Convex Polyhedra I: Estimation Statistics 710 October 3 & 10, 2006

Polyhedral Cones. Let $\mathcal{H} = \mathbb{R}^n$ with $\langle x, y \rangle = x'Wy$, where W is symmetric and positive definite. Recall that a convex set Ω is said to be cone if $c\theta \in \Omega$ for all c > 0 whenever $\theta \in \Omega$. If Ω is a cone, then

$$\Omega^{o} = \{ \omega \in \mathbb{R}^{n} : \langle \theta, \omega \rangle \leq 0 \text{ for all } \theta \in \Omega \}.$$

is again a closed convex cone, called *the polar cone*. A *convex polyhedral cone* is a set of the form

$$\Omega = \{ \theta \in \mathbb{R}^n : \langle \gamma_i, \theta \rangle \ge 0, \ i = 1, \cdots, m \},$$
(1)

where $\gamma_1, \dots, \gamma_m \in \Re^n$. For example, if $W = I_n$, then the set of non-decreasing sequences in \mathbb{R}^n , $\Omega = \{\theta : -\infty < \theta_1 \le \dots \le \theta_n < \infty\}$ is a polyhedral cone with $\gamma_1 = (-1, 1, 0, \dots, 0)', \dots, (0, \dots, -1, 1)'$.

If $m \leq n$ and $\gamma_1, \dots, \gamma_m$ are linearly independent, then it is possible to describe Ω in a useful way. Let

$$L = \operatorname{span}\{\gamma_1, \cdots, \gamma_m\}.$$

Then $\Omega \supseteq L^{\perp}$, the orthogonal complement of L. Let

$$\Gamma = [\gamma_1, \cdots, \gamma_m] \quad (n \times m),$$

and

$$\Delta = \Gamma(\Gamma'W\Gamma)^{-1} = [\delta_1, \cdots, \delta_m], \text{ say.}$$

Then $\Gamma'W\Delta = I_m = \Delta'W\Gamma$, so that $\gamma_1, \dots, \gamma_m$ and $\delta_1, \dots, \delta_m$ are biorthogonal, $\langle \gamma_j, \delta_k \rangle = \gamma'_j W \delta_k = 1$ or 0, accordingly as j = k or $j \neq k$, and

$$L = \operatorname{span}\{\delta_1, \cdots, \delta_m\},\$$

since the relation between Γ and Δ is invertible. Let $\delta_{m+1}, \dots, \delta_n$ be an orthonormal basis for L^{\perp} . If $\gamma_1, \dots, \gamma_m$ are linearly independent, then Ω consists of all linear combinations

$$\theta = a_1 \delta_1 + \dots + a_n \delta_n \tag{2}$$

for which $0 \leq a_1, \dots, a_m < \infty$ and $-\infty < a_{m+1}, \dots, a_n < \infty$, and the polar cone consists of all

$$\omega = b_1 \gamma_1 + \dots + b_m \gamma_m$$

for which $-\infty < b_1, \dots, b_m \leq 0$. To see this observe that any $\theta \in \mathbb{R}^n$ can be written in the form (2), since $\delta_1, \dots, \delta_n$ are a basis for \mathbb{R}^n ; and if θ is so written, then $\theta \in \Omega$ iff $a_i = \langle \gamma_i, \theta \rangle > 0$ for $i = 1, \dots, m$. The assertion about the polar cone may be established similarly, with slightly more detail.

Example 1 If $W = I_n$ and Ω is the set of non-decreasing sequences, then clearly $L^{\perp} =$ span $\{1\} = \{c\mathbf{1} : c \in \mathbb{R}\}$. Write $\gamma_k = (\gamma_{k,1}, \cdots, \gamma_{k,n})'$ and $\delta_k = (\delta_{k,1}, \cdots, \delta_{k,n})'$. Then $\gamma_{k,i} = -1$ if i = k, 1 if i = k+1, and 0 otherwise. In this case $\delta_k = (0, \cdots, 0, 1, \cdots, 1)' - (n-k)\mathbf{1}$, where the first 1 appears in the $(k+1)^{\text{st}}$ position. For with this definition, $\langle \gamma_j, \delta_k \rangle = 1$ if j = k and 0 otherwise.

Projections. The Characterization +. Now let Ω be as in (1); let $y \in \mathbb{R}^n$; and let $\hat{\theta} = \prod_{\Omega} y$. Thus,

$$\hat{\theta} \in \Omega, \ \langle \hat{\theta}, y - \hat{\theta} \rangle = 0, \text{ and } \langle y - \hat{\theta}, \xi \rangle \le 0$$
 (3)

for all $\xi \in \Omega$. Observe that if $\xi \in \mathbb{R}^n$ and $\hat{\theta} \pm \alpha \xi \in \Omega$ for all small α , then $\langle y - \hat{\theta}, \xi \rangle = 0$, since $\pm \alpha \langle y - \hat{\theta}, \xi \rangle = \langle y - \hat{\theta}, \hat{\theta} \pm \alpha \xi \rangle \leq 0$ for small $\alpha > 0$. In particular, if $\langle \gamma_k, \hat{\theta} \rangle > 0$, then $\langle y - \hat{\theta}, \delta_k \rangle = 0$. For, if $j \neq k$, then $\langle \gamma_j, \hat{\theta} \pm \alpha \delta_k \rangle = \langle \gamma_j, \hat{\theta} \rangle \pm \alpha \langle \gamma_j, \delta_k \rangle = \langle \gamma_j, \hat{\theta} \rangle \geq 0$; and $\langle \gamma_k, (\hat{\theta} \pm \alpha \delta_k \rangle = \hat{a}_k \pm \alpha > 0$ for small α .

A Generalized CSD and GCM. Let $\hat{\Theta} = W \Delta' \hat{\theta}$ and $Y = W \Delta' y$. Then

$$(\Gamma' W \Gamma) \hat{\Theta} \ge 0 \tag{4}$$

and

 $\hat{\Theta}_k \ge Y_k \text{ for all } k \le m \text{ with equality if } \langle \gamma_k, \hat{\theta} \rangle > 0.$ (5)

To see (4) simply observe that $(\Gamma'W\Gamma)\hat{\Theta} = \Gamma'W\theta \ge 0$ by (1), since $[\Gamma'W\theta]_k = \langle \gamma_k, \hat{\theta} \rangle$. For (5), observe that $\hat{\Theta}_k - Y_k = \langle \delta_k, \hat{\theta} - y \rangle \ge 0$ for all k, since $\delta_k \in \Omega$, with equality if $\langle \gamma_k, \hat{\theta} \rangle > 0$, as just explained.

Duality. Clearly condition (3) implies that $y - \hat{\theta} \in \Omega^{o}$. Moreover, letting $\hat{\xi} = y - \hat{\theta}$, $\langle \hat{\xi}, y - \hat{\xi} \rangle = \langle y - \hat{\theta}, \hat{\theta} \rangle = 0$ and $\langle y - \hat{\xi}, \xi \rangle = \langle \hat{\theta}, \xi \rangle \leq 0$ for all $\xi \in \Omega^{o}$. So, $\hat{\xi} = y - \hat{\theta}$ is the projection of y onto Ω^{o} , and

$$y = \hat{\theta} + \hat{\xi} = \Pi_{\Omega} y + \Pi_{\Omega^o} y.$$
(6)

To go further, write $\hat{\theta} = \hat{a}_1 \delta_1 + \cdots + \hat{a}_n \delta_n$, where $\hat{a}_1, \cdots, \hat{a}_m \ge 0$, as in (2), and let

$$\hat{J} = \hat{J}(y) = \{ j \le m : \langle \gamma_j, \hat{\theta} \rangle > 0 \}.$$
(7)

Then

$$\hat{\theta} = \sum_{j \in \hat{J}} \hat{a}_j \delta_j + \sum_{i=m+1}^n \hat{a}_j \delta_j$$

For $J \subseteq \{1, \cdots, m\}$, let

$$K_J = \operatorname{span}\{\delta_j : j \in J\}$$

and

$$K_J = L_J \oplus L^{\perp} = \operatorname{span}\{\delta_j : j \in J, \text{ or } j > m\}.$$

Then

$$K_J^{\perp} = \operatorname{span}\{\gamma_j : j \in J^c\}$$

where $J^c = \{1, \dots, m\}$. Denote the right side of the last line by M. Then, clearly $M \subseteq K_J^{\perp}$; and if $z \in K_J^{\perp}$, then $z = \sum_{i=1}^m c_i \gamma_i + \sum_{i=m+1}^n c_i \delta_i$, where $c_i = \langle \delta_i, z \rangle = 0$ if $i \in J$ or i > m, so that $z \in M$. It follows easily that

$$\hat{\theta} = \Pi_{K_{\hat{j}}} y \quad \text{and} \quad y - \hat{\theta} = \Pi_{K_{\hat{j}}^{\perp}} y.$$
 (8)

To see that $\hat{\theta} = \prod_{K_j} y$, it suffices to show that $\hat{\theta} \in K_j$ and that $\langle y - \hat{\theta}, \xi \rangle = 0$ or all $\xi \in K_j$. That $\hat{\theta} \in K_j$ is clear. If $\xi \in K_j$, then $\hat{\theta} \pm \alpha \xi \in \Omega$ for all sufficiently small α . For if $j \in \hat{J}$, then

$$\langle \gamma_j, \hat{\theta} \pm \alpha \xi \rangle = \langle \gamma_j, \hat{\theta} \rangle \pm \alpha \langle \gamma_j, \xi \rangle = \hat{a}_j \pm \alpha \langle \gamma_j, \xi \rangle$$

which is positive for all small α ; and if $j \notin \hat{J}$, then $\xi = \sum_{j\notin \hat{J}} c_j \delta_j + \sum_{j=m+1}^n c_j \delta_j$, so that $\langle \gamma_j, \xi \rangle = 0$. So, from (3), $\pm \alpha \langle y - \hat{\theta}, \xi \rangle = \langle y - \hat{\theta}, \hat{\theta} \pm \alpha \xi \rangle \leq 0$ and, therefore, $\langle y - \hat{\theta}, \xi \rangle = 0$.

Problem 1 Show that $y - \hat{\theta} = \prod_{\Omega^o} = \prod_{K_j^{\perp}}$.

Continuity and Differentiability. First $\hat{\theta}$ is Lipschitz continuous; that is $\|\hat{\theta}(y) - \hat{\theta}(z)\| \le \|z - y\|$. To see this observe that

$$\langle y - \hat{\theta}(y), \hat{\theta}(z) - \hat{\theta}(y) \rangle \le 0$$
 and $\langle z - \hat{\theta}(z), \hat{\theta}(z) - \hat{\theta}(y) \rangle \ge 0$,

by (3). Subtracting,

$$\langle y-z, \hat{\theta}(z) - \hat{\theta}(y) \rangle + \|z-y\|^2 \leq 0$$

and, therefore, $||z - y||^2 \le \langle z - y, \hat{\theta}(z) - \hat{\theta}(y) \rangle \le ||z - y|| \times ||z - y||$, from which the assertion follows.

For $J \subseteq \{1, \cdots, m\}$, let

$$B_J = \{ y \in \mathbb{R}^n : \hat{J}(y) = J \},\tag{9}$$

so that $\hat{\theta} = \prod_{K_J} y$ for $y \in B_J$. Let \prod_{K_J} denote (also) the projection matrix onto K_J . It follows that

$$\left\lfloor \frac{\partial \hat{\theta}_j(y)}{\partial y_i} \right\rfloor = \Pi_{K_J} \tag{10}$$

on the interior of each B_J . In particular, the divergence of $\hat{\theta}$ is just the dimension of K_J ,

$$D(y) = \sum_{j=1}^{n} \frac{\partial \hat{\theta}_j(y)}{\partial y_j} = \operatorname{tr} \left[\Pi_{K_J} \right] = \dim(K_J).$$

I now claim that $\bar{B}_I \cap \bar{B}_J$ is of Lebesgue measure 0 for any two different subsets of $\{1, \dots, m\}$, so that (10) holds almost everywhere. To see this, simply observe that if $y \in \bar{B}_I \cap \bar{B}_J$, then $\Pi_{K_J} y = \hat{\theta} = \Pi_{K_I} y$, so that $(\Pi_{K_J} - \Pi_{K_I}) y = 0$. Thus, $\bar{B}_I \cap \bar{B}_J$ is contained in a linear subspace of dimension less than n and the assertion follows.

To understand the projection matrices in more detail, recall that $K_J = L_J \oplus L^{\perp}$ so that $\Pi_{K_J} y = \Pi_{L_J} y + \Pi_{L^{\perp}} y$ in (8); and if $J = \{j_1, \dots, j_k\}$, where $1 \leq j_1 < \dots < j_k \leq m$, let $\Delta_J = [\delta_{j_1}, \dots, \delta_{j_k}]$ and $\Gamma_J = [\gamma_{j_1}, \dots, \gamma_{j_k}]$, so that

$$\Pi_{L_J} = \Delta_J (\Delta'_J \Delta_J)^{-1} \Delta'_J \qquad \text{and} \qquad \Pi_{K_J^{\perp}} = \Gamma_J (\Gamma'_J \Gamma_J)^{-1} \Gamma'_J.$$

Properties of the Estimator. Suppose now that $W = I_n$ and that y is normally distributed with mean $\theta \in \Omega$ and covariance matrix $\sigma^2 I_n$, where $\sigma^2 > 0$. Then there are both an unbiased estimator and a bound on the mean squared error in terms of D:

$$E_{\theta} \|\hat{\theta} - \theta\|^2 = E_{\theta}(U), \qquad (11)$$

where

$$U = \|y - \hat{\theta}\|^2 + 2\sigma^2 D - n\sigma^2,$$

and

$$E_{\theta} \|\hat{\theta} - \theta\|^2 \le \sigma^2 E_{\theta}(D) \tag{12}$$

for all $\theta \in \Omega$. For (11), write $y - \hat{\theta} = y - \theta - (\hat{\theta} - \theta)$, $\|y - \hat{\theta}\|^2 = \|y - \theta\|^2 - 2\langle y - \theta, \hat{\theta} - \theta \rangle + \|\hat{\theta} - \theta\|^2$, and

$$E_{\theta} \|y - \hat{\theta}\|^2 = E \|y - \theta\|^2 - 2E_{\theta} \langle y - \theta, \hat{\theta} - \theta \rangle + E_{\theta} \|\hat{\theta} - \theta\|^2$$
$$= n\sigma^2 - 2\sigma^2 E_{\theta}(D) + E_{\theta} \|\hat{\theta} - \theta\|^2$$

where the last step uses Stein's Identity. Equation (11) follows by rewriting the expression. To see (12) observe that by (3)

$$0 \le \langle y - \hat{\theta}, \hat{\theta} - \theta \rangle = \langle y - \theta, \hat{\theta} - \theta \rangle - \|\hat{\theta} - \theta\|^2$$

so that

$$E_{\theta} \|\hat{\theta} - \theta\|^2 \le E_{\theta} \left[\langle y - \theta, \hat{\theta} - \theta \rangle \right] = \sigma^2 E_{\theta}(D),$$

where the equality follows from Stein's Identity.

Estimating σ^2 . As a corollary

$$n\sigma^2 - 2\sigma^2 E_{\theta}(D) \le E \|y - \hat{\theta}\|^2 \le n\sigma^2 - \sigma^2 E_{\theta}(D).$$
(13)

Under regularity conditions, Meyer and Woodroofe [3] showed that $E||y - \hat{\theta}||^2 \approx n\sigma^2 - \kappa\sigma^2 E_{\theta}(D)$, where $\kappa \approx 1.6$ and suggested an estimator of the form

$$\hat{\sigma}^2 = \frac{\|y - \hat{\theta}\|^2}{n - \kappa D}$$

for the case of unkown σ^2 .

Remarks. This material is adapted from [2] and [3]. Shrinkage estimation is consider in [4] and [1].

References

- Amirdjanova, A. and Michael Woodroofe (2004). Shrinkage estimation for convex polyhedral cones. *Stat. Prob. Lttrs.*, 70, 87-94.
- [2] Meyer, Mary (1996). Shape restricted estimation with applications to ·. Ph. D. Thesis (Statistics), The University of Michigan.
- [3] Meyer, Mary and Michael Woodroofe (2000). On the degrees of freedom in shape restricted estimation. Ann. Statist., 28, 1083-1104.
- [4] Sengupta, D. and P.K. Sen (1991). Shrinkage estimation in a restricted parameter space. Sankhya, A, 53, 389-411.