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Prologue. There are interesting statistical problems in which an unknown function
f, say, is to be estimated, subject to certain shape restrictions. For example, consider a
regression problem

yi= f(t;) + €, i=1,---,n,

where €, -+, €, are random errors with means 0 and finite variances and f is known (only)
to be non-decreasing, or convex, or to satisfy some other shape restriction. For example,
an average response may well be increasing with time, even though individual measures
may not. Global warming provides a specific example. Assuming that the error are i.i.d. for

simplicity, and letting 6; = f(¢;), least squares estimation of é requires minimizing a function

of the form .

Z[@/z‘ — 6,

i=1
with respect to 0 = [0y,---,6,). Let F denote the class of allowable f. Then 6 € Q :=
{If(t1), -, f(tn) : f € F}, and the latter set is often convex. For example, if f is known to

be non-dreasing, then
Q={0:-c0<b <---<0, <o},

a convex subset of IR".

Hilbert Spaces. Let H denote a (real) Hilbert space. Thus, H is a linear space to
together with a function (-,-) — R for which

(z,y) = (y, ),
(z, 0y + Bz) = afz,y) + B(z, 2)

for all z,y,2 € H and «, § € IR, and

(x,x) >0
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for all z # 0; and the norm in H is defined by

2]l = /(= z);

and H is complete in the metric d(z,y) = ||z — y||.

Example 1 a) Fuclidean Space. H = IR™ with (x,y) = 'y = 11 + - - - + Ty OF, More
generally, (z,y) = 2’ Ay, where A is a symmetric, positive definite matrix.

b) More on Euclidean Space. H be the set of m x m matrices with (x,y) = tr(zy’).

c) L?. Let (Q, A, u) is a measure space; and let L?(€, A, u) be the set of (equivalence

classes) of square integrable functions with

(f,9) Z/fgdu-
d) Sobelov space. Let Sy be the set of twice differentiable functions f : [0,1] — IR for

which [ f"(z)dz < oo, and let

(f.9) = f(0)g(0) + f'(0)g'(0) +/0 f(z)g(z)dz.

Remarks. The primary uses of convexity will be with H = R™, and little is lost by
focussing on this case. On the other hand many of the definitions extend to (even) more
general linear spaces.

Some Properties. Let H is a Hilbert space. Then Schwarz’ Inequality asserts

(2, y) < [lzfl < [lyll
for all x,y € H; and the Parallelogram Laws assert:
lz +yl* + llz = ylI* = 2l ]* + 1y,
2+ yll* = [lz = ylI* = 4(z, y)

for all x,y € H.
Linear Functional. A function f : H — IR is said to be a linear functional if f[ax+ fy] =
af(x)+ Bf(y) whenever z,y € H and «, 3 € IR. For example, if y € H, then

f(x) =(z,y), veH (1)

defines a continuous linear functional, a linear functional that is continuous in the metric.
It is a theorem that any continuous linear functional can be represented in the form (1) for

some y € 'H depending on the linear functional.
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Convex Sets. Recall that a subset Ho C H is called a linear subspace if it is closed
under addition and scalar multiplication: that is ax + By € Hy whenever x,y € Hy and
a, € IR. Similarly, a subset C' C L is said to conver if it contains the line joining any two
of its elements; that is ax 4+ (1 — a)y € C whenever x,y € C' and 0 < a < 1. A convex set
C is said to be a cone if ar € C' whenever x € C and a > 0 in which case ax + By € C
whenever z,y € C and 0 < «, < oo. Any linear subspace is a convex cone. Any ball,
B ={x e H: |z|| < ¢} is a convex set (since |ax + (1 — @)y|| < aflz|| + (1 — a)||y]| < ¢

whenever ||z||, |ly]| < ¢, but not a convex cone.
Example 2 If f;, i € I are continuous linear functionals, then
C={xeH: fi(x) >0, foralli € I}
is a convex cone.
Projections. If C' is a closed convex set and z € 'H, then there is a x € C' for which

|l — 2]l = inf [ly — 2| (2)

and x is the unique point in C' for which
(y—z,x—2)>0 (3)

for all y € C'. For the existence, let ¢ denote the infimum and let y,, € C be a sequence for

which ||y, — z|| — 4. Then

g = ymll* = Nl = 211* + llym — 21" = 2(gn — 2,9 — 2)

and ) )
_ Hyn + Ym — 2ZH - ||yn - ymH

2<yn — 2 Ym — Z>

2
Yn T YUm 2 Hyn_ym||2
—odn T Ym _ 2 _ N1Yn — Imil
et R
by the parallelogram law. So,
1 Yn + Ym
3 l19n — Ymll? = 1y — 21* + [lym — 2|° — 2= - z||?

<y = 2" + g — 2[|* — 2°

— 0

as m,n — oo. Thus, y, is a Cauchy sequence and, therefore, a convergent sequence. Let
2 = lim, . Yn. Then x € C, since C is closed, and ||z — z|| = lim,, . ||y — 2|| = 4. For (3):
IfyeCand 0 <t <1, then z+t(y—x) = (1 —t)z+ty € C, so that

0< [fz+tly —2)] —2l” = llo — 2l =2ty — 2,2 — 2) + £*]ly — =”
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and, therefore,
(y— 2,0 —2) > ~tlly — z]*/2.

The inequality (3) then follows by letting ¢ — 0. Finally, it must be shown that only one
x € C can satisfy (3). If x; and xo both satisfy (3), then

by setting y = x5 and y = x;. Adding these two inequalities then gives
—[lz1 — 2ol = (21 — 23,20 — 1) > 0

and, therefore, 1 = x5. The element x € C is called the projection of z onto C and denoted
by I¢(z).
If C'is a convex cone, then setting y = /2 and y = 2z in (3) shows that (z,x — z) = 0.

So, x is the unique element of C' for which
zeC and (y,z—x) =0 (4)

for all y € C; and if C is a linear subspace, then +y € C whenever y € C, so that (4)
becomes
(z,z—2)y=0  and (y,z—x) <0 (5)

The Separation Theorems. For these suppose that H is a finite dimensional linear
space—for example, H = R™.

Te Supporting Hyerplane Theorem: If C' is a convez set and z ¢ C°, the interior of C,
then there is an 0 # w € H for which

(w,y) > (w, z) (6)

for all y € C. Suppose first the z ¢ C, the closure of C, and let x = [I(z) and w = z — 2.
Then, w # 0, and

(w,2) = (w,y) = (& — 2,2 —y) = (r— 2,2 —2) + {2 — 2,0 — y) <O,

for all y € C by (3). If z € C'— C°, then there are z, € C’ for which ||z, —z|| — 0 asn — oo
and w,, € H for which ||w,|| =1 for all n and (w,,y) > (w,, z) for all y € C. The sequence

w, is precompact, since it is bounded; and if w denotes any limit point, then [|w|| = 1 and
(6) holds.



The Separating Hyperplane Theorem: C7 and Cy are disjoint convex sets, then there is
an 0 # w € ‘H for which
(w,y1) > (w,ya) (7)

for all yy € Cy and y, € Cy. To see this let C = {y; —ys : y1 € C4, y2 € Co}. Then C' is a
convex set for which 0 ¢ C. So, by the Supporting Hyperplane Theorem, there is an w # 0
for which (w,y) > (w,0) = 0, and (7) follows by writing y = y; — y».

Problem 1 In the Supporting Hyperplane Theorem, show that if z ¢ C, then w may be
chosen so that infy € C(w,y) > (w, 2).

Convex Functions. If (' is a convex subset of ‘H a functon f : C' — IR is said to be
convex if flaz + (1 — a)y] < af(x) + (1 — a)f(y) whenever z,y € C'and 0 < o < 1; and f
is said to be strictly convex if there is strict inequality whenever z # y and 0 < o < 1.

Clearly if f : C' — IR is (strictly) convex and Cy C C'is a convex subset of C, then the
restriction of f to Cy is convex. Conversely, if C' is convex, f : C' — IR, and the restriction
of f to every line L(z,y) = {ax+ (1 —a)y : 0 < a < 1} is strictly convex, then f is (strictly)
convex. For if x,y € C and ¢(t) = fltx + (1 — t)y] is convex in 0 < ¢t < 1, then

fltr + (1 =)yl = g(t) <tg(1) + (1 = 9)(0) = tf(y) + (1 — ) f(x).

Derivatives of Convex Functions. If —co < a < b < oo and f : (a,b) — IR is convez,

then
f(z) = f(y)

—00<fé(y):1§%x7_y < o0
and
—o0 < fl(z) = limM < 00

wlz w—z

exist fora <y <banda <z <b. f; and f] are both non-decreasing, and
—00 < fy(x) < fi(z) < oo

fora <z <b If —oo <a<b<ooand f is conver on [a,b], then —oo < fl(a) < co and
—o00 < fj(b) < oo exist, possibly infinite. To see this, let a« <2 <y < z <b. Then

(z—y)z+(y—2)z

so that




Subtracting f(z) from both sides of (8) leads to

fy) = f@) _ f() = fla)

Yy—x B 2=

Thus, the difference quotients [f(y) — f(x)]/(y — x) are increasing in y, and
fy) — f(@)

—o0o < fl(z) = inf —F——2~ <
00 < fi(z) = inf — 00
exists. The existence of f; can be established similarly.

Next, subtracting f(y) from both sides of (8) leads to

f(y) B f(aj) < f(Z) B f(y) (10)
y—x = z-y
and iterating (10),
[@) = f0) _ )= F@) _ fE) = ) _ fw) - ) )
x—1 - y— - z2—y - w—z

fora <t<z<y<z<w<b That —oco < fi(y) < fl(y) < oo for a < y < b follows, as
does the monotonicity of f; and f;.

As a consequence: Ifa < x <y, then

) — fa) = / " fl(w)du: (12)

and if —oo < a < b < oo and f is continuous on [a,b], then (12) holds also when x = a or
y=b.

Gateaux Derivatives. If G C H, then an = € G is called an inner point iff: for every
y € G, (1 —a)r+ ay € G for sufficently small a. Any interior point is an inner point. If

f:G — IR and z is an inner point, then f is said to have a Gateaux derivative at z if

o S =z +ty] = fla)
dfe(y) == lim ;

(13)

exists (finite) for each y € G. Then the function df, is called the (extended) Gateaux

derivative of f and x. If df, is a continuous linear functional, then there is an element of H,
also denoted by df,. for which

df:(y) = (dfz, y)

for all y € ‘H. For example, if G is an open subset of IR™ and f : G — IR is continuously
differentiable, then

df (z;y) = Vf(x)y
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where V f(x) denotes the gradient,

of af 1’
Vfx) = {8—9[;1’ 7%] .
If f has a Gateaux derivative at every x € C, then f is said to be Gateauz differentiable on

C.

Problem 2 Suppose that C' is an convex, open subset of IR™ and the f is twice continuously
differentiable on C'. Then f is convex iff

B a2f(:r) =1 .m

2

s mon-negative definite for all x € C.

IfC CHand f: C — IR convex, then f has an extended Gateauzr derivative dfy : C' — IR
at every x € C' in the following sense: the limit in (13) exists for all y of the form y = z — x,
where z € C. For if z € C, then ¢(t) = f([z +t(2 — )] = f[(1 —t)x + tz] is convex on [0, 1]
and, therefore, ¢/(0) exists (possibly —oc). Write

(14)

for y € C — x. Tt is clear the dfS(y) agrees with df,(y) when the latter exists.

Convex Optimization. Let C be a convex set. Then a necessary and sufficient condi-

tion for x* € C' to minimize f is that
dfe.(y—a%) = 0 (15)

for ally € C. To proof is easy. First if * minimizes f on C'and y € C, then f[(1—t)z*+ty| >

f(x*), so that

fla* +t(y — )] — f(a* . .
=2 ) gy

as t | 0. Conversely, if (15) is satisfied and y € C, then g(t) = f[(1 — t)z* + ty] defines a

convex function on [0, 1] for which

0<

9,.(0) = dfy.(v;y —2") > 0
and, therefore, g,(t) > 0 for all 0 < ¢ < 1. Tt then follows that
1
(6) = £(a") = 9(1) = 900) = | gi(0yde = 0.
0

as required.

The result does not assert that the minimum is attained.



Rockafellar [2] provides a more more comprehensive account of convexity. Edwards [1]

has a nice chapter on calculus in linear spaces.
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