Convex Polyhedra I: Estimation Statistics 710 October 3 \& 10, 2006

Polyhedral Cones. Let $\mathcal{H}=\mathbb{R}^{n}$ with $\langle x, y\rangle=x^{\prime} W y$, where W is symmetric and positive definite. Recall that a convex set Ω is said to be cone if $c \theta \in \Omega$ for all $c>0$ whenever $\theta \in \Omega$. If Ω is a cone, then

$$
\Omega^{o}=\left\{\omega \in \mathbb{R}^{n}:\langle\theta, \omega\rangle \leq 0 \text { for all } \theta \in \Omega\right\} .
$$

is again a closed convex cone, called the polar cone. A convex polyhedral cone is a set of the form

$$
\begin{equation*}
\Omega=\left\{\theta \in \mathbb{R}^{n}:\left\langle\gamma_{i}, \theta\right\rangle \geq 0, i=1, \cdots, m\right\} \tag{1}
\end{equation*}
$$

where $\gamma_{1}, \cdots, \gamma_{m} \in \Re^{n}$. For example, if $W=I_{n}$, then the set of non-decreasing sequences in $\mathbb{R}^{n}, \Omega=\left\{\theta:-\infty<\theta_{1} \leq \cdots \leq \theta_{n}<\infty\right\}$ is a polyhedral cone with $\gamma_{1}=$ $(-1,1,0, \cdots, 0)^{\prime}, \cdots,(0, \cdots,-1,1)^{\prime}$.

If $m \leq n$ and $\gamma_{1}, \cdots, \gamma_{m}$ are linearly independent, then it is possible to describe Ω in a useful way. Let

$$
L=\operatorname{span}\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}
$$

Then $\Omega \supseteq L^{\perp}$, the orthogonal complement of L. Let

$$
\Gamma=\left[\gamma_{1}, \cdots, \gamma_{m}\right] \quad(n \times m),
$$

and

$$
\Delta=\Gamma\left(\Gamma^{\prime} W \Gamma\right)^{-1}=\left[\delta_{1}, \cdots, \delta_{m}\right], \text { say } .
$$

Then $\Gamma^{\prime} W \Delta=I_{m}=\Delta^{\prime} W \Gamma$, so that $\gamma_{1}, \cdots, \gamma_{m}$ and $\delta_{1}, \cdots, \delta_{m}$ are biorthogonal, $\left\langle\gamma_{j}, \delta_{k}\right\rangle=$ $\gamma_{j}^{\prime} W \delta_{k}=1$ or 0 , accordingly as $j=k$ or $j \neq k$, and

$$
L=\operatorname{span}\left\{\delta_{1}, \cdots, \delta_{m}\right\}
$$

since the relation between Γ and Δ is invertible. Let $\delta_{m+1}, \cdots, \delta_{n}$ be an orthonormal basis for L^{\perp}. If $\gamma_{1}, \cdots, \gamma_{m}$ are linearly independent, then Ω consists of all linear combinations

$$
\begin{equation*}
\theta=a_{1} \delta_{1}+\cdots+a_{n} \delta_{n} \tag{2}
\end{equation*}
$$

for which $0 \leq a_{1}, \cdots, a_{m}<\infty$ and $-\infty<a_{m+1}, \cdots, a_{n}<\infty$, and the polar cone consists of all

$$
\omega=b_{1} \gamma_{1}+\cdots+b_{m} \gamma_{m}
$$

for which $-\infty<b_{1}, \cdots, b_{m} \leq 0$. To see this observe that any $\theta \in \mathbb{R}^{n}$ can be written in the form (2), since $\delta_{1}, \cdots, \delta_{n}$ are a basis for \mathbb{R}^{n}; and if θ is so written, then $\theta \in \Omega$ iff $a_{i}=\left\langle\gamma_{i}, \theta\right\rangle>0$ for $i=1, \cdots, m$. The assertion about the polar cone may be established similarly, with slightly more detail.

Example 1 If $W=I_{n}$ and Ω is the set of non-decreasing sequences, then clearly $L^{\perp}=$ $\operatorname{span}\{\mathbf{1}\}=\{c \mathbf{1}: c \in \mathbb{R}\}$. Write $\gamma_{k}=\left(\gamma_{k, 1}, \cdots, \gamma_{k, n}\right)^{\prime}$ and $\delta_{k}=\left(\delta_{k, 1}, \cdots, \delta_{k, n}\right)^{\prime}$. Then $\gamma_{k, i}=$ -1 if $i=k, 1$ if $i=k+1$, and 0 otherwise. In this case $\delta_{k}=(0, \cdots, 0,1, \cdots,, 1)^{\prime}-(n-k) \mathbf{1}$, where the first 1 appears in the $(k+1)^{\text {st }}$ position. For with this definition, $\left\langle\gamma_{j}, \delta_{k}\right\rangle=1$ if $j=k$ and 0 otherwise.

Projections. The Characterization + . Now let Ω be as in (1); let $y \in \mathbb{R}^{n}$; and let $\hat{\theta}=\Pi_{\Omega} y$. Thus,

$$
\begin{equation*}
\hat{\theta} \in \Omega,\langle\hat{\theta}, y-\hat{\theta}\rangle=0, \text { and }\langle y-\hat{\theta}, \xi\rangle \leq 0 \tag{3}
\end{equation*}
$$

for all $\xi \in \Omega$. Observe that if $\xi \in \mathbb{R}^{n}$ and $\hat{\theta} \pm \alpha \xi \in \Omega$ for all small α, then $\langle y-\hat{\theta}, \xi\rangle=0$, since $\pm \alpha\langle y-\hat{\theta}, \xi\rangle=\langle y-\hat{\theta}, \hat{\theta} \pm \alpha \xi\rangle \leq 0$ for small $\alpha>0$. In particular, if $\left\langle\gamma_{k}, \hat{\theta}\right\rangle>0$, then $\left\langle y-\hat{\theta}, \delta_{k}\right\rangle=0$. For, if $j \neq k$, then $\left\langle\gamma_{j}, \hat{\theta} \pm \alpha \delta_{k}\right\rangle=\left\langle\gamma_{j}, \hat{\theta}\right\rangle \pm \alpha\left\langle\gamma_{j}, \delta_{k}\right\rangle=\left\langle\gamma_{j}, \hat{\theta}\right\rangle \geq 0$; and $\left\langle\gamma_{k},\left(\hat{\theta} \pm \alpha \delta_{k}\right\rangle=\hat{a}_{k} \pm \alpha>0\right.$ for small α.
A Generalized CSD and GCM. Let $\hat{\Theta}=W \Delta^{\prime} \hat{\theta}$ and $Y=W \Delta^{\prime} y$. Then

$$
\begin{equation*}
\left(\Gamma^{\prime} W \Gamma\right) \hat{\Theta} \geq 0 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\Theta}_{k} \geq Y_{k} \text { for all } k \leq m \text { with equality if }\left\langle\gamma_{k}, \hat{\theta}\right\rangle>0 \tag{5}
\end{equation*}
$$

To see (4) simply observe that $\left(\Gamma^{\prime} W \Gamma\right) \hat{\Theta}=\Gamma^{\prime} W \theta \geq 0$ by (1), since $\left[\Gamma^{\prime} W \theta\right]_{k}=\left\langle\gamma_{k}, \hat{\theta}\right\rangle$. For (5), observe that $\hat{\Theta}_{k}-Y_{k}=\left\langle\delta_{k}, \hat{\theta}-y\right\rangle \geq 0$ for all k, since $\delta_{k} \in \Omega$, with equality if $\left\langle\gamma_{k}, \hat{\theta}\right\rangle>0$, as just explained.

Duality. Clearly condition (3) implies that $y-\hat{\theta} \in \Omega^{o}$. Moreover, letting $\hat{\xi}=y-\hat{\theta}$, $\langle\hat{\xi}, y-\hat{\xi}\rangle=\langle y-\hat{\theta}, \hat{\theta}\rangle=0$ and $\langle y-\hat{\xi}, \xi\rangle=\langle\hat{\theta}, \xi\rangle \leq 0$ for all $\xi \in \Omega^{o}$. So, $\hat{\xi}=y-\hat{\theta}$ is the projection of y onto Ω^{o}, and

$$
\begin{equation*}
y=\hat{\theta}+\hat{\xi}=\Pi_{\Omega} y+\Pi_{\Omega^{\circ}} y \tag{6}
\end{equation*}
$$

To go further, write $\hat{\theta}=\hat{a}_{1} \delta_{1}+\cdots+\hat{a}_{n} \delta_{n}$, where $\hat{a}_{1}, \cdots, \hat{a}_{m} \geq 0$, as in (2), and let

$$
\begin{equation*}
\hat{J}=\hat{J}(y)=\left\{j \leq m:\left\langle\gamma_{j}, \hat{\theta}\right\rangle>0\right\} . \tag{7}
\end{equation*}
$$

Then

$$
\hat{\theta}=\sum_{j \in \hat{J}} \hat{a}_{j} \delta_{j}+\sum_{i=m+1}^{n} \hat{a}_{j} \delta_{j},
$$

For $J \subseteq\{1, \cdots, m\}$, let

$$
K_{J}=\operatorname{span}\left\{\delta_{j}: j \in J\right\}
$$

and

$$
K_{J}=L_{J} \oplus L^{\perp}=\operatorname{span}\left\{\delta_{j}: j \in J, \text { or } j>m\right\} .
$$

Then

$$
K_{J}^{\perp}=\operatorname{span}\left\{\gamma_{j}: j \in J^{c}\right\}
$$

where $J^{c}=\{1, \cdots, m\}$. Denote the right side of the last line by M. Then, clearly $M \subseteq K_{J}^{\perp}$; and if $z \in K_{J}^{\perp}$, then $z=\sum_{i=1}^{m} c_{i} \gamma_{i}+\sum_{i=m+1}^{n} c_{i} \delta_{i}$, where $c_{i}=\left\langle\delta_{i}, z\right\rangle=0$ if $i \in J$ or $i>m$, so that $z \in M$. It follows easily that

$$
\begin{equation*}
\hat{\theta}=\Pi_{K_{\hat{J}}} y \quad \text { and } \quad y-\hat{\theta}=\Pi_{K_{\hat{J}}^{\perp}} y . \tag{8}
\end{equation*}
$$

To see that $\hat{\theta}=\Pi_{K_{\hat{J}}} y$, it suffices to show that $\hat{\theta} \in K_{\hat{J}}$ and that $\langle y-\hat{\theta}, \xi\rangle=0$ or all $\xi \in K_{\hat{J}}$. That $\hat{\theta} \in K_{\hat{J}}$ is clear. If $\xi \in K_{\hat{J}}$, then $\hat{\theta} \pm \alpha \xi \in \Omega$ for all sufficiently small α. For if $j \in \hat{J}$, then

$$
\left\langle\gamma_{j}, \hat{\theta} \pm \alpha \xi\right\rangle=\left\langle\gamma_{j}, \hat{\theta}\right\rangle \pm \alpha\left\langle\gamma_{j}, \xi\right\rangle=\hat{a}_{j} \pm \alpha\left\langle\gamma_{j}, \xi\right\rangle
$$

which is positive for all small α; and if $j \notin \hat{J}$, then $\xi=\sum_{j \notin \hat{J}} c_{j} \delta_{j}+\sum_{j=m+1}^{n} c_{j} \delta_{j}$, so that $\left\langle\gamma_{j}, \xi\right\rangle=0$. So, from (3), $\pm \alpha\langle y-\hat{\theta}, \xi\rangle=\langle y-\hat{\theta}, \hat{\theta} \pm \alpha \xi\rangle \leq 0$ and, therefore, $\langle y-\hat{\theta}, \xi\rangle=0$.

Problem 1 Show that $y-\hat{\theta}=\Pi_{\Omega^{o}}=\Pi_{K_{\hat{J}}}$.
Continuity and Differentiability. First $\hat{\theta}$ is Lipschitz continuous; that is $\|\hat{\theta}(y)-\hat{\theta}(z)\| \leq$ $\|z-y\|$. To see this observe that

$$
\langle y-\hat{\theta}(y), \hat{\theta}(z)-\hat{\theta}(y)\rangle \leq 0 \quad \text { and } \quad\langle z-\hat{\theta}(z), \hat{\theta}(z)-\hat{\theta}(y)\rangle \geq 0
$$

by (3). Subtracting,

$$
\langle y-z, \hat{\theta}(z)-\hat{\theta}(y)\rangle+\|z-y\|^{2} \leq 0
$$

and, therefore, $\|z-y\|^{2} \leq\langle z-y, \hat{\theta}(z)-\hat{\theta}(y)\rangle \leq\|z-y\| \times\|z-y\|$, from which the assertion follows.

For $J \subseteq\{1, \cdots, m\}$, let

$$
\begin{equation*}
B_{J}=\left\{y \in \mathbb{R}^{n}: \hat{J}(y)=J\right\} \tag{9}
\end{equation*}
$$

so that $\hat{\theta}=\Pi_{K_{J}} y$ for $y \in B_{J}$. Let $\Pi_{K_{J}}$ denote (also) the projection matrix onto K_{J}. It follows that

$$
\begin{equation*}
\left[\frac{\partial \hat{\theta}_{j}(y)}{\partial y_{i}}\right]=\Pi_{K_{J}} \tag{10}
\end{equation*}
$$

on the interior of each B_{J}. In particular, the divergence of $\hat{\theta}$ is just the dimension of K_{J},

$$
D(y)=\sum_{j=1}^{n} \frac{\partial \hat{\theta}_{j}(y)}{\partial y_{j}}=\operatorname{tr}\left[\Pi_{K_{J}}\right]=\operatorname{dim}\left(K_{J}\right)
$$

I now claim that $\bar{B}_{I} \cap \bar{B}_{J}$ is of Lebesgue measure 0 for any two different subsets of $\{1, \cdots, m\}$, so that (10) holds almost everywhere. To see this, simply observe that if $y \in$ $\bar{B}_{I} \cap \bar{B}_{J}$, then $\Pi_{K_{J}} y=\hat{\theta}=\Pi_{K_{I}} y$, so that $\left(\Pi_{K_{J}}-\Pi_{K_{I}}\right) y=0$. Thus, $\bar{B}_{I} \cap \bar{B}_{J}$ is contained in a linear subspace of dimension less than n and the assertion follows.

To understand the projection matrices in more detail, recall that $K_{J}=L_{J} \oplus L^{\perp}$ so that $\Pi_{K_{J}} y=\Pi_{L_{J}} y+\Pi_{L^{\perp}} y$ in (8); and if $J=\left\{j_{1}, \cdots, j_{k}\right\}$, where $1 \leq j_{1}<\cdots<j_{k} \leq m$, let $\Delta_{J}=\left[\delta_{j_{1}}, \cdots, \delta_{j_{k}}\right]$ and $\Gamma_{J}=\left[\gamma_{j_{1}}, \cdots, \gamma_{j_{k}}\right]$, so that

$$
\Pi_{L_{J}}=\Delta_{J}\left(\Delta_{J}^{\prime} \Delta_{J}\right)^{-1} \Delta_{J}^{\prime} \quad \text { and } \quad \Pi_{K_{J}^{\perp}}=\Gamma_{J}\left(\Gamma_{J}^{\prime} \Gamma_{J}\right)^{-1} \Gamma_{J}^{\prime} .
$$

Properties of the Estimator. Suppose now that $W=I_{n}$ and that y is normally distributed with mean $\theta \in \Omega$ and covariance matrix $\sigma^{2} I_{n}$, where $\sigma^{2}>0$. Then there are both an unbiased estimator and a bound on the mean squared error in terms of D :

$$
\begin{equation*}
E_{\theta}\|\hat{\theta}-\theta\|^{2}=E_{\theta}(U) \tag{11}
\end{equation*}
$$

where

$$
U=\|y-\hat{\theta}\|^{2}+2 \sigma^{2} D-n \sigma^{2}
$$

and

$$
\begin{equation*}
E_{\theta}\|\hat{\theta}-\theta\|^{2} \leq \sigma^{2} E_{\theta}(D) \tag{12}
\end{equation*}
$$

for all $\theta \in \Omega$. For (11), write $y-\hat{\theta}=y-\theta-(\hat{\theta}-\theta),\|y-\hat{\theta}\|^{2}=\|y-\theta\|^{2}-2\langle y-\theta, \hat{\theta}-\theta\rangle+\|\hat{\theta}-\theta\|^{2}$, and

$$
\begin{aligned}
E_{\theta}\|y-\hat{\theta}\|^{2} & =E\|y-\theta\|^{2}-2 E_{\theta}\langle y-\theta, \hat{\theta}-\theta\rangle+E_{\theta}\|\hat{\theta}-\theta\|^{2} \\
& =n \sigma^{2}-2 \sigma^{2} E_{\theta}(D)+E_{\theta}\|\hat{\theta}-\theta\|^{2}
\end{aligned}
$$

where the last step uses Stein's Identity. Equation (11) follows by rewriting the expression. To see (12) observe that by (3)

$$
0 \leq\langle y-\hat{\theta}, \hat{\theta}-\theta\rangle=\langle y-\theta, \hat{\theta}-\theta\rangle-\|\hat{\theta}-\theta\|^{2}
$$

so that

$$
E_{\theta}\|\hat{\theta}-\theta\|^{2} \leq E_{\theta}[\langle y-\theta, \hat{\theta}-\theta\rangle]=\sigma^{2} E_{\theta}(D)
$$

where the equality follows from Stein's Identity.
Estimating σ^{2}. As a corollary

$$
\begin{equation*}
n \sigma^{2}-2 \sigma^{2} E_{\theta}(D) \leq E\|y-\hat{\theta}\|^{2} \leq n \sigma^{2}-\sigma^{2} E_{\theta}(D) \tag{13}
\end{equation*}
$$

Under regularity conditions, Meyer and Woodroofe [3] showed that $E\|y-\hat{\theta}\|^{2} \approx n \sigma^{2}-$ $\kappa \sigma^{2} E_{\theta}(D)$, where $\kappa \approx 1.6$ and suggested an estimator of the form

$$
\hat{\sigma}^{2}=\frac{\|y-\hat{\theta}\|^{2}}{n-\kappa D}
$$

for the case of unkown σ^{2}.
Remarks. This material is adapted from [2] and [3]. Shrinkage estimation is consider in [4] and [1].

References

[1] Amirdjanova, A. and Michael Woodroofe (2004). Shrinkage estimation for convex polyhedral cones. Stat. Prob. Lttrs., 70, 87-94.
[2] Meyer, Mary (1996). Shape restricted estimation with applications to • Ph. D. Thesis (Statistics), The University of Michigan.
[3] Meyer, Mary and Michael Woodroofe (2000). On the degrees of freedom in shape restricted estimation. Ann. Statist., 28, 1083-1104.
[4] Sengupta, D. and P.K. Sen (1991). Shrinkage estimation in a restricted parameter space. Sankhya, A, 53, 389-411.

