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Prologue. There are interesting statistical problems in which an unknown function

f , say, is to be estimated, subject to certain shape restrictions. For example, consider a

regression problem

yi = f(ti) + εi, i = 1, · · · , n,

where ε1, · · · , εn are random errors with means 0 and finite variances and f is known (only)

to be non-decreasing, or convex, or to satisfy some other shape restriction. For example,

an average response may well be increasing with time, even though individual measures

may not. Global warming provides a specific example. Assuming that the error are i.i.d. for

simplicity, and letting θi = f(ti), least squares estimation of θ requires minimizing a function

of the form
n

∑

i=1

[yi − θi]
2

with respect to θ = [θ1, · · · , θn]′. Let F denote the class of allowable f . Then θ ∈ Ω :=

{[f(t1), · · · , f(tn) : f ∈ F}, and the latter set is often convex. For example, if f is known to

be non-dreasing, then

Ω = {θ : −∞ < θ1 ≤ · · · ≤ θn < ∞},

a convex subset of IRn.

Hilbert Spaces. Let H denote a (real) Hilbert space. Thus, H is a linear space to

together with a function 〈·, ·〉 → R for which

〈x, y〉 = 〈y, x〉,

〈x, αy + βz〉 = α〈x, y〉 + β〈x, z〉

for all x, y, z ∈ H and α, β ∈ IR, and

〈x, x〉 > 0
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for all x 6= 0; and the norm in H is defined by

‖x‖ =
√

〈x, x〉;

and H is complete in the metric d(x, y) = ‖x − y‖.

Example 1 a) Euclidean Space. H = IRm with 〈x, y〉 = x′y = x1y1 + · · · + xmym or, more

generally, 〈x, y〉 = x′Ay, where A is a symmetric, positive definite matrix.

b) More on Euclidean Space. H be the set of m × m matrices with 〈x, y〉 = tr(xy ′).

c) L2. Let (Ω,A, µ) is a measure space; and let L2(Ω,A, µ) be the set of (equivalence

classes) of square integrable functions with

〈f, g〉 =

∫

fgdµ.

d) Sobelov space. Let S2 be the set of twice differentiable functions f : [0, 1] → IR for

which
∫

1

0
f ′′(x)2dx < ∞, and let

〈f, g〉 = f(0)g(0) + f ′(0)g′(0) +

∫

1

0

f(x)g(x)dx.

Remarks. The primary uses of convexity will be with H = Rm, and little is lost by

focussing on this case. On the other hand many of the definitions extend to (even) more

general linear spaces.

Some Properties. Let H is a Hilbert space. Then Schwarz’ Inequality asserts

〈x, y〉 ≤ ‖x‖ × ‖y‖

for all x, y ∈ H; and the Parallelogram Laws assert:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + ‖y‖2,

‖x + y‖2 − ‖x − y‖2 = 4〈x, y〉

for all x, y ∈ H.

Linear Functional. A function f : H → IR is said to be a linear functional if f [αx+βy] =

αf(x) + βf(y) whenever x, y ∈ H and α, β ∈ IR. For example, if y ∈ H, then

f(x) = 〈x, y〉, x ∈ H (1)

defines a continuous linear functional, a linear functional that is continuous in the metric.

It is a theorem that any continuous linear functional can be represented in the form (1) for

some y ∈ H depending on the linear functional.
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Convex Sets. Recall that a subset H0 ⊆ H is called a linear subspace if it is closed

under addition and scalar multiplication: that is αx + βy ∈ H0 whenever x, y ∈ H0 and

α, β ∈ IR. Similarly, a subset C ⊆ L is said to convex if it contains the line joining any two

of its elements; that is αx + (1 − α)y ∈ C whenever x, y ∈ C and 0 ≤ α ≤ 1. A convex set

C is said to be a cone if αx ∈ C whenever x ∈ C and α ≥ 0 in which case αx + βy ∈ C

whenever x, y ∈ C and 0 ≤ α, β < ∞. Any linear subspace is a convex cone. Any ball,

B = {x ∈ H : ‖x‖ ≤ c} is a convex set (since ‖αx + (1 − α)y‖ ≤ α‖x‖ + (1 − α)‖y‖ ≤ c

whenever ‖x‖, ‖y‖ ≤ c, but not a convex cone.

Example 2 If fi, i ∈ I are continuous linear functionals, then

C = {x ∈ H : fi(x) ≥ 0, for all i ∈ I}

is a convex cone.

Projections. If C is a closed convex set and z ∈ H, then there is a x ∈ C for which

‖x − z‖ = inf
y∈C

‖y − z‖; (2)

and x is the unique point in C for which

〈y − x, x − z〉 ≥ 0 (3)

for all y ∈ C. For the existence, let i denote the infimum and let yn ∈ C be a sequence for

which ‖yn − z‖ → i. Then

‖yn − ym‖
2 = ‖yn − z‖2 + ‖ym − z‖2 − 2〈yn − z, ym − z〉

and

2〈yn − z, ym − z〉 =
‖yn + ym − 2z‖2 − ‖yn − ym‖

2

2

= 2‖
yn + ym

2
− z‖2 −

‖yn − ym‖
2

2
by the parallelogram law. So,

1

2
‖yn − ym‖

2 = ‖yn − z‖2 + ‖ym − z‖2 − 2‖
yn + ym

2
− z‖2

≤ ‖yn − z‖2 + ‖ym − z‖2 − 2ı2

→ 0

as m, n → ∞. Thus, yn is a Cauchy sequence and, therefore, a convergent sequence. Let

x = limn→∞ yn. Then x ∈ C, since C is closed, and ‖x− z‖ = limn→∞ ‖yn − z‖ = i. For (3):

If y ∈ C and 0 < t < 1, then x + t(y − x) = (1 − t)x + ty ∈ C, so that

0 ≤ ‖[x + t(y − x)] − z‖2 − ‖x − z‖2 = 2t〈y − x, x − z〉 + t2‖y − x‖2
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and, therefore,

〈y − x, x − z〉 ≥ −t‖y − x‖2/2.

The inequality (3) then follows by letting t → 0. Finally, it must be shown that only one

x ∈ C can satisfy (3). If x1 and x2 both satisfy (3), then

〈x2 − x1, x1 − z〉 ≥ 0,

〈x1 − x2, x2 − z〉 ≥ 0

by setting y = x2 and y = x1. Adding these two inequalities then gives

−‖x1 − x2‖
2 = 〈x1 − x2, x2 − x1〉 ≥ 0

and, therefore, x1 = x2. The element x ∈ C is called the projection of z onto C and denoted

by ΠC(z).

If C is a convex cone, then setting y = x/2 and y = 2x in (3) shows that 〈x, x − z〉 = 0.

So, x is the unique element of C for which

x ∈ C and 〈y, z − x〉 = 0 (4)

for all y ∈ C; and if C is a linear subspace, then ±y ∈ C whenever y ∈ C, so that (4)

becomes

〈x, z − x〉 = 0 and 〈y, z − x〉 ≤ 0 (5)

The Separation Theorems. For these suppose that H is a finite dimensional linear

space–for example, H = Rm.

Te Supporting Hyerplane Theorem: If C is a convex set and z /∈ Co, the interior of C,

then there is an 0 6= w ∈ H for which

〈w, y〉 ≥ 〈w, z〉 (6)

for all y ∈ C. Suppose first the z /∈ C̄, the closure of C, and let x = ΠC(z) and w = x − z.

Then, w 6= 0, and

〈w, z〉 − 〈w, y〉 = 〈x − z, z − y〉 = 〈x − z, z − x〉 + 〈x − z, x − y〉 ≤ 0,

for all y ∈ C by (3). If z ∈ C̄ −Co, then there are zn ∈ C̄ ′ for which ‖zn − z‖ → 0 as n → ∞

and wn ∈ H for which ‖wn‖ = 1 for all n and 〈wn, y〉 ≥ 〈wn, z〉 for all y ∈ C. The sequence

wn is precompact, since it is bounded; and if w denotes any limit point, then ‖w‖ = 1 and

(6) holds.
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The Separating Hyperplane Theorem: C1 and C2 are disjoint convex sets, then there is

an 0 6= w ∈ H for which

〈w, y1〉 ≥ 〈w, y2〉 (7)

for all y1 ∈ C1 and y2 ∈ C2. To see this let C = {y1 − y2 : y1 ∈ C1, y2 ∈ C2}. Then C is a

convex set for which 0 /∈ C. So, by the Supporting Hyperplane Theorem, there is an w 6= 0

for which 〈w, y〉 ≥ 〈w, 0〉 = 0, and (7) follows by writing y = y1 − y2.

Problem 1 In the Supporting Hyperplane Theorem, show that if z /∈ C̄, then w may be

chosen so that inf y ∈ C〈w, y〉 > 〈w, z〉.

Convex Functions. If C is a convex subset of H a functon f : C → IR is said to be

convex if f [αx + (1 − α)y] ≤ αf(x) + (1 − α)f(y) whenever x, y ∈ C and 0 ≤ α ≤ 1; and f

is said to be strictly convex if there is strict inequality whenever x 6= y and 0 < α < 1.

Clearly if f : C → IR is (strictly) convex and C0 ⊆ C is a convex subset of C, then the

restriction of f to C0 is convex. Conversely, if C is convex, f : C → IR, and the restriction

of f to every line L(x, y) = {αx+(1−α)y : 0 ≤ α ≤ 1} is strictly convex, then f is (strictly)

convex. For if x, y ∈ C and g(t) = f [tx + (1 − t)y] is convex in 0 ≤ t ≤ 1, then

f [tx + (1 − t)y] = g(t) ≤ tg(1) + (1 − g)(0) = tf(y) + (1 − t)f(x).

Derivatives of Convex Functions. If −∞ ≤ a < b ≤ ∞ and f : (a, b) → IR is convex,

then

−∞ < f ′
`(y) = lim

x↑y

f(x) − f(y)

x − y
< ∞

and

−∞ ≤ f ′
r(z) = lim

w↓z

f(w) − f(z)

w − z
< ∞

exist for a < y ≤ b and a ≤ z < b. f ′
` and f ′

r are both non-decreasing, and

−∞ < f ′
`(x) ≤ f ′

r(x) < ∞

for a < x < b. If −∞ < a < b < ∞ and f is convex on [a, b], then −∞ ≤ f ′
r(a) < ∞ and

−∞ < f ′
`(b) ≤ ∞ exist, possibly infinite. To see this, let a ≤ x < y < z ≤ b. Then

y =
(z − y)x + (y − x)z

z − x

so that

f(y) ≤

(

z − y

z − x

)

f(x) +

(

y − x

z − x

)

f(z). (8)
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Subtracting f(x) from both sides of (8) leads to

f(y) − f(x)

y − x
≤

f(z) − f(x)

z − x
. (9)

Thus, the difference quotients [f(y) − f(x)]/(y − x) are increasing in y, and

−∞ ≤ f ′
r(x) = inf

y>0

f(y) − f(x)

y − x
< ∞

exists. The existence of f ′
` can be established similarly.

Next, subtracting f(y) from both sides of (8) leads to

f(y) − f(x)

y − x
≤

f(z) − f(y)

z − y
, (10)

and iterating (10),

f(x) − f(t)

x − t
≤

f(y) − f(x)

y − x
≤

f(z) − f(y)

z − y
≤

f(w) − f(z)

w − z
(11)

for a ≤ t < x < y < z < w ≤ b. That −∞ < f ′
`(y) ≤ f ′

r(y) < ∞ for a < y < b follows, as

does the monotonicity of f ′
` and f ′

r.

As a consequence: If a < x < y, then

f(y)− f(x) =

∫ y

x

f ′
r(w)dw; (12)

and if −∞ < a < b < ∞ and f is continuous on [a, b], then (12) holds also when x = a or

y = b.

Gateaux Derivatives. If G ⊆ H, then an x ∈ G is called an inner point iff: for every

y ∈ G, (1 − α)x + αy ∈ G for sufficently small α. Any interior point is an inner point. If

f : G → IR and x is an inner point, then f is said to have a Gateaux derivative at x if

dfx(y) := lim
t↓0

f [(1 − t)x + ty] − f(x)

t
(13)

exists (finite) for each y ∈ G. Then the function dfx is called the (extended) Gateaux

derivative of f and x. If dfx is a continuous linear functional, then there is an element of H,

also denoted by dfx for which

dfx(y) = 〈dfx, y〉

for all y ∈ H. For example, if G is an open subset of IRm and f : G → IR is continuously

differentiable, then

df(x; y) = ∇f(x)′y
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where ∇f(x) denotes the gradient,

∇f(x) =

[

∂f

∂x1

, · · · ,
∂f

∂xm

]′

.

If f has a Gateaux derivative at every x ∈ C, then f is said to be Gateaux differentiable on

C.

Problem 2 Suppose that C is an convex, open subset of IRm and the f is twice continuously

differentiable on C. Then f is convex iff

∇2f(x) =

[

∂2f(x)

∂xj∂xj

: i, j = 1, · · · , m

]

is non-negative definite for all x ∈ C.

If C ⊆ H and f : C → IR convex, then f has an extended Gateaux derivative df e
x : C → IR

at every x ∈ C in the following sense: the limit in (13) exists for all y of the form y = z − x,

where z ∈ C. For if z ∈ C, then g(t) = f([x + t(z − x)] = f [(1− t)x + tz] is convex on [0, 1]

and, therefore, g′
r(0) exists (possibly −∞). Write

df e
x(y) = lim

t↓0

f [x + ty] − f(x)

t
(14)

for y ∈ C − x. It is clear the df e
x(y) agrees with dfx(y) when the latter exists.

Convex Optimization. Let C be a convex set. Then a necessary and sufficient condi-

tion for x∗ ∈ C to minimize f is that

df e
x∗(y − x∗) ≥ 0 (15)

for all y ∈ C. To proof is easy. First if x∗ minimizes f on C and y ∈ C, then f [(1−t)x∗+ty] ≥

f(x∗), so that

0 ≤
f [x∗ + t(y − x∗)] − f(x∗)

t
→ df e

x(y − x∗)

as t ↓ 0. Conversely, if (15) is satisfied and y ∈ C, then g(t) = f [(1 − t)x∗ + ty] defines a

convex function on [0, 1] for which

g′
r(0) = df e

x∗(x; y − x∗) ≥ 0

and, therefore, gr(t) ≥ 0 for all 0 ≤ t ≤ 1. It then follows that

f(y) − f(x∗) = g(1) − g(0) =

∫

1

0

g′
r(t)dt ≥ 0.

as required.

The result does not assert that the minimum is attained.
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Rockafellar [2] provides a more more comprehensive account of convexity. Edwards [1]

has a nice chapter on calculus in linear spaces.
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