing, then all lists of n tickets are possible outcomes. In this case, the sample

space Ω consists of all lists of n of the N tickets, and #Ω = Nn.

Ordered Sampling Without Replacement. If n ≤ N and the tickets are not

replaced after each drawing, then only lists of distinct tickets are possible outcomes.

So, the sample space Ω consists of all permutations of n of the N tickets in this case,

and #Ω = (N)n.

Interesting mathematical models arise when all samples of a given size and type

are equally likely to be drawn. Then the sample is said to be a simple random sample,

and the sampling is said to be at random. To justify this assumption, there should

be an explicit act of randomization, like shaking the box, and the box should be

shaken after each drawn in the case of sampling with replacement. Further examples

conclude this section. The first is a famous one with a surprizing answer.

Example 1.7 The Birthday Problem

If twenty-five people gather at a party, what is the probability that at least two of

them have the same birthday. The answer is .56 · · · , not 25/365. To see why suppose

that n people gather at the party. Order them by order of arrival, say, and regard

the birthdays of the n people as a simple random sample with replacement from the

365 day of the year, ignoring leap years and effects like snowstorms. Then the sample

space Ω consists of all lists of length n from the days of the year, and #Ω = 365n.

Let A be the event that at least two people have the same birthday. In this example,

it is easier to compute the probability of the complement A′, and the probability of

A may be recovered from (1.5). Here A′ is the event that at no people have the same

birthday and, therefore consists of all permutations of length n from the 365 days of

the year. So, #A′ = (365)n, by the Permutations Formula, P (A′) = (365)n/365n, and

P (A) = 1− P (A′) = 1− (365)n
365n

,

by (1.5). For n = 25, P (A) = .5687. ♦
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Binomial and Hypergeometric Probabilities. If a simple random sample of

size n is drawn from a box that contains R red tickets and N −R white tickets, what

is the probability that the sample contains exactly r red tickets? The answer depends

on the type of sample drawn (unsurprisingly). For unordered sampling, the derivation

is similar to that of Example 1.6(a): The sample space Ω consists of all combinations

of n of the N tickets in the box, and #Ω =
(
N
n

)
. Let Ar be the event that the sample

contains exactly r red tickets. Then elements of Ar consist of combination of r red

tickets joined with n− r white tickets. The r red tickets may be chosen in
(
R
r

)
ways

and the n − r white tickets in
(
N−R
n−r

)
ways. So, #er =

(
R
r

)(
N−R
n−r

)
, using the basic

principle , and

P (er) =

(
R
r

)(
N−R
n−r

)(
N
n

) (1.14)

The terms on the right side of (1.14) are called the hypergeometric probabilities. Ex-

ample 1.6(a) provides a numerical illustration with N = 15, R = 9, and n = 5.

For ordered samples with replacement, the sample space Ω consists of all lists

ω = (ω1, · · · , ωn), and #Ω = Nn. again, let Er denote the event that exactly r

red tickets are drawn. Then P (Er) = #Er/#Ω, and #Er is required. An element

of Ermaybe chosen in steps. Fir select a combination C = {I1, · · · , Ir} of r of the

indices from {1, · · · , n}. Then draw red tickets on draws labelled i ∈ C and white on

the other draws. The combination may be chosen in
(
n
r

)
ways, by the combinations

formula. Then the tickets can be drawn in Rr × (N − R)n−r ways, since there are r

choices for ωi when i ∈ C and N = R when i /∈ C. So,

P (Er) =

(
n

r

)
Rr × (N −R)n−r

Nn
(1.15)

Let p = R/N . Then (?? may be writted as

P (Er) =

(
n

r

)
pr(1− p)n=, (1.16)

The terms on the right side of *1.16) are called the Binomial probabilities with

parameters n and p.

Forordered samples without replacement a similar argument shows that

P (Er) =

(
n

r

)
RrN −R)n−r

(N)n
, (1.17)
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and simple algebra shows that(
n

r

)
RrN −R)n−r

(N)n
=

(
R
r

)(
N−R
n−r

)(
N
n

) , (1.18)

the same answer obtained for unordered samples.

Example 1.8 Sampling Inspection

Suppose that a manufacturer markets its product in lots of size N , that each lot

may contain and unknown number, R say, of defective items, and that a lot is regarded

as acceptable if it does not contain too may defectives, say R ≤ R0. Suppose further

that testing is expensive. Then a potential customer might wish to test only some

of the items in a lot before deciding whether to buy it. Suppose that the customer

decides to test a n of the items, selected at random, and to accept the lot iff the

number of defectives in the sample is at most r0. Then the probability that a lot is

accepted is

a =

r0∑
k=0

(
n

k

)
(R)k(N −R)n−k

(N)n
.

Here R is unknown. If R > R0, then a is called the consumer’s risk, since it is the

probability of accepting a bad lot. Similarly, if R ≤ R0, then 1− a is the probability

of rejecting a good lot and is called the producer’s risk. The values of n and r may

be chosen to control these risks. Figure 1 shows a graph of a for the case in which

N = 100, R = 10, n = 25, and r.

Example 1.9 Capture-Recapture Estimation

Consider the problem of estimating the size of an animal population–for exam-

ple, the number of fish in a lake. One popular method makes essential use of the

hypergeometric probabilities. Suppose that there are an unknown number N of fish

in the lake. Suppose also that R of these are caught, tagged, and returned to the

lake. Later a second batch of n fish are caught. If the second batch is regarded as a

random sample, then the probability that it includes exactly r of the tagged fish is

given by (2), since the tagged fish may be regarded as red tickets. This is denoted by

qr(N), since the dependence on N is important. Thus,

qr(N) =

(
n

r

)
(R)r(N − r)n−r

(N)n
. (4)
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Figure 1.1: The probability of obtaining r or fewer defective in a sample of size 25

from a lot containing 100 items of which 10 are defective.

In (4), n, r,, and R are known, but N is not. To estimate N , it seems reasonable to

take the value which maximizes qr(N). The maximizing value may be shown to be

an integer adjacent to

N̂ =
nR

r
,

which serves as the estimator for N . For example, if R = 100 fish are tagged, n = 100

are caught in the second batch, and r = 25 of the fish in the second batch had been

tagged, then the estimated number of fish in the lake is N̂ = 400.

To see that qr(N) is maximized at N̂ , suppose that r ≥ 1 and consider the ratios

qr(N)

qr(N − 1)
=

(N −R)n−r(N − 1)n
(N −R− 1)n−r(N)n

=
(N −R)(N − n)

[N −R− (n− r)]N
.

The ratio is bigger than one iff (N−R)(N−n) > [N−R− (n−r)]N or, equivalently,

(n − r)N > (N − R)n. This in turn is equivalent to rN < Rn or N < N̂ . Thus,
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qr(N) > or ≤ qr(N − 1) accordingly as N < or ≥ N̂ and, therefore, qr(N) is

maximized when N is an integer adjacent to N̂ . ♦

1.4 Problems and Complements

Problems

1. How many four letter words can be formed if every list of four letters is a word; if

each word must contain at least one vowel (a,e,i,o, or u)?

Ans: 456, 976 and 262, 495.

2. How many four letter words may be formed with distinct letters; distinct letters

and at least one vowel?

3. How many committees of size five can be formed from 15 people if all members

of the committee have the same status; if there is a chair and four others of equal

status; if there is a chair, a secretary, and three others of equal status?

Ans: 3003; 15, 015; and 60, 060

4. How many ways can 10 students be divided into two teams of size 5 each if

each team has a captain and four others of equal status and the teams are identified

only by the names of their captains?

5. A child has two indistinguishable red blocks, three indistinguishable white

blocks, and four indistinguishable blue blocks. If he/she arranges them in a row, how

many distinguishable configurations can be made?

Ans: 1260

6. In how many ways can 10 one dollar coins be divided among five children if

each child is to get at least one dollar?

7. If two balanced dice are rolled, what is the probability that the sum of spots is

equal to five? Determine the sample space; identify the event in question as a subset

of the sample space; and compute its probablity.

Ans: 1/9

8. In the previous problem, what is the probability that the absolute difference

between the numbers of spots on the two dice (larger less smaller) is equal to 1?



1.4. PROBLEMS AND COMPLEMENTS 19

9. What is the probability that a poker hand contains a pair (least two cards of

the same denomination–i.e. at least two aces, or two two’s, or · · · )?

Ans: .4929

10. A drawer contains four pairs of socks–for example, a red pair, a blue pair,

a black pair, and white pair? If four socks are selected at random, what is the

probability that the four socks include at least on pair?

Complements

1. Supply the simple algebra for (1.18).

2. Supply the similar argument leading to (1.17).

3. Show that
∑n

k=1

(
n
k

)
(= 1)k−1 = 1 for any n ≥ 1
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Chapter 2

Axiomatic Probability

2.1 Probabily Models

With its insistence on a finite number of equally likely outcomes, the classical model

presented in the previous chapter is not sufficiently flexible accomodate many inter-

esting applications. For example, in many sampling experiments, members of the

population are of different sizes, and it is natural and/or desirable to select larger

items with higher probability than small ones. In other examples, there are infinitely

many possible outcomes. A more general and flexible model is presented in this sec-

tion. The more general model starts with axioms and allows multiple interpretations

of results derived from it.

The term experiment is used to describe an activity or phenomena for which the

outcome is unpredictable, but the set of possible outcomes can be specified. Examples

include observing the number of traffic accidents at a given point during a given time

interval, observing stock prices over a given time period, and observing responses to an

experimental medical treatment, in addition to the games and sampling experiments

of the previous chapter. As in Chapter 1, the set of all possible outcomes is denoted

by Ω and called the sample space, and events are subsets of Ω.

A novel feature of the general model is that not all subsets of Ω are required to

be events. Rather there is a distinguished class A of subsets of Ω, and only those

subsets A ⊆ Ω which are members of A are called events. As in Chapter 1, set

21
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theoretic operations like union, intersection, and complementation may be performed

on events, and the class of event will be required to closed under these operations.

Initially, it is required that Ω ∈ A, that A′ ∈ A whenever A ∈ A, and that A∪B ∈ A

whenever A,B ∈ A. Such a class is called a (Boolean) algebra of subsets of Ω.

Clearly, the class of all subsets of Ω satisfies the conditions and is, therefore, and

Boolean algebra. A less transparent examples is given below.

The third element of the model is a probability function. Probability is a function

P from the algebra A of events into the real numbers R, so that A is the domain of

P , and P is required to satisfy the following conditions:

P (Ω) = 1, (2.1)

0 ≤ P (A) ≤ 1, (2.2)

for all A ∈ A, and

P (A ∪B) = P (A) + P (B), (2.3)

whenever A and B are mutually exclusive events (A ∩ B = ∅, where ∅ denotes the

emptyset). Here (2.1), (2.2), and (2.3) are not a definition of probability but only a

limitation on possible definitions. A whole class of example which satisfy (2.1), (2.2),

and (2.3) ) is described next.

Discrete Spaces. Let Ω denote a finite or countably infinite set1 say Ω =

{ω1, ω2 · · · }; let A denote the class of all subsets of Ω; and let p1, p2, · · · denote

non-negative real numbers for which p1 + p2 + · · · = 1. Then a function P may

bedefined by

P (A) =
∑
i:ωi∈A

pi, (2.4)

for A ⊆ Ω, where the summation extends over those i for which ωi ∈ A; and P

satisfies (2.1), (2.2), and (2.3 For example, to establish (2.1) and (2.2) observe that

P (Ω) = p1 + p2 + · · · = 1, by assumption, and 0 ≤ P (A) ≤ P (Ω), since p1, p2, · · ·

are non-negative. Condition (3) is equally easy. The pi may be recovered from P by

1A set is said to be countably infinite it there is a one-to-one correspondence between the set and

the positive integers {1, 2, 3, · · · }.
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pj = P ({ωj}) for j = 1, 2, · · · , where {x} denotes the set whose only element is x.

Thus, if P is deined by (4), then pj is the probability that the outcome will be ωj.

Example 2.1 :Some Discrete Spaces. a): Classical Models. If Ω is a finite sets, say

Ω = {ω1, · · · , ωM} and pi = 1/M for all i = 1, · · · ,M , then (4) becomes

P (A) =
1

M
×#A =

#A

#Ω

for all A ⊆ Ω, and the Classical Model of Chapter 1 is recovered.

b): Sampling Proportional to Size. Suppose that Ω = {ω1, · · · , ωM}, where ωi > 0

for i = 1, · · · ,M , and let pi = ωi/s for i = 1, · · · ,M , where s = ω1 + · · · + ωM .

Then p1 + · · · + pM = 1, and a probabilty function may be defined by (4). This

model arises in accounting, for example. Faced with a several invoices, an accountant

may wish to examine only one; he/she may also want to select larger invoices with

higher probability. For a numerical example, suppose that M = 10 and ωi = i for

i = 1, · · · , 10, in which case s = 55. To illustrate the use of (4), the the probability

of selecting one of the three largest invoices is almost 1/2, since

P ({8, 9, 10}) =
8

55
+

9

55
+

10

55
=

27

55
.

Of course, the accountant may wish to examine more than one invoice, if M is large.

See Problem ?.?.

In the next example, use is made of the geometric series,

∞∑
k=0

xk =
1

1− x
, −1 < x < 1. (2.5)

This is a special case of the Generalized Binomial Theorem with α = 1, though

simpler derivations are possible. See Problem ?.?.

Example 2.2 :An Infinite Sample Space. Suppose that a balanced coin is tossed

until a head appears, and the number of required tosses is recorded. Then Ω =

{1, 2, · · · }, an infinite set. Now the first head appears on the nth toss iff there are

n− 1 tails followed by a head. Intuitively, the probability of this is (1/2)n = (1/2)×

· · · × (1/2). This suggests letting pk = (1/2)k for k = 1, 2, · · · . It is easily seen from
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(2.5) that p1 + p2 + · · · = 1. So, a probability function may be defined by (eq:dscrt).

To illustrate the use of (eq:dscrt), consider the event {1, 3, · · · } that an odd number

of tosses is required. By (4),

P ({1, 3, · · · }) =
∞∑
k=0

(
1

2
)2k+1 =

1

2

∞∑
k=0

(
1

2
)2k =

1

2
× 1

1− 1
4

=
2

3
.

A function P which satisfies (1), (2), and (3) is called a probability content. These

axioms work splendidly if Ω is a finite set but do not lead to a sufficiently rich

mathematical theory if Ω is an infinite set, and a stronger version of (2.3) is needed.

The stronger version concerns infinite unions of the form ∪∞k=1Ak = {ω ∈ Ω : ω ∈

Ak for some k = 1, 2, · · · }. A function P defined on a class of A of events is called a

probability measure if it satisfies (2.1), (2.2) and

P (
∞⋃
k=1

Ak) =
∞∑
k=1

P (Ak), (2.6)

whenever A1, A2, · · · are (pairwise) mutually exclusive events whose union is also an

event. It may be shown (2.6) implies (2.3) and that any P of the form (2.4) satisfies

(2.6). See · · · . The algebra A of events is called a sigma-algebra if it is closed under

the formation of such unions; that is, ∪∞k=1Ak ∈ A whenever A1, A2, · · · ∈ A.

A probability space consists of a triple (Ω,A, P ), where Ω is a non-empty set, called

the sample space, A is sigma-algebra, called the class of events, and P is a probability

measure, called the probability function. This is the general model for probability.

The next example illustrates the need to restrict the class of events. The sample

space is an interval, and the following notation for intervals is employed: if −∞ ≤

a ≤ b ≤ ∞, then

(a, b) = {x ∈ R : a < x < b}

(a, b] = {x ∈ R : a < x ≤ b}

[a, b) = {x ∈ R : a ≤ x < b}

[a, b] = {x ∈ R : a ≤ x ≤ b},
where R denotes the set of real numbers.

Example 2.3 . An arrow is free to rotate about an axle, as in Figure 1. The arrow

is spun and comes to rest, and the angle (in radians) which it makes with a fixed
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direction, say ω, is recorded. Then the set of possible outcomes is Ω = (−π, π] =

{ω : −π < ω ≤ π}. Intuitively, the probability that the outcome falls in a subset of

Ω should be proportional to its length. This suggests letting

P ((a, b]) =
b− a
2π

(2.7)

for all −π < a ≤ b ≤ π. The problem here is the class of events, since the class of

intervals is not closed under the formation of unions–for example, (−1, 0] ∪ (1, 2] is

not an interval. The resolution of this difficulty is described next.

Absolutely Continuous Spaces. Let Ω be an interval and let f be a Riemann

integrable function for which f(ω) ≥ 0 for all ω ∈ Ω and∫
Ω

f(ω)dω = 1. (2.8)

For example, Ω = (−π, π] and f(ω) = 1/2π for ω ∈ Ω. Then there is a sigma-algebra

A, which contains all subintervals of Ω, and a probability measure P defined on A for

which

P (I) =

∫
I

f(ω)dω (2.9)

for all subintervals I ⊆ Ω. This is the basic result for specifying probability models

in which the sample space is a continuum, like and interval. For example, it shows

the existence of a probability measure P for which (6) holds in Example 2.3

Here is an amusing consequence of (8). If ω ∈ Ω, then {ω} = [ω, ω] is an interval,

and P ({ω}) =
∫ ω
ω
f(θ)dθ = 0. That is, every ω ∈ Ω has zero probability. Next, if

Ω0 is any countably infinite set, so that Ω0 = {ω1, ω2, · · · }, then Ω0 = ∪∞k=1{ωk} and,

therefore,

P (Ω0) =
∞∑
k=1

P ({ωk}) = 0. (2.10)

In particular, the probability of a rational outcome is zero, since the set of rational

numbers is countably infinite.

The existence of P is in (8) called the Extension Theorem. The idea behind it

proof is quite simple. First P is defined on a class of subintervals by (8). Then

it is extended to a larger class using the axioms of probability (1),(2),(3), and (3’).
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The details of the extension process are complicated, however. They are discussed

in Section 2.6. Unfortunately, there is no simple description for a typical event in

the Extension Theorem. One knows only that all intervals are events and that the

class of events A is closed under complementation and the formation of (countable)

unions, so that any set that can be constructed from intervals by the operations is an

event. Equation (9) provieds an example.

2.2 Consequences of the Axioms

Some simple consequences of the axioms (1.1),(1.2), and (1.3’) are detailed in this

section. Throughout (Ω,A, P ) denote a probability space.

Complements. The difference between two events, A and B say, is defined by

B − A = A′ ∩ B, the event that B occurs but A does not. If one event is a subset

of another, say A ⊆ B, then A is said to imply B, since the outcome must be in B

whenever it is in A. In this case, B may be written in the form B = A∪ (B−A), and

A ∩ (B − A) ⊆ A ∩ A′ = ∅. So, P (B) = P (A) + P (B − A), by (1.3), and, therefore,

P (B − A) = P (B)− P (A), (2.11)

whenever A ⊆ B. There are several corollaries to this simple relation. First,

P (A) ≤ P (B), (2.12)

whenever A ⊆ B, since P (B − A) ≥ 0, by (2.1). Next, letting B = Ω, leads to

B − A = Ω− A = A′ and P (Ω) = 1; that is,

P (A′) = 1− P (A) (2.13)

for all event A. Finally, letting A = Ω and observing that Ω′ = ∅,

P (∅) = 0. (2.14)

The use of (3) was illustrated in Example 1.3.1, the Birthday Problem, and Example

1.4.2, Sampling Inspection.
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Example 1. · · ·

Unions. It is possible to use (1) to refine (1.3) by showing

P (A ∪B) = P (A) + P (B)− P (A ∩B) (2.15)

for any two events A and B. To see this first observe that A∪B = A∪ (B −A∩B).

Here A and B−A∩B are mutually exclusive, since A∩(B−A∩B] ⊆ A∩A′ = ∅. So,

P (A∪B) = P (A)+P (B−A∩B), by (2.3), and P (B−A∩B) = P (B)−P (A∩B), by

(??eq:cnsq1). Equation ??) follows. The symmetric difference between two events,

A and B, is defined to be A∆B = A′ ∩ B ∪ A ∩ B′, the event that one of A or B

occurs, but the other doesn’t. Equivalently, A∆B = A∪B −A∩B. So, P (A∆B) =

P (A ∪B)− P (A ∩B), by 2.11), since A ∩B ⊂ A ∪B and, therefore,

P (A∆B) = P (A) + P (B)− 2P (A ∩B). (2.16)

Equations (??) and (2.16) are the starting point for the Inclusion-Exclusion Formulas,

discussed in Section 2.4.

Example 2.4 All students at Classical University must take either Greek or Latin.

If 75% take Greek and 55% take Latin, how many take both. How many take only

one? Let A be the event that a randomly selected student takes Greek, and let B be

the event that he/she takes Latin. Then P (A) = .75, P (B) = .55, and P (A∪B) = 1.

So, P (A ∩ B) = P (A) + P (B) − 1 = .30. Thus, 30% of the students take both, and

70% take just one. ♦

If A1, · · · , Am are mutually exclusive events, then

P (A1 ∪ · · · ∪ Am) = P (A1) + · · ·+ P (Am), (2.17)

either by (2.3) and mathematical induction or by setting Ai = ∅ for all i > m in (2.6).

If A1, · · · , Am are any m events, not necessarily mutually exclusive,

P (A1 ∪ · · · ∪ Am) ≤ P (A1) + · · ·+ P (Am), (2.18)

To see this, let B1 = A1 and Bk = Ak − (A1 ∪ · · · ∪ Ak−1) for k = 2, · · · ,m. Then

B1, · · · , Bm are mutually exclusive. For if j < k, then Bk ⊆ B′j and, therefore,
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Bj∩Bk = 0. Moreover, B1∪· · ·∪Bm = A1∪· · ·∪Am. For if ω ∈ A1∪· · ·∪Am, then there

is a smallest k for which ω ∈ Ak, and then ω ∈ Bk. It follows that P (A1∪· · ·∪Am) =

P (B1 ∪ · · · ∪Bm) = P (B1) + · · ·+P (Bm) ≤ P (A1) + · · ·+P (Am), where the last two

steps follows from (?? ) and (2.12). Relation (2.18) follows. Relation (2.18) is known

as Boole’s Inequality. The infinite version of Boole’s Inequality, in which A1, · · · , Am
is replaced by an infinite sequence is also true; that is,

P (∪∞k=1Ak) ≤
∞∑
k=1

P (Ak) (2.19)

for every infinite sequence A1, A2, · · · . The proof of (2.19) is virtually identical to

that of (??), but uses (2.6) in place of (2.17).

Example 2.5 In bridge, a void is the absence of one of the four suits. What is the

probability of a void. Let A (respectively, B, C, C) be the event that the hand

contains no spades (respectively, hearts, diamonds, clubs), so that A ∪ B ∪ C ∪D is

the event that the hand contains a void. Then P (A) =
(

39
13

)
/
(

52
13

)
, since a hand with

no spades must be chosen from 39 non-spades. Similarly, P (B) = P (C) = P (D) =(
39
13

)
/
(

52
13

)
. So,

P (A ∪B ∪ C ∪D) ≤ P (A) + P (B) + P (C) + P (D)

= 4

(
39

13

)
/

(
52

13

)
= · · · .

In this case the upper bound is quite close the exact answer, · · · , which is derived in

Problem 2.?.

Monotone Sequences. So far, only (2.19) used the stronger axiom (2.6) in an

essential way. The next result makes additional use of (2.6). The result is known as he

Monotone Sqequnces Theorem A sequence B1, B2, · · · is said to be increasing if B1 ⊆

B2 ⊆ B3 ⊆ · · · , and decreasing if B1 ⊇ B2 ⊇ B3 ⊇ · · · . Examples of such sequences

are easy to find. If A1, A2, · · · , is any sequence of events, then Bn = A1∪· · ·∪An, n =

1, 2, · · · defines an increasing sequence, and Cn = A1 ∩ · · · ∩An, n = 1, 2, · · · defines

a decreasing sequence. A sequence is said to be monotone if it is either increasing
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or decreasing. The following result is known as he Monotone Sqequnces Theorem: If

B1, B2, · · · is increasing, then

P (
∞⋃
k=1

Bk) = lim
n→∞

P (Bn); (2.20)

and if C1, C2, · · · is decreasing, then

P (
∞⋂
k=1

Ck) = lim
n→∞

P (Cn) (2.21)

To establish (2.20), let A1 = B1 and let Ak = Bk − Bk−1 for k = 2, 3, · · · . Then

A1, A2, · · · are mutually exclusive; for if j < k, then Aj ⊆ Bj and Bk ⊆ Bc
j . Moreover,

∪∞k=1Ak = ∪∞k=1Bk; for if ω ∈ ∪∞k=1Bk, then there is a smallest k for which ω ∈ Bk in

which case ω ∈ Ak. It follows that

P (∪∞k=1Bk) = ∪∞k=1Ak) =
∞∑
k=1

P (Ak).

But
∞∑
k=1

P (Ak) = lim
n→∞

n∑
k=1

P (Ak) = lim
n→∞

P (Bn).

This establishes (2.20), and (2.21) then follows by taking complements. For if C1, C2, · · ·

is decreasing, then Bn := Cc
n, n ≥ 1 is increasing and (∩∞k=1Ck)

′ = ∪∞k=1Bk, so that

P (
∞⋂
k=1

Ck) = 1− P (
∞⋃
k=1

Bk)

= 1− lim
n→∞

P (Bn) = lim
n→∞

P (Cn).

The following simple corollary t (2.20), and (2.21) is useful: if A1, A2, · · · is any

sequence of events, then

P (
∞⋃
k=1

Ak) = lim
n→∞

P (
n⋃
k=1

Ak) (2.22)

and

P (
∞⋂
k=1

Ak) = lim
n→∞

P (
n⋂
k=1

Ak). (2.23)

For example, (2.22) follows directly by applying (2.20) to the sequenceBn = ∪nk=1Ak, n ≥

1.
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2.3 Significance Tests

It is best to begin with an example.

Example 2.6 : Proving Unfairness.There are twenty-five registered voters in Small

County USA of whom thirteen are Hatfields and twelve are Mc Coys. A jury was

recently selected to adjudicate a dispute between the two families. It consisted of

ten Hatfields and ony two McCoys. By law, juries are supposed to be selected at

random from the list of registered voters. The county clerk, a Hatfield, says that

she of course followed the law. ”Nonsene,” reply the Mccoys, ”That’s incredible:”A

random selection would not produce such a skewed jury”.” Who’s right? Is the county

clerks’ assertion credible? The short answer is ”No.” To see why, let P0 denote the

probability function under which all
(

25
12

)
juries of size twelve are equally likely, and

let T denote the number of Hatfields on a jury. Then

P0[T = t] =

(
13
t

)(
12

12−t

)(
25
12

)
for t = 0, 1, 2, · · · 12., and

P0[T ≥ 10] = P0[T = 10] + P0[T = 11] + P0[T = 12] = 000381 · · · (2.24)

That is less than four in ten-thousand random juries would have ten or more Hatfields.

So, the clerk’s claim of random selection requires believing that an even to probabiliy

less than .0004 has occurred. The latter is so small that the possibility can safely be

neglected. The observed value T=10 is not consistent with random selection. ♦

To formalize the calculation in the example suppose consider a probability model

(Ω,A, P0) and a function T : Ω → R of which large values are inconsistent with

P0. Let H0 denote the hypothesis that the data were drawn from P0; that is, that

(Ω,A, P0) is the appropriate model. Suppose next that the result of an experiment

ωobs has been observed and let tobs = T (ωobs) denote the observed value of T. Further,

let

p∗ = P0[T ≥ tobs] (2.25)
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Then p∗ is called the p value, and small values of p∗ are regarded as evidence against

H0. How small does p∗ have to be before the outcome is declared to be inconsis-

tent with H0? In the medical and social sciences, p∗ < .05 is generally regarded as

inconistent with H0. In Physics p∗ < .01 is often demanded to claim inconsistency.

Example 2.7 : A Clinical Trial. As background the FDA (theFood and Drug Ad-

ministration) requires that a treatment be shown to be safe and effective before it

can be markreted. In a study of an experimental treatment for pain relief, twent-five

patients were asked to score their level of pain both before and after receiving the

treatment. For a given a patient, success is defined as scoring less pain after the

treatment than before. Le p denote the probabiltiy of success for a patient (assumed

to be the same for all twenty-five patients), and let T denote the number of successes

in the trial. Then, as explained in · · · ,

P [T = t[=

(
(25

t

)
pt(1− p)10−t

for t = 0, · · · , 10, and

P [T ≥ t] =
25∑
k=t

(
25

k

)
pk(1− p)135−k

The assertion that the treatment is ineffective can be stated H0 : p = 1
2
. Suppose

now that eighteen of the twenty-five patients report success. Then the p-value is

p∗ = P0[T ≥ 18] =
25∑

k=18

(
25

t

)
(
1

2
)k(

1

w
)25−k =

25∑
k=18

(
25

k

)
(
1

2
)25 = .0216 < .05.

So, the data are inconsistent with H0 and the treatment’s effectiveness has been

established.

The reader should note the logic used in the last example in which effectiveness

is shown, by showing that the treatment is not ineffective. Logic of this nature

is common. The logic of significance tests may be compared to that of proof by

contraction where one may disprove an assertion by assuming it and then deriving

something that is obviously false. With significance tests one assumes an hypothesis

and then shows that something that is very unlikely has occurred. The sterngth of

the conclusion then depends on how unlikely, and this is measured by the p value.
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2.4 Combinations of Events

If A1, · · · , An are events and J ⊆ {1, · · · , n}, then

Bj =
⋂
i∈J

Ai (2.26)

is the event that Ai occurs for all i ∈ J , Let

sj =
∑

#J=j

P (BJ), (2.27)

where the summation extends over all
(
n
j

)
subsets of size j. Thus,

s1 =
n∑
I=1

P (Ai),

s2 =
∑∑

i<j

P (AI ∩ Aj),

· · · ,

sk =
∑
· · ·

∑
i1<i2···<ik

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik),

· · ·

sn = P (A1 ∩ · · · ∩ An).

Then the probability of a union may be written in terms of s1, · · · , sn: If A1, · · · , An
are any n events, then

P (
n⋃
i=1

Ai) =
n∑
k=1

(−1)k−1sk. (2.28)

The proof of (3.15) will be described in the discrete case only. Thus suppose that

Ω is a finite set and that P (B) =
∑

ω∈B p(ω) for all subsets B ⊆ Ω; equvalently

P (B) =
∑

ω∈Ω 1B(ω)p(ω), where 1B denotes the indicator of B,1B(ω) = 1 if ω ∈ B

and 1B(ω) = 0 otherwise Let A = A1 ∪ · · · ∪ An denote the union on the left side

fo (??. If ω /∈ A, then clearly 1BJ
(ω) = 0 for all non-empy J ⊆ {1, · · · , n}, and the

right side of (??) may be written

n∑
k=1

(−1)k−1
∑

#J=k

∑
ω∈A

1BJ
(ω) =

∑
ω∈A

[
n∑
k=1

(−1)k−1
∑

#J=k

1BJ
(ω)

]
p(ω)
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by reversing the order of summation.So, it suffices to show that the term in brackets

(the coefficient of p(ω)) is one. The inner sum
∑

#J=k 1BJ
(ω). is just the number of

subsets of size k that can be drawn from {1, · · · , n}, so that∑
#J=k

1BJ
(ω). =

(
n

k

)
,

So,
n∑
k=1

(−1)k−1
∑

#J=k

1BJ
(ω) =

n∑
k=1

(−1)k−1

(
n

k

)(
n

1

)
−
(
n

2

)
+ · · · ±

(
n

n

)
which is one by Complement 1.3. ♦

The formula (3.15) is especially useful in problems that exhibit some symmety in

the form

P (Ai1 ∩ · · · ∩ Aik) = P (A∩ · · · ∩ Ak) (2.29)

for all choices of 1 ≤ i1 < · · · < ik ≤ n. Then the sk symplify to

sk =

(
n

k

)
P (A∩ · · · ∩ Ak).

Example 2.8 : A Gift Exchange. Friends agree to exchange gifts for a holiday.

Each person writes his/her name on a slip of paper and places the slip in a box. The

after a vigorous shake each person draws a slip from the box, and buys a present

for the person identified on the slip. Of course the exercise will fail if anyone draws

his/her own name. What is the probabiliy of this? Let n denote the number of

people. Surpisingly, the answer is not highly sensitive to n. It is about .63 provided

that n ≥ 6. To see why label the people 1 · · · , n by the order in which they draw;

let Ω denote the set of all permutation ω = (i1, · · · , in) of{1, · · · , n}; regard the

list of people drawn from the box as a random permutation;and suppose that all n!

permutations are equally likely. Then

Aj = {ω : ij = j}

is the event that the jth person draws his/her own name, and A := ∪nI=1Ai is the event

that someone draws his/her own name. It is not dificult to see that the symmetry

condition (??) is satified in this example. Moreover,

P (A1 ∩ · · · ∩ Ak) =
(n− k)!

n!
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since Ak specifies that ij = j for j = 1, · · · , k and allows ik+1, · · · , in to be permuted

arbitrarily. So,

sk =

(
n

k

)
P (A1 ∩ · · · ∩ Ak) =

(
n

k

)
× (n− k)!

n!
=

1

k!
,

and

P (A) =
n∑
k=1

(−1)k−1/k!.

Next,set x = 1 in the Taylor series expansion

ex =
∞∑
k=0

xk

k!
(2.30)

to obtain e−1 =
∑∞

K=0(−1)k/k!. Then rewrite the expression for P (A) as

P (A) = 1−
n∑
k=0

(−1)k

k!
≈ 1−

∞∑
k=0

(−1)k

k!
= 1− 1

e
= .6321 · · · .

The approximation is excellent if n ≥ 6

Example 2.9 : The Coupon Collector’s Problem. A manufacter gives away coupons

of various types with its product. If a consumer collects n coupons. what is the

probability that he/she collects at least one of all the diferent types? Regard the

n coupons collected as a sample of size with replacement from the population of all

coupons. (If there are a large number of coupons, then there is not much difference

between sampling with and without replacement. About the population, suppose

that there are t different types of coupon and and equal numbers of all types, so

that the probability that a single coupon is of type i sis 1/t for all i = 1, · · · , t. Let

Ai be the event that the n coupons collected do not include any of type i. Then

A = A1 ∪ · · · ∪ At is the even that at least one type is misssing from the sample,

and Ac is the event that all types are represented in the sample. The probability ofA

can b ecomputed from (??), and the probabilty that all types are collected is then

1− P (A) , In this case P (Ai) = (1− 1/t)n, P (Ai ∩ Aj) = (1− 2/t)n for i 6= j, and

P (BJ) =

(
1− k

t

)n
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for subsets J ⊆ {1, · · · , t},of size #J = k. So,

sk =

(
t

k

)(
1− k

t

)n
and

P (A) =
t∑

k=1

(−1)k−1

(
t

k

)(
1− k

t

)n
.

For example, if n = t = 10, so that the sample size is equal to number of types, then

the probability that all types are included in the sample is less than .0001

2.5 Problems and Complements

Problems

1 Define an appropriate sample space for each of the following experiments:

(a) A (six sided) die is rolled, and the number of spots that appear is recorded.

(b) A die is rolled until an ace appears, and the number of rolls is recored.

(c) The number of traffic accidents in a given city on a given day is recorded.

(d) You look up the year of Newton’s birth.

2 Define an appropriate sample space for each of the following experiments:

(a) A ra radio-active substance is observed and the number of emissions (clicks

on a geiger-counter) during a given time interval is recorded.

(b) The time required for a radio-active substance to emit a particle is recorded.

(c) The annual precipitation in Seattle is recorded.

(d) The closing value of Apple stock is recorded each day for a week. 3 A person

is selected from the population of a given city. Let A be the event that the person is

female, B be the event that the person is under 30, and C be the event that he/she

speaks a foreign language. Describe in symbols: (a) a male who speaks a foreign

language; (b) a female who is under 30 and speaks a foreign language; a person who

is male or under 30 but not both.

4 In the previous problem describe the following event in word: A ∩ C;A ∪ (B ∩

C);A ∩Bc ∪B ∩ Ac;A ∪B − C.
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5 A die is so loaded that the probability that k spots appear when it is rolled is

proportional to k for k = 1, · · · , 6. What is the probability that an odds number of

spots appear?

6 The probability that a typist commits exactly k errors on a given page is propor-

tional to 1/k! for k = 0, 1, 2, · · · . What is the probability that he/she commits no

errors?

7. The symmetric difference between two events, A and B say, is defined to be

A∆B = Ac ∩B ∪ A ∩Bc. Show that P (A∆B) = P (A) + P (B)− 2P (A ∩B)

8. Using only (2.16), show that P (A ∪B ∪ C) = P (A) + P (B) + (C)− P (A ∩B)−

P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).



Chapter 3

Conditional Probability and

Independence

3.1 Conditional Probability

In some problems, partial information about the outcome may become available, and

probability must be modified to take account of the additional information. Suppose,

for example, that a family is known to have two children and that the four possible

sex distributions, bb, bg, gb, gg are regarded as equally likely. Suppose also that the

parents are seen shopping for girls’ clothes (so that one of the children must be a

girl). What is the probability that the other child is a boy? The answer is 2/3, not

1/2 for reasons that will be explained below.

Consider a probability model with sample space Ω and probability function P ,

say, and let A and B be events for which P (A) > 0. Then the conditional probability

of B given A is defined by

P (B|A) =
P (A ∩B)

P (A)
. (3.1)

It may be regarded as an appropriate modification of probability, if it is learned (only)

that A has occurred. In the example, the event of interest is B = {(b, b), (b, g), (g, b)}

that the family has at least one boy, and the information is that there is at least one

girl, so that A = {(b, g), (g, b), (g, g)}. Thus, P (A) = 3/4, A ∩ B = {(b, g), (g, b)},

37
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P (A ∩B) = 1/2, and P (B|A) = 2/3.

Further examples, may help the reader develop intuition for conditional probabil-

ities.

Example 3.1 An automobile insurance company classifies it policy holders as expe-

rienced or inexperience. The following table shows the number of accidents during

the past year for each classification.

Accident No Accident Total

Experienced 10% 70% 80%

Inexperienced 5% 15% 20%

Total 15% 85%

For example, 10% of the policy holders were experienced and had had and accident

during the past year. According to the table, experienced drivers had more accidents

during the past year than inexperienced ones. An experienced driver is not more

likely to have an accident, however. To see why, suppose that a policy holder is

chosen at random from the group; let E be the event that the chosen person is

experienced; and let A be the event that he/she had an accident. Then P (E) = .80,

P (E ∩A) = .10, and P (A|E) = .10/.80 = .125, while P (Ec) = .20, P (Ec ∩A) = .05,

and P (A|Ec) = .05/.20 = .25. That is, 25% of inexperience drivers had an accident,

compared to 12.5% of experienced ones. ♦

If Ω is a finite set and P (C) = #C/#Ω for all C ⊆ Ω, then

P (B|A) =
#(A ∩B)/#Ω

#A/#Ω
=

#(A ∩B)

#A
(3.2)

for all B and non-empty A. In effect, the sample space has been reduced to A and the

remaining outcomes are still equally likely. Example 3.1 above illustrates the process.

In some cases, it is possible to calculate conditional probabilities directly, using (3.2).

Example 3.2 If South has 6 spades in a bridge game, what is the probability that

North (South’s partner) has at least two. Given South’s hand, North’s hand may
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be regarded as a sample of size 13 from a deck containing 7 spades and 32 non-

spades. The conditional probability that North has no spades is
(

32
13

)
/
(

39
13

)
= .0428,

since there are
(

39
13

)
possible hands for North of which

(
32
13

)
have no aces. Similarly,

the probability that North has one spade is
(

7
1

)(
32
12

)
/
(

39
13

)
= .1946. So, the desired

conditional probability is

1−
(

7
1

)(
32
12

)(
39
13

) − (32
13

)(
39
13

) = .2374.

P (B|A) is a Probability Function in B; that is, 0 ≤ P (B|A) ≤ 1 = P (Ω|A), and

P (B ∪ C|A) = P (B|A) + P (C|A), if B ∩ C = ∅. More generally, if B1, B2, · · · are

(pairwise) mutually exclusive, then

P (
∞⋃
k=1

Bk|A) =
∞∑
k=1

P (Bk|A).

The first two assertions are clear. To verify the finite additivity, observe that if

B ∩ C = ∅, then (B ∩ A) ∩ (C ∩ A) = ∅ and, therefore,

P (B ∪ C|A) =
P [(B ∪ C) ∩ A]

P (A)

=
P [(B ∩ A) ∪ (C ∩ A)]

P (A)

=
P (B ∩ A) + P (C ∩ A)

P (A)
= P (B|A) + P (C|A).

The fourth condition may be verified similarly. As a corollary,

P (Bc|A) = 1− P (B|A)

for all events B, since this is true of every probability function. This relation was

implicitly used in Example 3.2.

3.2 Three Formulas

There are three simple formulas which relate conditional probabilities to unconditional

ones. If A and B are events for which 0 < P (A) < 1, then

P (A ∩B) = P (B|A)P (A), (3.3)
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P (B) = P (B|A)P (A) + P (B|Ac)P (Ac), (3.4)

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
. (3.5)

The first of these is clear from the definition (3.1). For the second write B = (A ∩

B) ∪ (Ac ∩B) and

P (B) = P (A ∩B) + P (Ac ∩B) = P (B|A)P (A) + P (B|Ac)P (Ac),

by (3.3) applied to both A and Ac. The third relation then follows by writing

P (A|B) = P (A ∩ B)/P (B) and substituting for P (A ∩ B) and P (B). Equation

(3.3) is called the Product Rule. Equations (3.4) and (3.5) are called the Law of Total

Probability and Bayes Formula.

Example 3.3 On a True-False Examination, a student knows the answer with prob-

ability .6 and guesses otherwise. What is the probability that he/she answers a given

question correctly? Given a correct answer, what is the conditional probability that

the student knew the answer? Let A be the event that the student knows the answer,

and let C be the event that he/she answers the questions correctly. Then P (A) = .60,

P (C|A) = 1, and P (C|Ac) = .5 from the information above. So, the desired proba-

bilities are

P (C) = P (C|A)P (A) + P (C|Ac)P (Ac) = 1× .60 + .50× .40 = .80,

P (A|C) =
1× .60

.80
= .75.

Example 3.4 1 Consider a routine diagnostic test for a rare disease–for example,

X-Rays and Lung Cancer. For a given patient, let D be the event that the disease is

present and E be the event that the test indicates the disease to be present. Suppose,

that the test is good but not perfect–for example, that P (D) = .001, P (E|D) = .99,

and P (E|Dc) = .025. Then

P (E) = (.99)(.001) + (.025)(.999) = .00099 + .09990 = .02597,

1Books have been written about this example. A good one is Matters of Life and Death, by · · · ,

Stanford University Press.
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P (D|E) =
.00099

.02597
= .03813 < .04.

That is, less than four percent of people for whom the test indicates the disease to

be present actually have the disease.

Here P (E|Dc) is called the false positive rate, and P (Ec|D) is called the false

negative rate. Even though these error rates are low, in the example, the test is

unreliable in that most of the people who test positive are not sick. To understand

this apparent paradox, recall that the disease is very rare. For a person who tested

positive, the probability that the disease is present has increased from .1% to almost

4%, but this probability is still low in absolute terms. ♦

Example 3.5 Terrorists hold five hostages and have agreed to exchange two for food.

The two to be released are to be chosen by drawing lots. Is there an advantage to

drawing first? More generally, suppose that two cards are drawn in order without

replacement from a deck R red and N−R white cards–for example, R = 2 and N = 5.

Let A be the event that the first card is red; and let B be the event that the second

card is red. Then P (A) = R/N , P (Ac) = (N − R)/N , P (B|A) = (R − 1)/(N − 1),

and P (B|Ac) = R/(N − 1). So,

P (B) =
(R− 1)

(N − 1)
× R

N
+

R

(N − 1)
× (N −R)

N
=
R

N
.

P (A|B) =
(R− 1)

(N − 1)
× R

N
/
R

N
=

(R− 1)

(N − 1)
.

In the example, there is no advantage, or disadvantage to drawing first.

Similar, results may be obtained for sampling with replacement. Then P (B) =

R/N and P (A|B) = R/N . ♦

Several Events. There are some simple extensions of Equations (3.3), (3.4), and

(3.5). First, if A1, · · · , An are any n events, then

P (∩mi=1Ai) = P (A1)
m∏
j=2

P (Am| ∩j−1
i=1 Ai). (3.6)



42 CHAPTER 3. CONDITIONAL PROBABILITY AND INDEPENDENCE

Moreover, A1, · · · , Am are mutually exclusive events for which P (Ai) > 0, i =

1, · · · ,m and ∪mi=1Ai = Ω, then

P (B) =
m∑
i=1

P (B|Ai)P (Ai) (3.7)

and

P (Aj|B) =
P (B|Aj)P (Aj)∑m
i=1 P (B|Ai)P (Ai)

(3.8)

for every other event B and all j = 1, · · · ,m. As above, (3.6) is called the Product

Rule, and (3.7) and (3.8) are called the Law of Total Probability and Bayes Rule. The

proof of (3.6) is left as an exercise. For (3.7), let B be any event. Then B = B ∩Ω =

B ∩ (∪mi=1Ai) = ∪mi=1(Ai ∩B). So,

P (B) =
m∑
i=1

P (Ai ∩B) =
m∑
i=1

P (B|Ai)P (Ai),

by the additivity of probability and (3.3), applied to each Ai. Equation (3.8) then

follows by writing P (Aj|B) = P (Aj ∩ B)/P (B) and computing P (Aj ∩ B) by (3.3)

and P (B) by (3.7).

Example 3.6 Box 1 contains two gold coins, Box 2 contains one gold and one silver

coin, and Box 3 contains two silver coins. One box is selected at random, and then

the two coins are drawn out sequentially with all choices being equally likely at each

stage. Let B be the event that the first coin drawn is gold, and C the event that the

second coin drawn in gold. What is the conditional probability of C given B? By

definition, it is P (BC)/P (B). The numerator and denominator may be computed

using (3.7):

P (B) = P (A1)P (B|A1) + P (A2)P (B|A2) + P (A2)P (B|A2)

=
1

3
× 1 +

1

3
× 1

2
+

1

3
× 0 =

1

2

and

P (BC) = P (A1)P (BC|A1) + P (A2)P (BC|A2) + P (A2)P (BC|A2)

=
1

3
× 1 +

1

3
× 0 +

1

3
× 0 =

1

3
.
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So,

P (C|B) =
P (BC)

P (B)
=

2

3
.

The reader may find this mildly surprising: If a gold coin is selected at the first stage,

then the coin has to have been drawn from Box 1 or 2, suggesting that the conditional

probability of drawing second gold coin is 1/2. The explanation is that if a gold coin

is selected on the first draw, it is more likely to have been drawn from Box 1. For

P (A1|B) =
PA1)P (B|A1)

P (B)
=

1/3

1/2
=

2

3

by (3.8) ♦

Simplson’s Paradox. It is possible to have Events A1, · · · , Am and B and two

different probability functions P1 and P2 for which

P1(B|Ak) < P2|B|Ak) (3.9)

for all k = 1, · · · ,m and

P2(B) < P1(B). (3.10)

Here is an example.

Example 3.7 The following table gives the death rates in 1930 per 100,000 for several

ages ranges in each of two states along with the percentage of people in each range.

State 1 State 2

Age Percent Deaths Percent Deaths

0-4 9.4 2056 11.4 2392

5-14 19.3 26.7

15-24 16.2 21.8

25-34 13.3 391 12.6 871

35-44 12.7 545 11.0 1242

45-54 11.3 1085 8.3 1994

55-64 9.1 2036 4.6 3313

65-74 5.8 5219 2.3 6147

75- 2.8 7 13,645 1.0 14,136
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Suppose that a person is selected a random from each of the two states and let P1

and P2 be the probability function for States 1 and 2. Further, let Ai be the event

that he/she is in the ith age category, and let B be the event that he/she died during

the year. Then, for example, P1(A1) = .094, P1(B|A1) = .02056, P2(A1) = .114,

and P2(B|A1) = .02392. It is clear from inspection of the table that (3.9) holds.

The unconditional probabilities P1(B) and P2(B) may be computed from (3.7), and

P2(B) = · · · < · · · = P1(B). In words, the age adjusted death rates in State 1 were

lower in all age categories, but the overall death rate in State 2 was lower. ♦

3.3 Independence

For a given probability model, with sampe space Ω and probability function P , events

A and B are said to be independent iff

P (A ∩B) = P (A)P (B). (1)

Thus, if P (A) > 0, then A and B are independent iff P (B|A) = P (B), since P (A ∩

B) = P (B|A)P (A). Intuitively, independence means that the occurrence or non-

occurrence of one event does not affect the probability that the other occurs.

Example 3.8 If a single card is drawn from a standard deck, then the events A = {an

ace} and B = {a spade} are independent, since P (A) = 4/52 = 1/13, P (B) =

13/52 = 1/4, and P (A ∩B) = 1/52 = (1/13)(1/4) = P (A)P (B). ♦

Example 3.9 If two tickets are drawn with replacement from a box containing R red

and N−R white tickets, then the events A = {red on the first draw} and B = {red on

the second draw} are independent, since P (A∩B) = (R×R)/(N×N) = P (A)P (B).

If the sampling were without replacement, then A and B are not independent,

since P (B|A) = (R− 1)/(N − 1) < R/N = P (B). ♦

Example 3.10 Let Ω = (0, 1] = {ω : 0 < ω ≤ 1} and suppose that P ((a, b]) = b− a

for all subintervals (a, b] ⊆ Ω, as in Example 2.?. Then A = (0, 1
2
] = {ω : 0 < ω ≤ 1

2
}
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and B = (0, 1
4
] ∪ (1

2
, 3

4
] are independent. To see this observe that P (A) = 1

2
, P (B) =

1
4

+ 1
4

= 1
2
, and P (A ∩ B) = P ((0, 1

4
]) = 1

4
= P (A)P (B). In this example, A is the

event that the first binary digit of ω is zero, and B is the event that the second binary

digit is zero. ♦

As Example 2 illustrates, independence of events depends on P as well as the

events.

Several Events. Events A1, ..., An are said to be (mutually) independent iff

P (Ai ∩ Aj) = P (Ai)P (Aj), ∀ i < j, (3.11)

P (Ai ∩ Aj ∩ Ak) = P (Ai)P (Aj)P (Ak), ∀ i < j < k,

P (Ai1 ∩ ... ∩ Aik) = P (Ai1)× ...× P (Aik), ∀ı1 < ... < ik, (3.12)

for all k = 2, · · · , n. In words, A1, · · · , An are mutually independent if the probability

of any subcollection of A1, · · · , An is the product of their probabilities. Mathemat-

ically, (mutual) independence is a stringent condition. Equation (2) imposes
(
n
k

)
constraints on the probabilities of interesections of A1, · · · , An, and it must hold for

all k = 1, · · · , n. Events A1, ..., An are said to be pairwise independent if Ai and Aj

are independent for all i 6= j. This is equivalent to (3.11). It is clear that (mutual)

independence implies pairwise independence. That pairwise independence does does

not imply mutual independence is shown in Example (??) below. In the sequel, the

unqualified term ”independent” means mutually independent.

Example 3.11 If n tickets are drawn with replacement from a box containing R red

and N −R white tickets, then the events Ai = {red on the ith draw}, i = 1, ..., n, are

(mutually) independent. In fact, if 2 ≤ k ≤ n, then P (Ai1 ∩ ... ∩ Aik) = Rk/Nk =

P (Ai1)× ...× P (Aik) for all i1 < ... < ik. ♦

Example 3.12 Suppose that a single card is drawn at random from a box contains

four cards labelled 1, 2, 3, 4, and let Ai = {i, 4}, the event that either card i or card

4 is drawn for i = 1, 2, 3. Then clearly, P (A1) = P (A2) = P (A3) = 1/2. If i 6= j,

then Ai ∩ Aj = {4} and, therefore, P (Ai ∩ Aj) = 1/4 = P (Ai)P (Aj). So, A1, A2, A3
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are pairwise independent. However, P (A1 ∩ A2 ∩ A3) = P ({4}) = 1/4 6= 1/8 =

P (A1)P (A2)P (A3), so that A1, A2, A3 are not mutually independent. ♦

It is clear that independence is preserved by relabeling of A1, · · · , An and that

any subcollection of independent events is again independent: If A1, ..., An are inde-

pendent and if Bi = Ai or A
c
i for all i = 1, ..., n, then B1, ..., Bn are independent. The

proof of this assertion is supplied in the next section.

Series and Parallel Connections If A1, · · · , An are events, then ∪ni=1Ai =

A1 ∪ ... ∪ An and ∩ni=1Ai = A1 ∩ ... ∩ An denote their union and intersection. Then

De Morgan’s Laws assert

(∪ni=1Ai)
c = ∩ni=1A

c
i (3.13)

and

(∩ni=1Ai)
c = ∪ni=1A

c
i . (3.14)

If A1, ..., An are independent and if pi = P (Ai), i = 1, ..., n, then

P (A1 ∩ ... ∩ An) = p1 × ...× pn (3.15)

P (A1 ∪ ... ∪ An) = 1− (1− p1)× ...× (1− pn) (3.16)

The first assertion is clear. For the second, write P (∪ni=1Ai) = 1 − P [(∪ni=1Ai)
c] =

1− P (∩ni=1A
c
i) and P (∩ni=1A

c
i) = P (Ac1)× ...× P (Acn) = (1− p1)× ...× (1− pn). For

example, if pi = p ∀ i = 1, ..., n, then the two probabilities are pn and 1 − (1 − p)n.

These may be quite different. For p = .99 and n = 100, they are .3679... and 1−10−200.

Consider a group of electrical devices, for example, a string of lights, each of which

may fail with a small probability. If the devices are connected in series, then current

will flow (from the source to the ground) iff every device operates properly. So, if

Ai denotes the event that the ith device operates properly, i = 1, · · · , n, then the

event that current follows is ∩ni=1Ai, and the probability of this event is given by

(3.15). If the devices are connected in parallel, then current flows iff at least one of

the devices operates properly. In this case, the event that current flows is ∪ni=1Ai,

and its probability is given (3.16).
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It is possible to construct more complicated connections; for example, devices with

subsystems may be connected in parallel, but subsystems may be connected in series.

Here is an example, phrased in a different language.

Example 3.13 Small University has three students, four professors, and five deans.

On any given day, the students show up for class with probability .75 each, the

professors come to work with probability .5 each, and the deans appear for work with

probability .25 each. Class are held iff at least one member of each group comes

to class or work. Assuming independence, what is the probability that classes are

held. The probability that at least one student comes to class is 1 − (.25)3 = .9849;

the probability that at least one professor comes to work is 1 − (.05)4 = .9375; and

the probability that at least one dean comes to work is 1 − (.75)5 = .7627. So, the

probability that classes are held is .7039. ♦

Product Spaces and Repeated Trials. Let (Ωi,Ai, Pi), i = 1, · · · , n (n ≥ 2)

denote probability space, regarded as models for experiments E1, · · · , En. Then it

is possible to construct a probability space (Ω,A, P ) that provides a description for

doing all n experiments in such a manner that the outcome of one does not affect

those of the others. In this construction Ω denotes the Cartesian procuct. Ω =

Ω1 × · · · ,×Ωn. Thus, elements of Ω are lists ω = (ω1, · · · , ωn) with ωi ∈ Ωi, i =

1, · · · , n. If Ai ∈ Ai, so that Ai ⊆ Ωi, i = 1, · · · , n, then their Cartesian product

A1×· · ·×An = {ω ∈ Ω : ωi ∈ Ai, for all i = 1, · · · , n} is called a measurable rectangle.

There are a sigma=algrebraA of subsets of Ω and a probability measure P defined on

A or which

P (A1 × · · · × An) = P1(A1)× · · · × Pn(An) (3.17)

for all measurable rectangles. .

Ã = {ω ∈ Ω : ωi ∈ A},

so that A ⊆ Ω. This operation injects A into the larger space Ω
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3.4 Mendel’s Laws

inheritable characteristics of plants and animals are carried by genes, which occur in

pairs within an organism . Pairs of genes are located on long strands, called chromo-

somes, and a pair of genes may be identified with its location on the chromosome. In

sexual reproduction, each parent contributes one of its two genes to the offspring. The

genes have different form called alleles. For example, garden peas may produce either

round or wrinkled seeds, depending on the forms taken by the genes. In the simplest

cases, there are only two alleles for each gene. Call them A and a. Since genes occur

in pairs, there are three possibilities, AA, Aa, and aa, there being no distinction

between Aa and aA. There is an important distinction between the genotype, the ge-

netic composition of an organism, and its phenotype, its observable characteristics. In

some cases, AA, Aa, and aa may be expressed by distinct phenotypes. For example,

AA, Aa, and aa might be expressed by red pink and white flowers. In other case Aa

and AA may have the same phenotype. In such cases, A is said to be dominant over

a, and a is said to be recessive. For example, round is dominant over wrinkled.

The science of genetics began with the findings of Gregor Mendel, an Austrian

monk who studied garden peas., a sexually reproducing plant. Mendel’s Laws may

be stated:

• The Law of Independent Assortment: The genes contributed by each parent are

selected independently with all choices equally likely.

• The Law of Independent Aggregation: The contributions for different genes are

independent.

Something important should be noted here: The laws of science (genetics in this

case) are expressed in probabilistic terms.

What does the The Law of Independent Assortment predict? If there are two

alleges and two hybrids (Aa) are crossed, then each parent independently contributes

either an A or an a with probability 1/2 each. So AA, Aa aA and aa each have

probability 1
2
× 1

2
= 1

4
.

If also A is dominate over a, so that AA and Aa are both expressed by the domi-
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nant phenotype, then the probability of the dominant phenotype is 1/4 + 1/2 = 3/4.

So, in a large number of crosses about 3/4 of the offspring should show the domi-

nant phenotype. The predictions agree with experimental data2. In 7324 (74.7%)3

crosses of garden peas,, 5474 (74.7%) of the offspring produced round seeds, and 1850

wrinkled ones.

Now consider two genes with two alleles each, say A or a and B or b.. If two hybrids

(AaBb are crossed, then the offspring have each of the 16 possible genotypes with

probability 1/16, by the Law of Independent Aggregation. Similarly, if A and B are

dominant, then the offspring with have the two dominant phenotypes with probability

3
4
× 3

4
= 9

16
(56.15.25%). They will have one dominant and one recessive trait with

probability 3/16(18.75%) and both recessive traits with probability 1/16(6.25%).

3.5 Problems and Complements

1. A committee of size three is to be selected from a group of ten men and ten women.

What is the conditional probability that both sexes are represented, given that there

is at least one man on the committee? Ans: .8824

2. In Problem 1, suppose that the committee size is four. What is the condi-

tional probability that the committee contains two men and two women, given that

it contains at least one person of each sex?

3. In a game of bridge, North and South have nine spades in their combined

hands. What is the conditional probability that the remaining four spades are evenly

divided between East and West? Ans:
(

4
2

)(
22
11

)
/
(

26
13

)
= .407

4. If South has no aces, what is the conditional probability that North has at

least two aces?

5. In a certain court, cases are decided by a single judge. Suppose that the judge

finds an innocent person guilty with probability .2 and finds a guilty person guilty

with probability .9. Suppose also that 60% of defendants are guilty. What proportion

2In fact, it may agree a bit too well. See Fisher (1936), Annals of Science. 1, 115-137
3Source: General Genectics, by Srb, Owen, and Edgar
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of defendants are convicted (found guilty)? What proportion of people convicted are

actually guilty? Ans: .62 and .871

6. A test for a rare disease has a false positive rate of 2.5% and a false negative

rate of 5%. Suppose that .5% of the population have the disease. If a person takes the

test as part of a routine physical examination (no symptoms), what is the probability

that the test will indicate the disease to be present? Given that the test is indicates

the disease, what is conditional probability that the person has it?

7. One card is drawn from a standard deck. Let A be the event that the card is

either a spade or a club; let B be the event that the card is either a heart or a club;

and let C be the event that the card is either a diamond or a club. Show that A and

B are independent but that A, B, and C are not mutually independent.

8. Two cards are drawn from a standard deck without replacement. Which pairs

of the following events are independent? A: the first card is an ace; B: the first card

is a spade; C: the second card is a heart. Why?



Chapter 4

Discrete Random Variables

4.1 Probability Mass Functions

Suppose, for example, that there is interest in the sum of spots on two dice, as in

Example 1.2. Then an outcome is a pair ω = (i, j), where 1 ≤ i, j ≤ 6, and the the

sum of spots, X(i, j) = i+ j, defines a function on the sample space. The event that

the sum of spots has a given values, for example seven, is then a subset of the sample

space, ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}). This is called the event that X = 7

and denoted {X = 7}, and its probability is

P [X = 7] = P ({(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}) =
1

6
.

since there are 36 equally likely outcomes.

The example may be generalized. Consider a probability model with sample space

Ω and probability function P . A random variable is a function

X : Ω→ R.

Less formally, a random variable is a rule that associates a real numberX(ω) with each

outocme ω. A random variable is said to be discrete is its range X = {X(ω) : ω ∈ Ω}

is a finite or countably infinite set; that is, X = {x1.x2, · · · } (finite or infinte). The

sum of spots example just given is of this nature with X = {2, 3, · · · , 11, 12}. If

X is a random variable and B ⊆ R, then it is convenient to write {X ∈ B} for

51
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{ω : X(ω) ∈ B} and call {X ∈ B} the event that X is in B. The probability of this

event is denoted by

P [X ∈ B] = P ({ω ∈ Ω : X(ω) ∈ B}), (4.1)

with natural simplifications, like writing P [X = c] for the probability that X ∈ {c}.

The sum of spots example illustrates the use of this notations.

If X is a discrete random variable, then the probability mass function of X is

defined by

fx(x) = P [X = x] (4.2)

for x ∈ R. In words, f(x) is the probability of the set of outcomes for which X(ω) = x.

In the dice example f(7) = 1/6. Similar calculation show that f(6) = f(8) =

5/36, f(5) = f(9) = 4/36, and

f(x) =
6− |x− 6|

36

for x = 2, · · · , 12 and f(x) = 0 for other values of x. The probability mass function

of a random variable X may also be denoted by fX if there is danger of confusion.

Example 4.1 Recall that a bridge hand is a combination of 13 cards from a standard

deck. If a bridge hand is chosen at random, then the sample space consists of all bridge

hands, and #Ω =
(

52
13

)
. The number of aces in a hand is a well defined random variable

X. There is no simple mathematical expression for this random variable, but it is a

well defined rule that associates numbers to outcomes. Clearly X = {0, 1, 2, 3, , 4}.

For x ∈ X the number of hands containing exactly x aces is
(

4
x

)(
48

13−x

)
, since there are(

4
x

)
to choose x aces and

(
48

13−x

)
to choose 13− x non-aces. So,

fx(x) = P [X = x] =

(
4
x

)(
48

13−x

)(
52
13

)
for x = 0, 1, 2, 3, 4 and f(x) = 0 otherwise. Numerically f(0) = .3038, · · · . ♦

Probability mass functions have certain characteristic properties. If f = fx is the

probability mass function of a random variable X, with rangle X , then

f(x) ≥ 0 for all x ∈ R, (4.3)
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f(x) = 0 unless x ∈ X , (4.4)∑
x∈X

f(x) = 1, (4.5)

and

P [X ∈ B] =
∑
x∈B

f(x) (4.6)

for all subsets B ⊆ R. Conversely, if f is any function that satisfies (4.3),(4.4), and

(4.5), then there is a random variable X with probability mass function f . To see

why, suppose first that f is the probability mass function of a random variable X.

Then f(x) is a probability and, therefore, non-negative. If x /∈ X , then there are no

ω for which X(ω) = x, so that f(x) is the probability of the emptyset and, therefore,

f(x) = 0. For (4.6), let B ⊆ R. Then B∩X = {x′1, x′2, · · · }, where x′k are the xk that

are in B. So, B = ∪k{X = x′k}, and

P [X ∈ B] = P [X ∈
⋃
k

{x′k}] =
∑
k

P [X = x′k] =
∑
x∈B

f(x).

This establishes (4.6), and (4.5) then follows by letting B = X and noting that

P [X ∈ X ] = 1. For the converse,

· · ·

4.2 The Mean and Variance

If f is a probability mass function then the mean of f is defined by

µ =
∑
x∈X

xf(x), (1)

where X = {x ∈ R : f(x) > 0} = {x1, x2, · · · } , provided that the sum converges

absolutely1 (if X is an infinite set). If X is a random variable with probability mass

function f , then the mean of f is also called the mean of X and may be denoted by

µx. Thus the mean is a weighted average of its possible values of the possible values

of X with weights f(x).

1That is, provided that
∑

x∈X |x|f(x) <∞
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Example 4.2 If A is an event, then its indicator 1A is defined by

1A(ω) =

1 if ω ∈ A

0 if ω /∈ A
.

Thus, 1A is a random variable for which f(1) = P{1A = 1} = P (A), f(0) = P (Ac),

and f(x) = 0 for other values of x. So, µ = 1P (A) + 0P (Ac) = P (A). In words,

the mean value of an indicator variable is the probability of the event. The example

shows that the language of random variables contains the language of events as a

special case: Any question that could be ask or answered in terms of events could

also be ask or answered in terms of random variables. ♦

If f is a probability mass function with mean µ, then the variance of f is defined

by

σ2 =
∑
x∈X

(x− µ)2p(x). (2)

In this case, the variance is to be interpreted as ∞ if the sum does not converge. If

X has probability mass function p, then σ2 is called the variance of X and may be

denoted by σ2
X . The mean may be regarded as the center of the distribution, and the

variance and standard deviation measure the tendency of X to deviate from µ. The

square root σ =
√
σ2 of the variance is called the standard deviation of f or of X.

Example3.2:Continued The probability mass function of the number of aces in a

bridge hand is given in the table below, along with the calculation of the mean and

variance:

· · ·

There is an alternative expression for the variance. The moments of a probability

mass function f are

µk =
∑
x∈X

xkf(x)

for k = 0, 1, 2, · · · , provided that the sum converges. Thus, µ0 = 1, by (4.5), and

µ1 = µ, the mean. The alternative expression of σ2 is then

σ2 = µ2 − µ2
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For, writing (x− µ)2 = x2 − 2µx+ µ2,

σ2 =

σ2 =
∑
x∈X

(x2 − 2µx+ µ2)p(x)

=
∑
x∈X

x2f(x)− 2µ
∑
x∈X

xf(x) + µ2
∑
x∈X

f(x)

=
∑
x∈X

x2f(x)− 2µ2 + µ2

=
∑
x∈X

x2f(x)− µ2 = µ2 − µ2, ,

where the next to last equality uses the definition of µ and Equation (4.5).

Example 4.2: Continued. For an indicator variable, µ2 = 12f(1) + 02f(0) = f(1) =

P (A) and, therefore, σ2 = µ2 − µ2 = P (A)− P (A)2 = P (A)[1− P (A)]. ♦

Example 4.3 If an n-sided balanced die is rolled once, then the number of spots X

is random variable with probability mass function

f(x) =

1/n if x = 1, 2, · · · , n

0 if otherwise

(4.7)

Thus,

µ =
n∑
x=1

x

n
=
n+ 1

2
,

since 1 + 2 + · · ·+ n = n(n+ 1)/2. Similarly

n∑
k=1

k2

n
=
n(n+ 1)(2n+ 1)

6n
=

(n+ 1)(2n+ 1)

6
,

since 1 + 4 + 9 + · · ·+ n2 = n(n+ 1)(2n+ 1)/6, and

σ2 =
(n+ 1)(2n+ 1)

6
− (

n+ 1

2
)2 =

n2 − 1

12
,

after some algebra. The probability mass function (4.7) is called the discrete uniform

with parameter n. ♦

Moment Generating Functions. If f , then the moment generating function of

f is defined by

M(t) =
∑
x∈X

etxf(x) (4.8)
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for those t ∈ R for which the sum converges. Observe that if t = 0, them M(0) = 1 for

any f , since e0 = 1. The name derives from the following simple formula: M(t) <∞

for all t in some neighborhood of 0, then the moments of p are

µk = M (k)(0) :=
dk

dtk
M(t)

∣∣
t=0
, (4.9)

the kth derivative of M at t = 0, for all k = 1, 2, · · · . This is easily seen if X is a

finite set, for then

dk

dtk
M(t) =

dk

dtk

∑
x∈X

etxf(x) =
∑
x∈X

dk

dtk
etxf(x) =

∑
x∈X

xketxf(x)

for all t ∈ R, so that

M (k)(0) =
∑
x∈X

xketxp(x) = µk

for all k = 1, 2, · · · . These relations are still valid when X is an infinite set, but they

require some justification. This is provided in · · · .

Thus the mean and variance may be expressed in terms of the moment generating

function as

µ = M ′(0),

σ2 = M ′′(0)−M ′(0)2.

The logarithm of M i s called cumulant function of f and denote by κ. Thus, κ(t) =

log[M(t)], kappa′(t) = M ′(t)/M(t), and κ′′(t) = [M ′′(t0−M ′(t)2]/M(t)2, so that

µ = κ′(0) and κ′′(0) = σ2. (4.10)

Examples are provided in the next section.

4.3 Special Discrete Distributions

Observe that (4.7) defines a entire family of probability mass functions, one for each

integer n. Four more important families are introduced in this section.

Hypergeometric Distributions. Example 3.2 generalizes easily. If a sample of

size n is drawn without replacement from a box containing R red tickets and N −R
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white tickets, then the number of red tickets in the sample is a random variable X

with probability mass function

f(x) =

(
R
x

)(
N−R
n−x

)(
N
n

) (4.11)

for x = 0, · · · , n and f(x) = 0 otherwise. The derivation of this formula simply

replaces the number 4, 48, and 13 with the symbols R, N −R, and n, and is left a an

exercise. The probability mass function (4.11) is called the Hypergeomeric probability

mass function with parameters N, R, and n.

To compute the mean of f , observe first that(
N

n

)
=
N

n

(
N − 1

n− 1

)
and k

(
R

k

)
= R

(
R− 1

k − 1

)
1 ≤ k ≤ n. So,

µ =
n∑
k=0

kf(k) =
n∑
k=1

Rn

N

(
R−1
k−1

)(
N−R
n−k

)(
N−1
n−1

) =
nR

N
,

since the last sum is just the sum of the Hypergeometric probability mass function

with parameters N − 1, R − 1, and n − 1. The variance can be computed similarly,

and

σ2 =

(
N − n
N − 1

)
RWn

N2
.

The details are omitted here, since the result will be derived by quite different methods

in Chapter ??.

Binomial Distributions. Suppose now that there are independent eventsA1, · · · , An
with the same probabilty, P (Ai) = p, i = 1, · · · , n and interest in the number of oc-

currences X of A1, · · · , An. If the occurrence of an Ai is regarded as a success, then

X is simply the number of successes. Examples include independent plays of a game,

like roulette, in which Ai is the event that the ith game is won. Here is a simple

example.

Example 4.4 Suppose that a gambler plays four games of roulette, always betting

on red. Let Wi be the even that he/she wins the ith game and Li = W c
i the event

that he/she loses. Thus, P (Wi) = 9/19 for i = 1, · · · , 4. Then the event that X = 2
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is the union

{X = 2} = W1W2L3L4 ∪W1L2W3L4 ∪W1L2L3W4

∪ L1W2W3L4 ∪ L1W2L3W4 ∪ L1L2W3W4.

since there are 6 ways to win two games and lose two, and

P [X = 2] = P (W1W2L3L4) + · · ·+ P (L1L2W1W2)

= P (W1)P (W2)P (L3)P (L4) + · · ·+ P (L1)P (L2)P (W1)P (W2)

= (
9

19
)2(

10

19
)2 + · · ·+ (

9

19
)2(

10

19
)2

= 6(
9

19
)2(

10

19
)2

since the 6 are mutually exclusive and the events W1,W2,W3,W4 are independent

with the same probability ♦

This simple calculation generalizes easily. Let A1, · · · , An denote independent

events with the same probabilty, P (Ai) = p, i = 1, · · · , n, and let X denote the

number of occurrences. Then

X = 1A1 + · · ·+ 1An ,

since the sum of indicator functions just counts occurrence. The probability mass

function of X is then

f(x) =

(
n

x

)
px(1− p)n−x (4.12)

for x = 0, · · · , n and f(x) = 0 otherwise. To see this simply observe that the event

{X = x} is simply the event that for some combination C of the indices {1, · · · , n}

Ai occurs when i ∈ C and Aci occurs when i /∈ C. For any given combination, this

has probability px(1−p)n−x, and (4.12) then follows since there are
(
n
x

)
combinations

of size x.

Example 4.5 : Continued. If the gambler plays n games, what is the probability

that he/she is a net winner. Letting m the least integer that exceeds n/2, the proba-

bility that X > m is required. The probability of winning x games is given by (4.12)
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with p = 9/19. So,

P [X > m] =
n∑

x=m

(
n

x

)
(

9

19
)x(

10

19
)n−x

The following table gives some numerical values. From this table, the probability

that the gambler is a net winner (wins six or more times) is .1310.

Table 4.1: default

m prob

1 .9837

2 .9242

3 .7816

4 .5568

5 .3112

6 .1310

7 .0385

8 .0069

9 .0006

10 .0000

Example 4.6 :Bridge. In an evening of bridge, South receives two or more aces on

five of nine hands. Do his/her opponents have reason to complain that he/she was

just lucky? The question may seem complicated, but is quite simple if approached

properly. First the probability that South receives two or more aces on any given

hand is

p =

(
4
2

)(
48
11

)
+
(

4
3

)(
48
10

)
+
(

4
4

)(
48
9

)(
52
13

) = · · · .

So, the probability that he/she receives two or more aces on at least five of nine

independent hands is
9∑

x=5

(
9

x

)
px(1− p)n−x = · · · ,

and the answer is, ”No, South has not been especially lucky.” ♦
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The probability mass function (4.12) is called the binomial probability mass function

with parameters n and p, and denoted by bn,p(x). A graph is included below.
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Figure 4.1: The binomial probability mass function with n = 10 and p = 9/19

The moment generating function of the binomial is

M(t) =
[
1 + p(et − 1)

]n
. (4.13)

For
n∑
x=0

etxbn,p(x) =
n∑
x=0

(
n

x

)
(pet)x(1− p)n−x =

[
pet + 1− p

]n
,

which is the right side of (??). Differentiation then yields M ′(t) = npet[1+p(et−1)]n−1

and M ′′(t) = npet[1 + p(et− 1)]n−1 + n(n− 1)p2e2t[1 + p(et− 1)]n−1; and then setting

t = 0 yields

µ = M ′(0) = np

and

σ2 = M ′′(0)−M ′(0)2 = [np+ n(n− 1)p2]− (np)2 = np(1− p),
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Poisson Distirbutions.In the first instance, Poisson distributions arise as limits

of binomial distributions

b(k) =

(
n

k

)
pk(1− p)n−k

when n is large and p is small. The derivation depends on the following two repre-

sentations of the exponential function: for all x ∈ <,

ex = lim
n→∞

(1 +
x

n
)n (4.14)

and

ex =
∞∑
k=0

xk

k!
. (4.15)

Here is the main result: If n→∞ and p = pn → 0 in such a manner that λ = np

remains constant, then

lim
n→∞

(
n

k

)
pkn(1− pn)n−k =

λk

k!
e−λ (4.16)

for k = 0, 1, 2, · · · . To see why (4.16) holds, write p = λ/n and(
n

k

)
pk(1− p)n−k =

(n)k!

k!
(
λ

n
)k(1− λ

n
)n−k =

1

k!

(n)k
nk

λk(1− λ

n
)n−k.

As n→∞, the terms on the right converge to 1/k!, 1, λk, and e−λ, using (??). The

result (4.16) follows. Observe that

∞∑
k=0

λk

k!
e−λ = eλe−λ = 1.

So, the function f defined by

f(k) =
λk

k!
e−λ, (4.17)

for k = 1, 2, · · · is a probability mass function, called the Poisson probability mass

function with parameter λ.

Less formally Equation (4.16) asserts that if n is large, p is small, and λ = np

is moderate, then the binomial probabilities may be approximated by the right side

of (3). Thus, the Poisson distribution provides a good model for the number of

occurrences of a large number (n large) of improbable (p small) events and is useful

in problems involving accidents, coincidences, mistakes, etc. · · · .
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Example 4.7 . Suppose that the probability of winning $5000 in a lottery is p =

.0001. If 30000 people play on a given day, what is the probability that more than

5 win. The number of winners X has a Poisson distribution with parameter λ =

30000× .0001 = 3. Thus, the probability that exactly two people win is P{X = 2} =

(32/2)e−3 = .224 · · · , and the probability that more than five do is

P{X > 5} = 1− P{X ≤ 5} = 1−
5∑

k=0

3k

k!
e−3 = .086 · · · .

Example 4.8 .A book has an average of 1.5 typographical error per page. What is

the probability that there are more than two errors on a given page. Let X be the

number of errors on the given page. Then it is reasonable to suppose that X has the

Poisson distribution with λ = 1.5, since there are many words on each page and each

has a small probability of being in error. Then

P{X ≤ 2} = e−1.5 + (1.5)e−1.5 +
(1.5)2

2
e−1.5 = .251 · · ·

P{X > 2} = 1− P{X ≤ 2} = .191 · · · .

Moments. Since Poisson distributions are limits of binomial distributions, and since

the mean of a binomial distribution is np, it seems clear that the mean of a Poisson

distribution is

µ = λ. (4)

This may be seen analytically. The moment generating function of a Poisson distri-

bution is easily derived; for

M(t) =
∞∑
k=0

etk
1

k!
λke−λ = e−λ

∞∑
k=0

1

k!
(λet)k = e−λe−λe

t

.

for all t ∈ <. That is,

M(t) = eλ(et−1), ∀ t ∈ <.

In this case, the cumulant function is κ(t) = log[M(t)] = λ(et−1), and the derivatives

of κ are κ′(t) = λet, κ′′(t) = λet, etc.· · · . Thus, the mean is µ = κ′(0) = λ, as asserted

in (4), and the variance is σ2 = κ′′(0) = λ.
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Radioactive Decay. Suppose that a radio-active substance, such as Carbon-

14, is observed with a Geiger counter for a given time period, say t time units.

Let Xt denote the number of disintegrations. Then each unstable atom has a small

probability, say pt, of decaying, and there are many atoms, say N . In this case,

pt = ct, where c depends on the substance. So, Npt = Nct = λt, say, where λ = Nc,

and it is reasonable to suppose that X has aPoisson distribution with parameter

λt–that is,

P{X = k} =
(λt)k

k!
e−λt, ∀ k = 0, 1, · · · .

Derivation. First observe that for fixed k,

(n)k
nk

=
n× (n− 1)× · · · (n− k + 1)

n× n× · · · × n
→ 1,

as n→∞. Next, recall that λ = np is fixed and write p = λ/n. So,(
n

k

)
pk(1− p)n−k =

1

k!
× (n)k

nk
(np)k(1− p)n−k

=
1

k!
× (n)k

nk
λk(1− λ

n
)n × (1− λ

n
)−k.

As n→∞ and p→ 0 with λ = np fixed, the terms in the last line converge to

1

k!
× 1× λk × e−λ × 1,

as asserted.

Negative Binomial Distributions. Suppose that a gambler plays a series of

games winning each with probability p and losing with probabilility q = 1− p Let Ak

be the event that the gambler wins the kth game. ThenA1, A2 · · · , areindependent

and P (Ak) = p for all k. How many games will the gambler have to play before

he/she wins? Let Y denote the number of games required. Thus, Y is the smallest

n for which An occurs. The event that Y = 1 is simply A1. Similarly, the event that

Y = 2 is Ac1 ∩ A2, and the event that Y = k is {Y = n} = Ac1 ∩ · · · ∩ Acn−1 ∩ An. So,

the probability mass function of Y is

fy(n) = P [Y = n] = P (Ac1∩· · ·∩Acn−1∩An.) = PAc1)×· · ·×PAcn−1)P (∩An) = qn−1×p.
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For example, if p = 9/19, then P [Y = 3] = p× q2 = · · · . Define g by

g(n(= p× q−1

for n = 1, 32 · · · and g(x) = 0 for other values of x. Then g is a probability mass

function, since g(x) ≥ 0 for all x, and

∞∑
n=1

g(n) = p

∞∑
n=1

qn− = p× 1

1− q
= 1;

and g is called the geometric probability mass function with parameter p

This simple calculation can be generalized. Let A1, A2, · · · be independent events

with probbiliity P (Ak) = p for all k; regard the occucence of Ak a success and the

index k at time; and let

Xn =
n∑
j=1

1Aj
,

the number of successes by time n. For a given r ≥ 1, let Yr be the smallest n for

which Xn = r, the number of trials required to obtain r successes. The probability

mass function of Yr is derived below, but first an example.

Example 4.9 . The ABD Corporation needs to hire three new engineers. From

past experience, it knows that each interview leads to a success hire with probability

p = .3 What is the probability that exactly nine interviews are required to hire three

engineers? The event in question requires success on the ninth interview and exactly

two successes on the first eight. So,

P [Y3 = 9] = P [X8 = 2and A9] = P [X8 = 2]P (A9) =

(
8

2

)
p2q6 × p =

(
8

2

)
p3q6

For a general r ≥ 1, the event that Yr = n requires success on the nth trial and exactly

r − 1successes on the first n− 1 trials. So,

P [Yr = n] = P ({Xn−1 = r−1}∩An) = P [Xn−1 = r−1]×PAn) =

(
n− 1

r − 1

)
prqn− r.

The last example provides a special case with r = 3 and n = 9. Define g by

g(n) =

(
n− 1

r − 1

)
prqn−r, (4.18)



4.4. PROBLEMS AND COMPLEMENTS 65

for n = r, r + 1, · · · . and g(x) = 0 for other values of x. Then g(y) = P [Y = y] for

all y, but it is not immediately clear that g is a mass function, because there is the

apparent possility that Xn < r for all n, in which case Y is undefined. It is clear,

however, that {Y ≤ n} ∪ {Xn < r} = Ω for all n. So,

n∑
k=r

g(k) +
r−1∑
j=0

(
n

j

)
pjqn−j = P [Y ≤ n] + P [Xn < r] = 1 (4.19)

for every n > r. Moreover, limn→∞ P [Xn < r] = 0, becuse
(
n
j

)
pjqn−j ≤ njqn ×

(p/q)j → 0 as n→∞ for all j ≥ 0. Letting n→∞ in (4.19) then shows tha

∞∑
k=r

g(k) = 1 (4.20)

so that g is a valid probability mass function. It is called the negative binomial with

parameters p and r. In the special case that r = 1, the negative binomial reduces to

the geometric. For the moment generating function, consider a t for which pet < ‘1

and let qt = qetand pt = 1− q′. Then

M(t) =
∞∑

n=r+1

entg(n) = ert
∞∑
n=r

(
n− 1

r − 1

)
pr(qet)n−r = (

pet

pt
)r
∞∑
n=r

(
n− 1

r − 1

)
prt (qt)

n−r

The last sum here onwe ibecsause it is the sum of the negative binomial probability

mass function with parameter pt and r. So,

M(t) = (
pet

pt
)r = (

pet

1− qet
)r (4.21)

The mean and variance of the a negative binomial distribution

µ =
r

p
and σ2 =

rq

p2
. (4.22)

can then be obtained by differentiation.

4.4 Problems and Complements

Problems
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1. LetX be the absolute difference between the number of spots that appear when two

balanced (six-sided) dice are tossed (larger less smaller). Represent X as a function

on an appropriate sample space and find the probability mass function of X.

2. Suppose that two tickets are drawn without replacement from a box containing

ten tickets labeled ”1,2,· · · ,10.” Let X be the absolute difference between the numbers

on the two tickets. Represent X as a function on an appropriate sample space and

find the probability mass function of X.

3. IfX has the geometric distribution with parameter 0 < p < 1, find P{Xis even}

in terms of p.

4 For what value of c does p(k) = c/k2, k = 1, 2, · · · and p(a) = 0 for other values

of a define a probability mass function?

5. Let p(k) = 1/k(k+ 1) for k = 1, 2, · · · and p(a) = 0 for other values of a. Show

that p is a probability mass function.

6. Find the mean and variance of X in Problem 1. Ans: 1.833· · · and 1.091· · · .

7. Find the mean and variance of X in Problem 2.

8. In an evening of bridge South plays eight hands. What is the probability that

he/she receives no aces on exactly four of those hands; on at least four hands?

9. There were 1095 marriages in a certain town last year. Let X denote the

number of couples whose birthdays fall on the same day of the year. Find P{X = 3}

and P{X ≥ 3}. What assumptions are you making? Ans: .224 and .577.

10. The probability of winning a prize in a lottery is 1/100. If a person plays

every day for a year, what is the probability that he/she wins exactly three prizes; at

least three?

11. Show that if X has the geometric distribution with parameter 0 < p < 1,

then X has distribution function F (x) = 1 − qbxc, where q = 1 − p and bxc denotes

the smallest integer that is less than or equal to X.

12. Tickets are drawn without replacement from a box containing R red tickets

and N − R white tickets. Let X denote the number of the draw on which the first
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red ticket appears. Find the distribution function of X and use (1.?) to compute its

probability mass function.
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Chapter 5

Distribution Functions and

Densities

5.1 Distribution Functions

If X is any random variable, then the distribution function of X is defined by

Fx(x) = P [X ≤ x], ∀ a ∈ R. (5.1)

fpr x ∈ R. The notation her is (very) case sensitive: X is the random variable whose

distribution function is defined by (5.1). x is a symbol used in the definition. It

could be changed without affecting the meaning of (5.1). For example, the equation

,Fx(t) = P [X ≤ t] for t ∈ R, has the same meaning as (5.1). Unsupisingly, the concept

is simplest in the discrete case. If X is discrete with possible values X = {x1, x2, · · · },

then

F (a) =
∑
i:xi≤a

fx(xi), ∀ a ∈ R (5.2)

where fx denotes the probability mass functions of X (that is, fx(xi) = P [X = xi]

for i = 1, 2, · · · ), by (4.1.?).

Example 5.1 Suppose that X has the discrete uniform distribution with parameter

n, so that p(a) = 1/n for a = 1, · · · , n and p(a) = 0 for other values of a. If

1 ≤ a ≤ n, then Fx(a) = P{X ≤ a} =
∑

i≤a(1/n) = bac/n, where bac denotes the

69
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greatest integer which is less than or equal to a. Also, F (a) = 0 for a < 1, since the

event {X < 1} is impossible, and similarly, F (a) = 1 for a > n. ♦

Here are two examples of a different nature. Recall the notation for intervals:

(a, b) = {x ∈ R : a < x < b}, (a, b] = {x ∈ R : a < x ≤ b}, [a, b) = {x ∈ R : a ≤ x <

b}, and [a, b] = {x ∈ R : a ≤ x ≤ b} for −∞ ≤ a ≤ b ≤ ∞.

Example 5.2 . Let Ω = (−π, π] and P ((a, b]) = (b− a)/2π for −π < a < b ≤ π, as

in Example 2.3?.

a). If X(ω) = ω for ω ∈ Ω, then the possible values of X are X = (−π, π], and

P{a < X ≤ b} = P ((a, b]) = (b − a)/2π for all −π < a ≤ b ≤ π. In particular,

P{X = a} = (a− a)/2π = 0 for all −π < a ≤ π, so that the notion of a probability

mass functions is not useful concept. The distribution function may be computed,

however: if −π < a ≤ π, then

Fx(a) = P{X ≤ a} = P ((−π, a]) =
a+ π

2π
.

Also, F (a) = 0 for a ≤ −π, since the event {X ≤ −π} is impossible, and F (a) = 1

for all a ≥ π.

b). Let Y (ω) = tan(ω), if ω is not a multiple of π/2, and let Y (ω) = 0 otherwise.

Then Y has distribution function

Fy(y) =
1

2
+

1

π
arctan(y), −∞ < y <∞, (5.3)

This distribution function is called the standard Cauchy.

To see (5.3) it is convenient to consider the cases y > 0 and y < 0 separately. If

y > 0, then the event that {Y ≤ y} is {ω : Y (ω) ≤ y} = (−π,−π+a]∪−π
2
, a]∪ [π

2
, π]

where a = arctan(y), the solution to tan(ω) = y for which

P{Y ≤ y} = P ((−π,−π + a]) + P ([−π
2
, a]) + P ([

π

2
, π])

=
a

2π
+
a+ π/2

2π
+
π/2

2π

=
1

2
+

1

π
arctan(y).
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The same final answer is obtained for negative y, though the picture is a little different.

Another derivation is included in Problem ?.?. ♦

Computing Probabilities from Distribution Functions. If X has distribution func-

tion F , then probability that X falls in an interval, (a, b] say, can be computed directly

from the distribution function as

P{a < X ≤ b} = F (b)− F (a), ∀ b ∈ R. (3)

To see this, simply observe that F (b) = P{X ≤ b} = P{X ≤ a}+ P{a < X ≤ b} =

F (a)+P{a < X ≤ b} for all a < b. For an example, suppose that Y has the standard

Cauchy distribution G of (2), then P{0 < Y ≤ 1} = G(1)−G(0) = · · · .

An arbitrary choice was made in (1) by defining F (a) to be P{X ≤ a}, instead

of P{X < a}. With the definition (1), it may be shown that

P{X < b} = F (b−) = lim
a→b,a<b

F (a) (5.4)

for all b ∈ R. See Section 5.? for the proof. The probability that X falls in any

subinterval may then be computed by retracing the derivation of (3). For example,

P{a ≤ X ≤ b} = P{X ≤ b} − P{X < a} = F (b) − F (a−) for all a ≤ b. An

interesting consequence of this formula is that

P{X = a} = F (a)− F (a−), ∀ a ∈ R.

So, F is continuous at a given a iff P{X = a} = 0. Discrete uniform distribution

functions illstrate this point. They are step functions with discontinuities at integer

values. In particular, if F is continuous at a and b, then P{a ≤ X ≤ b} = P{a <

X ≤ b} = P{a ≤ X < b} = P{a < X < b}. Finally, if X has distribution function

F , then P{X > b} = 1− P{X ≤ b} = 1− F (b) and P{X ≥ b} = 1− F (b−) for all

b ∈ R.

Characteristic Properties. As detailed in section 5.4, distribution functions have

certain characteristic properties. If F is the distribution function of random variable,

X say, then: F is non-decreasing; that is, F (a) ≤ F (b) when a ≤ b; F is continuous

from the right; that is, F (a) = limb→a,b>a, ∀ a ∈ R; also limx→−∞ F (x) = 0 and



72 CHAPTER 5. DISTRIBUTION FUNCTIONS AND DENSITIES

limx→∞ F (x) = 1. Conversely, any such function is the distribution function of some

random variable. The proofs of thes assertions are deferred to Sections 5.4 and 5.5.

Any function F for which a), b), and c) hold is called a distribution function, since

it is then the distribution function of some random variable. Here is an example to

illustrate the use of the conditions.

Example 5.3 : Exponential Distributions. If 0 < λ < ∞, then the function F

defined by

F (x) =

0 if x ≤ 0

1− e−λx if x > 0

is a distribution function. For F satisfies a), b), and c) above, as is easily checked by

drawing the its graph, Figure 5.3. ♦

5.2 Densities

If a distribution function F , say, is differentiable, then its derivative

f(x) = F ′(x) =
d

dx
F (x) (5.5)

is of interest. For example, if X is a random variable with distribution F , then

P{a < X ≤ b} = F (b)− F (a) =

∫ b

a

f(x)dx (5.6)

for all −∞ < a < b < ∞, by the Fundamental Theorem of Calculus. This formula

may be regarded as a continuous analogue of Equation (4.6). Letting a → −∞ in

(5.6) and using c) of Section 1,

F (b) =

∫ b

−∞
f(x)dx, ∀ b ∈ R, (5.7)

so that F may be recovered from f .

Letting b→∞ in (5.7) and using charactersitic Property c) of the previous section,

limb→∞ F (b) = 1, ∫ ∞
−∞

f(x)dx = 1, (5.8)



5.2. DENSITIES 73

and any non-negative function f for which (5.8) holds is called a density. Thus the

derivative of any differentiable distribution function is a density. If X is a random

variable with a distribution function F of the form (3) then X and F are said to be

absolutely continuous with density f . There is a converse: if f is a density, then the

function defined by (5.7) is a distribution function–that is satisfies a), b), and c) of

Section 1. For any such F is continuous and non-decreasing; and c) follows easily

from (4). So, if f is any density, then there is a random variable X with density f .

This allows modeling directly in terms of random variables, distribution functions,

and densities, avoiding sample spaces. Examples 1.2, 1.3, and 1.4 were of this nature.

It is convenient to write X ∼ F (read ”X is distributed as F”), when X is a

random variable with distribution function F–that is, when F = Fx..

Example 5.4 : Uniform Densities. If −∞ < α < β <∞, then the function

f(x) =

1/(β − α) if α < x ≤ β

0 else

is a density. For the graph of f is a rectangle, and the area under the graph is one.

The distribution function corresponding to f though (3) is

F (x) =


0 if x ≤ α

(x− α)/(β − α) if α < x ≤ β

1 if x > β

by simple integration. This distribution function and density are called uniform with

parameters α and β; and when α = 0 and β = 1, it is called the Standard Uniform.

Example ??. a special case with α = −π and β = π. Then f(x) = 1/2π for

−π < x ≤ π. The standard uniform density is displayed in Figure 5.4 ♦

Example 5.5 : Exponential Densities If F is the exponential distribution function

with failure rate λ > 0, so that F (x) = 0 for x ≤ 0 and F (x) = 1 − e−λx for x ≥ 0,

then

f(x) =

λe
−λx, if0 ≤ x <∞,

0, otherwise,
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again using (1). ♦

Example 5.6 : The Cauchy Density. The standard Cauchy distribution function is

G(y) = 1/2 + (1/π) arctan(y), ∀ y ∈ R; and G has derivative

g(y) =
1

π(1 + y2)
, ∀ y ∈ R.

Example 5.7 : Bilateral Exponential Densities. For any λ > 0, the function f

defined by

f(x) =
1

2
λe−λ|x| (5.9)

for x ∈ R is a density, because f(x) ≥ 0 for all x ∈ R, and∫ ∞
−∞

f(x)dx =

∫ ∞
0

λe−λxdx = −e−λx|∞0 = 1.

At a technical level, the term ”differentiable” in (1) means piecewise continuously

differentiable; that is, the function F must be continuous and continuosly differen-

tiable, except possibly at a finite number of points, where the derivative may fail

to exist. The function f may be defined arbitrarily at this finite number of points,

subject only to the condition f(x) ≥ 0. Examples 1 and 2 are of this nature. In

Example, the derivative fails to exist at x = α and x = β and it Example 2, it fails

to exist at x = 0.

Densities and Mass Functions. There are strong analogies between densities

(of absolutely continuous distributions) and probability mass functions (of discrete

ones). For example, (1) is a continuous analogue of (1.2). There is also an important

difference: the values of probability mass functions are probabilities; those of densities

are derivatives of probabilities. To illustrate the latter point, let X be absolutely

continuous with distribution function F and density f . Then P{X = a} = 0 for all

a ∈ R, since F must be a continuous function. The probability that X is close to

a is related to f(a), however. To see this let h > 0 be small. Then P{a < X ≤

a + h} = F (a + h) − F (a); and f(a) = F ′(a), then F (a + h) − F (a) ≈ f(a)h, the

tangent approximation to the graph of F . So,

P{a < X ≤ a+ h} ≈ f(a)× h (5.10)
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for small h.

Failure Rates. Now let X denote a positive random variable and regard X as

the time until failure of a mechanical device, or the lifetime of a biological organism.

If t, h > 0 and P{X > t} > 0, then the conditional probability that the device

fails during the time interval [t, t + h] given that it is still operating at time t is

P{t < X ≤ t + h|X > t} = P{t < X ≤ t + h}/P{|X > t}. Letting F denote

the distribution function of X, so that P{t < X ≤ t + h} = F (t + h) − F (t) and

P{X > t} = 1− F (t), the conditional probability may be written

P{t < X ≤ t+ h|X > t} =
F (t+ h)− F (t)

1− F (t)
.

If h is small, then (6) may be used to approximate the numerator, and

P{t < X ≤ t+ h|X > t} ≈ λ(t)h,

where

λ(t) =
f(t)

1− F (t)
(5.11)

That is, the probability of failure in a short interval [t, t+ h] is approximately λ(t)h.

Here λ(t) is called the failure rate at t, and the function defined by (7) is called the

failure rate.

A distribution function is uniquely determined by its failure rate. To see this first

observe that

λ(t) =
d

dt
log
[ 1

1− F (t)

]
,

by the chain rule. Since F (0) = P{X ≤ 0} = 0, it then follows that log[1− F (t)] =

−
∫ t

0
λ(s)ds and, therefore, that

F (t) = 1− exp[−
∫ t

0

λ(s)ds] (5.12)

for all t > 0 for which F (t) < 1.

Example 5.8 : Exponential Densities If F is the exponential distribution, F (t) =

1− e−λt for t ≥ 0, then f(t) = λe−λt and

λ(t) =
λe−λt

e−λt
= λ
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for all 0 < t < ∞. That is, exponential distributions have constant failure rates.

Conversely, any distribution function F with a constant failure rate is an exponential

distribution. For, if λ(t) = λ > 0 for all 0 < t < ∞, then
∫ t

0
λ(s)ds = λt and,

therefore, F (t) = 1− e−λt for t ≥ 0, by (5.12).

Example 5.9 : The Rayleigh Distribution. Suppose that the lifetime of a given

device in years has failure rate λ(t) = t. What is the probability that the device last

more than one year before failing. Let X denote the lifetime and let F denote its

distribution function. Then
∫ t

0
λ(s)ds =

∫ t
0
sds = t2/2 and, therefore,

F (t) = 1− e−
1
2
t2 , ∀ t > 0, (5.13)

by (8). So, P{X > 1} = 1 − F (1) = e−
1
2 = .607. The distribution function in (9) is

called the standard Rayleigh distribution function and is a special case of the Weibull

distributions, described in Problems · · · . ♦

—

Means f is a probability density function and X is a random variable with density

f , then the mean of X is defined by

µ =

∫ ∞
−∞

xf(x)dx, (5.14)

provided that the integral converges absolutely. Thus the mean of a random variable

depends only of its density; and the expectation of X may also be called the mean of

f . The mean provides one notion of the center of a distribution.

Example 5.10 Examples 1. a): Uniform. If f is uniform on an interval (α, β], then

µ =

∫ β

α

x

β − α
dx =

β2 − α2

2(β − α)
=
α + β

2
,

the midpoint of the interval.

b): Exponential. If f is exponential with failure rate λ > 0, then f(x) = λe−λx

for 0 ≤ x <∞ and, therefore,

µ =

∫ ∞
0

xλe−λxdx = −xe−λx
∣∣∞
x=0

+

∫ ∞
0

e−λxdx = −1

λ
e−λx

∣∣∞
x=0

=
1

λ
.
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In words, the mean of an exponential distribution is the reciprocal of the failure rate.

♦ endex

Example 5.11 : Symmetric Distributions. If f is a bilateral exponential density,

say f(x) = 1
2
λe−λ|x|, x ∈ R, where λ > 0, then f is symmertic; that is, f(−x) = f(x)

for all x ∈ R. It then follows that µ = 0 in (1). The mean of any symmetric density

is zero, provided that the integral in (1) converges. The standard Cauchy density

f(x) = 1/π(1 + x2), x ∈ R, is also symmetric, but in this case the mean is not

defined. See Problem ?.?.

Variances. If f is a density with mean µ,say, then the variance of f is defined by

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (5.15)

In this case, the variance is to be interpreted as∞ if the integral does not converge. If

X has density f , then σ2 is called the variance of X and may be denoted by V ar(X)

or σ2
X . The square root σ =

√
σ2 of the variance is called the standard deviation

of f or of X. The mean may be regarded as the center of the distribution, and the

variance and standard deviation measure the tendency of X to deviate from µ. For

a physical analogy, imagine a long thin wire with phsyical mass density f . Then µ

is the center of gravity and σ2 is the moment of inertia. It is covenient to develop

Equation (3) below, before considering examples. Moments. If X has density f ,

then the moments of X, or of f are defined by

µk =

∫ ∞
−∞

xkf(x)dx, (5.16)

provided that the integral converges absolutely. Thus, µ1 = µ is the mean. As in the

discrete case, the variance may be recovered from the mean µ and the second moment

µ2 by the simple formula

σ2 = µ2 − µ2, (5.17)

provided that µ2 is finite. The proof is similar to the proof of (4.2.?) and is left as

an exercise.
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Example 5.12 :a): Exponential. If f is the exponential density with failure rate λ,

then

µ2 =

∫ ∞
0

x2λe−λxdx = x2e−λx
∣∣∞
x=0

+

∫ ∞
0

2xe−λxdx =
2

λ2
,

integrating by parts as in Example 1-b). So, σ2 = 2λ−2 − λ−2 = λ−2.

b): Uniform. If f is uniform on (α, β], then

µ2 =

∫ β

α

x2dx

β − α
=

β3 − α3

3(β − α)
=
α2 + αβ + β2

3

and

σ2 =
α2 + αβ + β2

3
− α2 + 2αβ + β2

4
=

(β − α)2

12
,

after some simple algebra.

Moment Generating Functions. As in the discrete case, the moment gener-

ating function of a density f is defined by

M(t) =

∫ ∞
−∞

etxf(x)dx

for those t for which the integral is finite; and if X is a random variable with density

f , then M may be called the moment generating function of X too. As in the discrete

case, the moments of f may be computed from M by the formula

µk = M (k)(0) :=
dk

dtk
M(t)

∣∣
t=0

for all k = 1, 2, · · · , provided that M(t) is finite for all t is some interval containing

0. Examples 4. If f is the exponential density with failure rate λ, then

M(t) =

∫ ∞
0

etxλe−λxdx

= λ

∫ ∞
0

e−(λ−t)xdx

= − λ

λ− t
e−(λ−t)x∣∣∞

x=0
=

λ

λ− t

for all t < λ. The mean and variance may be recovered by differentiation. ♦
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5.3 Induced Distributions

Let X denote a random variable X ⊆ R a set for which P [X ∈ X ] = 1, and w :

X → R a function defined on X . If Y is a random variable fof the form Y = w(X),

then the distribution functions Fx and Fy of X and Y are related. The relationship

is describe in this section. Let Y = {w(x) : x ∈ X}, the range of w. Then clearly

P [Y ∈ Y ] = P [X ∈ X ] = 1. Moe generally, let

w−1(B) = {x ∈ X : w(x) ∈ B} (5.18)

for subsets B ⊆ Y. Thus, w−1 maps subsets of the range Y into subsets of the domain

X . Then Y = w(X) ∈ B if and only if X ∈ w−1(B) and, therefore,

P [Y ∈ B] = P [X ∈ w−1(B)], (5.19)

for subsets B ⊆ Y for which the right side is defined. Unsurprizingly, this relation

is simplest in the discrete case, when X is a finite set. Then the probabilry mass

functions px and py are related by

py(y) = P [Y = y] = P [X ∈ w−1({y})] =
∑

x∈w−1({y})

px(x). (5.20)

That is ,py is the sum of px(x) over all solutions to the equation w(x) = y.

Example 5.13 . Recall that if r is an integer, then any inetger, n say, may be

written n = k× r+ j, where 0 ≤ j ≤ r− 1. The relation between n and j4 is written

j = n (mod r). If X is an integer valued random variable, so that X = {0, 1, 2, · · · }

and w(x) = x (mod r), then, the the solutions to the equation w(x) = y are x = nr+y,

where n is a positive integer. So,

py(y) =
∞∑
n=0

px(nr + y) (5.21)

for y = 0, · · · r − 1. If X has a geometric distribution, so that px]x) = pqx−1for

x = 0, 1, 2, · · · , then the later sum may be computed in closed form as

py(y) =
∞∑
n=0

pqnr−1 = (
p

q
)(

1

1‘− qr
).

Next consider the distribution functions.
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Next consider the distribution functions. Since the event {Y ≤ y} may be written

{Y ∈ (−∞, y]},

Fy(y) = P [Y ≤ y] = P [Y ∈ (−∞, y]] = P [X ∈ w−1((−∞, y])] (5.22)

Direct use of (5.22) can be cumbersome, because it requires one to solve the inequality

w(x) ≤ y, but it can be use uuseful in special cases.

Two Special Cases. Suppose first that Y is a linear function of X, say Y = aX+b,

where a > 0. If y ∈ R, then, clearly, Y ≤ y iff X ≤ (y − b)/a. So, the distribution

functions of X and Y are related by

Fy(y) = P{Y ≤ y} = P{X ≤ y − b
a
} = Fx(

y − b
a

) (5.23)

for all y ∈ R. If X has a density f , then

fy(y) = F ′y(y) =
1

a
F ′x(

y − b
a

) =
1

a
fx(

y − b
a

), (5.24)

at least at continuity points of g. Observe that the factor 1/a arises from the differ-

entiation.

Ffor a second example, suppose that Y = X2. If y > 0, then Y ≤ y iff −√y ≤

X ≤ √y. So,

Fy(y) = P{Y ≤ y} = P{−√y ≤ X ≤ √y} = Fx(
√
y)− Fx(−√y−), (5.25)

where Fx(x−) = limz→x,z<x Fx(z). If X has a density f , then Fx is continuous, so

that Fx(−√y−) = Fx(−√y), and

fy(y) = Fy(y) =
d

dy
[Fx(
√
y)− Fx(−√y)] =

fx(
√
y) + fx(−√y)

2
√
y

.

Observe that if f is any density, then Equations (5.24)) and generate an entire

family of distributions, one distribution for each choice of a and b. In such cases a

and b may be called scale and location parameters.

Example 5.14 Suppose that X has the standard Cauchy distribution, with density

fx(x) = 1/π(1 + x2), x ∈ R.
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a) If Y = aX + b, where a > 0, then Y has density

fy(y) =
a

π[a2 + (y − b)2]
, y ∈ R.

This density is called Cauchy with location and scale parameters.

b). If Z = X2, then Z has density

fy(y) =
1

π
√
z(1 + |z|)

, 0 < z <∞.

Monotone Functions. Here is a generalization of (5.23) and (5.24). Let X denote

an interval for which P{X ∈ X} = 1 and suppose that w is continuous and strictly

increasing on X ; that is, w(x1) < w(x2) whenever x1, x2 ∈ X and x1 < x2. Let

Y = w(I) denote the range of w. Then Y is an interval and w has a well defined

inverse function v, defined on Y; that is, v(y) is the unique solution to the equation

w(x) = y for each y ∈ J . See Figure 1. For example, if w(x) = ax+ b, where a > 0,

then v(y) = (y − b)/a. From Figure 1, it is clear that if y ∈ J , Y = w(X) ≤ y iff

X ≤ v(y). So,

Fy(y) = P [Y ≤ y] = P{X ≤ v(y)} = Fx[v(y)] (5.26)

for all y ∈ J . A similar result holds if w is continuous and decreasing (that is,

w(x1) > 2(x2) whenever x1 < x2). Then w has a well defined inverse again, but in

this case Y ≤ y iff X ≥ v(y), so that

Fy(y) = P{Y ≤ y} = P{X ≥ v(y)} = 1− Fx[v(y)−][v(y)−] (5.27)

for y ∈ J . If X has a piecewise continuous density f and if v is differentiable, the

density of Y may be obtained by differentiation. For example, if w is increasing, then

Y has density g(y) = G′(y) = F ′[v(y)]v′(y) = f [v(y)]v′(y); and if w is decreasing

then g(y) = −f [v(y)]v′(y). Since v′ ≥ 0 for increasing w, and v′ ≤ 0 for decreasing

w, the two cases can be combined in the simple formula,

g(y) = f [v(y)]|v′(y)| (5.28)

for y ∈ J and g(y) = 0 for y ∈ J c
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Example 5.15 . If X has the uniform distribution on (0, 1], then f(x) = 1 for

0 < x ≤ 1 and f(x) = 0 otherwise. If Y = − log(X), then I = (0, 1], w(x) =

− log(x), J = [0,∞), v(y) = e−y, and v′(y) = −e−y in (6). So, Y has density

fy(y) = fx(e−y)| − e−y| = e−y (5.29)

for 0 < y <∞. That is, Y has the standard exponential distribution.

t

Example 5.16 If X has the standard exponential distribution, with density fx(x) =

e−x for 0 < x <∞, and if Y =
√

2X, then I = J = (0,∞), w(x) =
√

2x, v(y) = y2/2,

v′(y) = y, and

fy(y) = fx(
y2

2
)2y = ye−

1
2
y2

for 0 < y <∞. That is, Y has the standard Rayleigh distribution. ♦

Example 5.17 The Probability Integral Transformation. If the Fx s continuous and

strictly increasing on an interval X for which P{X ∈ X} = 1, then Fx(X) has the

standard uniform distribution. For if 0 < u < 1, then

P [Fx(X) ≤ u] = P [X ≤ F−1
x (u)] = Fx[F−1

x (u)] = u, (5.30)

where F−1 denotes the inverse function. In fact, only the continuity is essential,

though the proof is harder if F is not strictly increasing. See · · · .

Piecewise Monotone Functions. There is a far reaching generalization of (5.28) and

(5.29) A function w is said to be piecewise monotone on an interval (a, b), say, if

there is a partition a = a0 < a1 < · · · < am = b for which w is strictly increasing or

strickly decreasing on each of the subintervals (ai−1, ai), i = 1, · · · ,m. A sufficient

condition for this is that |w′(x)| > 0 for all ai−1 < x < ai and i = 1, · · · ,m. If the

latter condition is satisfied, P{X ∈ (a, b)} = 1 and Y = w(X), then Y has density

fy(y) =
∑

x:w(x)=y

fx(x)
∣∣ 1

w′(x)

∣∣, ∀ y ∈ R, (5.31)
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where an empty sum is to be interpreted as zero. The square function and Example

1-b) illustrate the use of (8). Here is another example. Example 5. Suppose that X

is uniformly distributed over (−π, π] and that Y = sin(X). Then the conditions are

satisfied with a = a0 = −π, a1 = −π/2, a2 = π/2, and a3 = b = π. See Figure ?. In

Equation (8), f(x) = 1/2π for all −π < x ≤ π; and if sin(x) = y, then the derivative

of sin(x) is cos(x) = ±
√

1− sin2(x) = ±
√

1− y2. So, Y has density

g(y) =
∑

x:sin(x)=y

1

2π

1√
1− y2

=
1

π
√

1− y2

for −1 < y < 1 and 0 < |y| <!, since there are two solutions two the equation

sin(x) = y for all such y, and g(y) = 0 for |y| > 1, since there are no solutions for

y > 1.

5.4 Characteristic Properties of Distribution Func-

tion

Distribution functions have certain characteristic properties: If F is the distribution

of a random variable X, then

a) F is nopn-decreasing;

b) F is right continuous;

c) i) limx→−∞ F (x) = 0 and ii) limx→∞ F (x) = 1 .

Conversely, any such function is the distribution function of some random vari-

able. The proof of this assertion is deferred to Section 5.?. Any function F for which

a), b), and c) hold is called a distribution function, since it is then the distribution

function of some random variable. Properties a), b), and c) are established belwow;

but firsthere is an example to illustrate the use of the conditions.

For a), simply observe that if a < b, then 0 ≤ P [a < X ≤ b] = F (b) − F (a),

so that F (a) ≤ F (b), So,F is non-decreasing, and therefore, F has one sided limits

F (x−) = lim y → x, y < xF (y) and F (x+) = limy→x,y>x F (y). Property b) can be
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restated F (x+) = F (x) for all x ∈ R; and this is easily seen. Let Ω denote the sample

space on which X is defined. Then

{ω : X(ω ≤ x} =
∞⋂
n=1

{ω : X(ω) ≤ x+
1

n
},

because X(ω) ≤ x if and only if X(ω) ≤ x+ 1
n

for every n = 1, 2, · · · . The events Bn =

{ω : X(ω) ≤ x+ 1
n
} are decreasing; that is Bn ⊇ Bn+1 for all n; and therefore,P ∩∞n=1

Bn) = limn→∞ P (Bn) , by (??). It follows that

F (sx) = P [X ≤ x] = P (
∞⋂
n=1

Bn) = lim
n→∞

P (Bn) = lim
n→∞

F (x+
1

n
) = F (x+),

eestablishing b). . The proof of (??) is similar. For this, let Bn = {ω : X(ω) ≤

x − 1
n
}, the event that X ≤ x − 1

n
. Then the Bn are increasing, Bn ⊆ Bn+1, and

∪∞n=1Bn = {ω : X(ω) < x}, since X(ω) < x if and only if X(ω ≤ x− 1
n

for some n.

So,

P [X < x] = P (

|∞⋃
n=‘1

Bn) = lim
n→∞

P (Bn) = lim
n→∞

]P [X ≤ x− ‘1

n
] = lim

n→∞
F (x− 1

n
) = F (x−).

The prof of c) i also similar. For c-ii), first observe that limn→∞ exists because F is

non-decreasing. Then let Bn = {ω : X(ω) ≤ n}, the event that X ≤ nIn this case

the Bn are increasing, and ∪∞n=1Bn = Ω. since for every ω there is an n for which

X(ω) ≤ n. So,

lim
x→∞

F (x) = lim
n→∞

F (n) = lim
n→∞

P (Bn) = p

(
∞⋃
n=1

Bn

)
= P (Ω) = 1,

as assertd. The proof of c-i) is left as an exercise.

An important consequence of a) is that A distribution function F can have a most

countably many point o f discontinuity;; that is, the set

DF = {x ∈ R : F (x−) 6= F9x0}

is either finite or countably infinite. To see this first observe that F (x−) ≤ F (x) for all

x, since F (y) ≤ F (x) for all y < x, and therefore DF = {x ∈ R : F (x)−F (x−) > 0}.

Next, let

DF,m = {X ∈ R : F (x)− F (x−) ≥ 1

m
}
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for m = 1, 2, · · · . Then

DF =
∞⋃

M=1

DF,m.

If x1, · · · , xn are any n point in DF,m, then x1, · · · , xn a can be so labelled that x1 <

· · · , < xn in which case

n

m
≤

n∑
i=2

[F (xi)− F (xi−)] ≤
n∑
i=2

[F (xi)− F (xI−1] = F (xn)− F (x1) ≤ 1

and therefore n ≤ m + 1. It follows that #DF,m ≤ m + 1; that is, each DF,m is a

finite set. That DF is countable then follows directly.

There is an interesting Corollary in which CF = Dc
F denotes the set fo x ∈ R at

which F is continuous; that is, CF = {x ∈ R : F (x−) = F (x)}. If F and G ae two

distibution funtions for which F(x) = G(x) for all X ∈ CF ∩ CG, then F(x) = G(x)

for all x ∈ R. To see this first obsrve that (CF ∩ CG)c = DF ∪DG. So, (CF ∩ CG)c4

is countabe, and therefore, cannot contain any non-degenerate interval, because the

latter are uncountable; that is, if a < b, then (a, b) ∩ (CF ∩ CG) 6= ∅. So, if x ∈ R

and n ≥ 1 there in an xn ∈ (CF ∩ CG) ∩ (x, x+ 1/n). Then clearly limn→∞ = x and

F (xn = G(xn for alll n. So, using the right continuity,

F (x) = lim
n→∞

F (xn) = lim
n→∞

G(xn) = G(x) (5.32)

5.5 Quantiles

If F is a distribution function and 0 < p < 1, then an x ∈ R is called a pth quantile

or 100pth percentile of F if

F (x−) ≤ p ≤ F (x), (5.33)

where F (x−) = limy→x,y<x F (y).If X ∼ F , then the condition may be written

P [X < x] ≤ p ≤ P [X ≤ x], (5.34)

and x is also called a pth quantile of X. If the equation F (x) = p has a solution,

then x is a pth quantile, because F is non-decreaing and, therefore, F (x−) ≤ F (x).

But this equation need not have a solution, and a solution need not be unique, if one
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exists. When p = 1/2 a pth quantile is called a median. Thus, a random variable falls

on either side of a median with probabiliy about one-half. To solve the inequalitites

(5.33), let

Sp = {x ∈ R : F (x) ≥ p},

the set of x ∈ R for which F (x) ≥ p. For any 0 < p < 1, the set Sp is non-

empty, because limx→∞ F (x) = 1, and therefore,F (x) ≥ p for all sufficiently large p.

Similarly, there is an a ∈ R for which F (x) < p for all z ≤ a, since limx→−∞ F (x) = 0,

and therfore, (−∞, a]∩SP = m∅. Thus a every x ∈ Sp must be greater than or equal

to (actually greater than) a, and serves as a lower bound for Sp. So, Sp has a greatest

lower bound b− = glb(Sp) for which: x ≥ b for all x ∈ Sp, and if x ≥ b′ for all x ∈ Sp,

then b ≥ b′. Let

F#(p) = glb(Sp),

Two importany properties of F# are

F#(p) ∈ Sp and F#(p) is a pth quantile of F (5.35)

and

F (x) ≥ p if andonly if x ≥ F#(p). (5.36)

For (??, there is a sequence xn ∈ Sp for which limn→∞ xn = F#(p). Then xn ≥ F#(p

and F (xn) ≥ p, sincexn ∈ Sp, and therefore, F [F#(p)] = limn→∞ F (xn) ≥ p So,

F#(p) ∈ Sp, and x = F#(p) satisfies the right hand inequaltiy in (5.33). To see

that it also satisfies the left hand inquality, observe that if y < x, then y /∈ Sp,

and therefore F (y) < p. So, F (x−) = limy→x<y<x F (y) ≤ p. The proof of (??) is

similar. If F (x) ≥ p, then x ∈ Sp, and therefore x ≥ glb(Sp) = F#(p). Conversely, if

x ≥ F#(p), then F (x) ≥ F [F#(p)] ≥ p, using (5.35). Another important feature of

the quantile function is; If U is uniformly distributed over [0, 1], then X := F#(U)F̃ .

To see this first recall that the distribtuion function of U is P [U ≤ u] = 0, u, or

1, accrodlingly as u < 0, 0 ≤ u ≤ 1, or u > 1. Then observe that the distribution

function of X := F#(U). is

F (X) = P [X ≤ X] = P [F#(U) ≤ x]− 1− P [F#(U) > x],
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P [F#(U) ≥ x] = P [U ≥ F (x)] = 1− F (x),

using (??).
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Figure 5.1: The Discrete Uniform Distibtuion Funtion with n = 6 and continuous

uniform distribution function on (−ππ]
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Figure 5.2: example caption
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Figure 5.3: The Exponential Distribution Function with λ = 1
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Figure 5.4:


