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Polyhedral Cones. Let H = IRn with 〈x, y〉 = x′Wy, where W is symmetric and

positive definite. Recall that a convex set Ω is said to be cone if cθ ∈ Ω for all c > 0

whenever θ ∈ Ω. If Ω is a cone, then

Ωo = {ω ∈ IRn : 〈θ, ω〉 ≤ 0 for all θ ∈ Ω}.

is again a closed convex cone, called the polar cone. A convex polyhedral cone is a set of the

form

Ω = {θ ∈ IRn : 〈γi, θ〉 ≥ 0, i = 1, · · · , m}, (1)

where γ1, · · · , γm ∈ <n. For example, if W = In, then the set of non-decreasing se-

quences in IRn, Ω = {θ : −∞ < θ1 ≤ · · · ≤ θn < ∞} is a polyhedral cone with γ1 =

(−1, 1, 0, · · · , 0)′, · · · , (0, · · · ,−1, 1)′.

If m ≤ n and γ1, · · · , γm are linearly independent, then it is possible to describe Ω in a

useful way. Let

L = span{γ1, · · · , γm}.

Then Ω ⊇ L⊥, the orthogonal complement of L. Let

Γ = [γ1, · · · , γm] (n × m),

and

∆ = Γ(Γ′WΓ)−1 = [δ1, · · · , δm], say.

Then Γ′W∆ = Im = ∆′WΓ, so that γ1, · · · , γm and δ1, · · · , δm are biorthogonal, 〈γj, δk〉 =

γ′
jWδk = 1 or 0, accordingly as j = k or j 6= k, and

L = span{δ1, · · · , δm},
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since the relation between Γ and ∆ is invertible. Let δm+1, · · · , δn be an orthonormal basis

for L⊥. If γ1, · · · , γm are linearly independent, then Ω consists of all linear combinations

θ = a1δ1 + · · ·+ anδn (2)

for which 0 ≤ a1, · · · , am < ∞ and −∞ < am+1, · · · , an < ∞, and the polar cone consists of

all

ω = b1γ1 + · · ·+ bmγm

for which −∞ < b1, · · · , bm ≤ 0. To see this observe that any θ ∈ IRn can be written

in the form (2), since δ1, · · · , δn are a basis for IRn; and if θ is so written, then θ ∈ Ω iff

ai = 〈γi, θ〉 > 0 for i = 1, · · · , m. The assertion about the polar cone may be established

similarly, with slightly more detail.

Example 1 If W = In and Ω is the set of non-decreasing sequences, then clearly L⊥ =

span{1} = {c1 : c ∈ IR}. Write γk = (γk,1, · · · , γk,n)
′ and δk = (δk,1, · · · , δk,n)

′. Then γk,i =

−1 if i = k, 1 if i = k+1, and 0 otherwise. In this case δk = (0, · · · , 0, 1, · · · , , 1)′−(n−k)1,

where the first 1 appears in the (k + 1)st position. For with this definition, 〈γj, δk〉 = 1 if

j = k and 0 otherwise.

Projections. The Characterization +. Now let Ω be as in (1); let y ∈ IRn; and let

θ̂ = ΠΩy. Thus,

θ̂ ∈ Ω, 〈θ̂, y − θ̂〉 = 0, and 〈y − θ̂, ξ〉 ≤ 0 (3)

for all ξ ∈ Ω. Observe that if ξ ∈ IRn and θ̂ ± αξ ∈ Ω for all small α, then 〈y − θ̂, ξ〉 = 0,

since ±α〈y − θ̂, ξ〉 = 〈y − θ̂, θ̂ ± αξ〉 ≤ 0 for small α > 0. In particular, if 〈γk, θ̂〉 > 0, then

〈y − θ̂, δk〉 = 0. For, if j 6= k, then 〈γj, θ̂ ± αδk〉 = 〈γj, θ̂〉 ± α〈γj, δk〉 = 〈γj, θ̂〉 ≥ 0; and

〈γk, (θ̂ ± αδk〉 = âk ± α > 0 for small α.

A Generalized CSD and GCM. Let Θ̂ = W∆′θ̂ and Y = W∆′y. Then

(Γ′WΓ)Θ̂ ≥ 0 (4)

and

Θ̂k ≥ Yk for all k ≤ m with equality if 〈γk, θ̂〉 > 0. (5)

To see (4) simply observe that (Γ′WΓ)Θ̂ = Γ′Wθ ≥ 0 by (1), since [Γ′Wθ]k = 〈γk, θ̂〉. For

(5), observe that Θ̂k −Yk = 〈δk, θ̂−y〉 ≥ 0 for all k, since δk ∈ Ω, with equality if 〈γk, θ̂〉 > 0,

as just explained.

Duality. Clearly condition (3) implies that y − θ̂ ∈ Ωo. Moreover, letting ξ̂ = y − θ̂,

〈ξ̂, y − ξ̂〉 = 〈y − θ̂, θ̂〉 = 0 and 〈y − ξ̂, ξ〉 = 〈θ̂, ξ〉 ≤ 0 for all ξ ∈ Ωo. So, ξ̂ = y − θ̂ is the

projection of y onto Ωo, and

y = θ̂ + ξ̂ = ΠΩy + ΠΩoy. (6)
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To go further, write θ̂ = â1δ1 + · · · + ânδn, where â1, · · · , âm ≥ 0, as in (2), and let

Ĵ = Ĵ(y) = {j ≤ m : 〈γj, θ̂〉 > 0}. (7)

Then

θ̂ =
∑

j∈Ĵ

âjδj +

n
∑

i=m+1

âjδj,

For J ⊆ {1, · · · , m}, let

KJ = span{δj : j ∈ J}

and

KJ = LJ ⊕ L⊥ = span{δj : j ∈ J, or j > m}.

Then

K⊥

J = span{γj : j ∈ Jc},

where Jc = {1, · · · , m}. Denote the right side of the last line by M . Then, clearly M ⊆ K⊥
J ;

and if z ∈ K⊥
J , then z =

∑m
i=1

ciγi +
∑n

i=m+1
ciδi, where ci = 〈δi, z〉 = 0 if i ∈ J or i > m, so

that z ∈ M . It follows easily that

θ̂ = ΠK
Ĵ
y and y − θ̂ = ΠK⊥

Ĵ

y. (8)

To see that θ̂ = ΠK
Ĵ
y, it suffices to show that θ̂ ∈ KĴ and that 〈y − θ̂, ξ〉 = 0 or all ξ ∈ KĴ .

That θ̂ ∈ KĴ is clear. If ξ ∈ KĴ , then θ̂ ± αξ ∈ Ω for all sufficiently small α. For if j ∈ Ĵ ,

then

〈γj, θ̂ ± αξ〉 = 〈γj, θ̂〉 ± α〈γj, ξ〉 = âj ± α〈γj, ξ〉

which is positive for all small α; and if j /∈ Ĵ , then ξ =
∑

j /∈Ĵ cjδj +
∑n

j=m+1
cjδj, so that

〈γj, ξ〉 = 0. So, from (3), ±α〈y − θ̂, ξ〉 = 〈y − θ̂, θ̂ ± αξ〉 ≤ 0 and, therefore, 〈y − θ̂, ξ〉 = 0.

Problem 1 Show that y − θ̂ = ΠΩo = ΠK⊥
Ĵ

.

Continuity and Differentiability. First θ̂ is Lipschitz continuous; that is ‖θ̂(y) − θ̂(z)‖ ≤

‖z − y‖. To see this observe that

〈y − θ̂(y), θ̂(z) − θ̂(y)〉 ≤ 0 and 〈z − θ̂(z), θ̂(z) − θ̂(y)〉 ≥ 0,

by (3). Subtracting,

〈y − z, θ̂(z) − θ̂(y)〉 + ‖z − y‖2 ≤ 0

and, therefore, ‖z − y‖2 ≤ 〈z − y, θ̂(z)− θ̂(y)〉 ≤ ‖z − y‖× ‖z − y‖, from which the assertion

follows.
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For J ⊆ {1, · · · , m}, let

BJ = {y ∈ IRn : Ĵ(y) = J}, (9)

so that θ̂ = ΠKJ
y for y ∈ BJ . Let ΠKJ

denote (also) the projection matrix onto KJ . It

follows that
[

∂θ̂j(y)

∂yi

]

= ΠKJ
(10)

on the interior of each BJ . In particular, the divergence of θ̂ is just the dimension of KJ ,

D(y) =
n

∑

j=1

∂θ̂j(y)

∂yj

= tr [ΠKJ
] = dim(KJ).

I now claim that B̄I ∩ B̄J is of Lebesgue measure 0 for any two different subsets of

{1, · · · , m}, so that (10) holds almost everywhere. To see this, simply observe that if y ∈

B̄I ∩ B̄J , then ΠKJ
y = θ̂ = ΠKI

y, so that (ΠKJ
− ΠKI

)y = 0. Thus, B̄I ∩ B̄J is contained in

a linear subspace of dimension less than n and the assertion follows.

To understand the projection matrices in more detail, recall that KJ = LJ ⊕ L⊥ so that

ΠKJ
y = ΠLJ

y + ΠL⊥y in (8); and if J = {j1, · · · , jk}, where 1 ≤ j1 < · · · < jk ≤ m, let

∆J = [δj1 , · · · , δjk
] and ΓJ = [γj1, · · · , γjk

], so that

ΠLJ
= ∆J(∆′

J∆J)−1∆′

J and ΠK⊥
J

= ΓJ(Γ′

JΓJ)−1Γ′

J .

Properties of the Estimator. Suppose now that W = In and that y is normally

distributed with mean θ ∈ Ω and covariance matrix σ2In, where σ2 > 0. Then there are

both an unbiased estimator and a bound on the mean squared error in terms of D:

Eθ‖θ̂ − θ‖2 = Eθ(U), (11)

where

U = ‖y − θ̂‖2 + 2σ2D − nσ2,

and

Eθ‖θ̂ − θ‖2 ≤ σ2Eθ(D) (12)

for all θ ∈ Ω. For (11), write y−θ̂ = y−θ−(θ̂−θ), ‖y−θ̂‖2 = ‖y−θ‖2−2〈y−θ, θ̂−θ〉+‖θ̂−θ‖2,

and
Eθ‖y − θ̂‖2 = E‖y − θ‖2 − 2Eθ〈y − θ, θ̂ − θ〉 + Eθ‖θ̂ − θ‖2

= nσ2 − 2σ2Eθ(D) + Eθ‖θ̂ − θ‖2

where the last step uses Stein’s Identity. Equation (11) follows by rewriting the expression.

To see (12) observe that by (3)

0 ≤ 〈y − θ̂, θ̂ − θ〉 = 〈y − θ, θ̂ − θ〉 − ‖θ̂ − θ‖2
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so that

Eθ‖θ̂ − θ‖2 ≤ Eθ

[

〈y − θ, θ̂ − θ〉
]

= σ2Eθ(D),

where the equality follows from Stein’s Identity.

Estimating σ2. As a corollary

nσ2 − 2σ2Eθ(D) ≤ E‖y − θ̂‖2 ≤ nσ2 − σ2Eθ(D). (13)

Under regularity conditions, Meyer and Woodroofe [3] showed that E‖y − θ̂‖2 ≈ nσ2 −

κσ2Eθ(D), where κ ≈ 1.6 and suggested an estimator of the form

σ̂2 =
‖y − θ̂‖2

n − κD

for the case of unkown σ2.

Remarks. This material is adapted from [2] and [3]. Shrinkage estimation is consider

in [4] and [1].
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