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Prologue: The Arc Sine Law. Let X1, X2, · · · be i.i.d. random variables taking the

values ±1 with probability one-half each; let Sn = X1 + · · · + Xn and

Nn = #{k ≤ n : Sk > 0 or Sk = 0, Sk−1 > 0}.

Then

lim
n→∞

P [Nn ≤ x] =
2

π
arcsin(

√
x) (1)

for 0 < x < 1. In the proof it is first shown by purely combinatorial arguments, that

P [N2n = 2k] =

(

2k

k

)(

2n − 2k

n − k

)

2−2n

for k = 1, · · · , n. Relation (1) then follows from Stirlings formula. See [3], Chapter 3, for

the details. Observe that the limiting distribution is β( 1
2
, 1

2
) with a U-shaped density

1

π
√

x(1 − x)
.

Question: Is this a general phenomenon, or special to the case X = ±1 with probability 1/2

each? Certainly, the proof is specific to the special case.

Brownian Motion. Let IBt, 0 ≤ t < ∞ denote a standard Brownian motion. Thus, IBt

is a stochastic process with continuous samples paths and stationary independent increments,

and IBt = Normal[0, t] for all 0 < t < ∞. It is easy to check that if IB is a standard Brownian

motion and 0 < c, s < ∞ then the processes (defined by)

1√
c
IBct and IBs+t − IBs

are again standard Brownian motions. The Strong Markov Property asserts that the second

process is a standard Brownian even when s is replaced by a stopping time.
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Brownian paths are continuous, but not smooth. They satisfy a Holder condition of the

form

sup
0≤s<t≤1

|IBt − IBs|
√

|s − t| log[ 1
|s−t|

]
< ∞ w.p.1, (2)

but are not differentiable.

Problem 1 Show that if f : [0, 1] → IR is absolutely continuous, then

lim
n→∞

2n

∑

k=1

[

f(
k

2n
) − f(

k − 1

2n
)

]2

= 0.

Then show that if IB is standard Brownian motion, then

lim
n→∞

2n

∑

k=1

[

IB(
k

2n
) − IB(

k − 1

2n
)

]2

= 1 w.p.1,

where IB(t) is written for IBt when t is complicated.

The Distribution of IB. Let C[0, 1] be the space of continuous functions on [0, 1]

endowed with the metric d(f, g) = sup0≤t≤1 |f(t) − g(t)| for f, g ∈ C[0, 1]; and let B be the

class of Borel subsets of C[0, 1], the smallest sigma-algebra containing all open sets. If IB is

a standard Brownian motion, defined on a probability space (Ω,A, P ), then it can be shown

that the function ĨB which maps ω ∈ Ω into the function (defined by) IBt(ω), 0 ≤ t ≤ 1, is

a measurable mapping. For example, if B = {g : d(f, g) ≤ c} is a closed ball in C[0, 1], then

{ω : ĨB(ω) ∈ B} = {ω : sup
0≤t≤1

|IBt(ω) − f(t)| ≤ c} = {ω : sup
0≤r≤1

|IBr(ω) − f(r)| ≤ c},

where r is restricted to rationals, and the right side is measurable, since each IBt is. Thus,

Ψ{B} = {ω : ĨB(ω) ∈ B} (3)

defines a probability measure on B, and Ψ is called the distribution of IB.

Broken Lines. Now let X1, X2, · · · ∼ind F be i.i.d. random variables with mean 0 and

variance 1; let Sn = X1 + · · ·+ Xn; and let SSn be a continuous piecewise linear function for

which

SSn(
k

n
) =

Sk√
n

for 0 ≤ k ≤ n. Then the function S̃Sn which maps ω ∈ Ω into the function (defined by)

SSn(ω, t), 0 ≤ t ≤ 1, is also a measurable mapping; and the distribution of SSn is defined by

Ψn{B} = {ω : SSn(ω) ∈ B} (4)
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for B ∈ B.

Weak Convergence. Let µn and µ be probability measures defined on the Borel subsets

of a metric space and recall that µn converges weakly to µ iff

lim
n→∞

∫

X

gdµn =

∫

X

gdµ (5)

for all bounded continuous functions g : X → IR. The Portmantau Theorem provides several

equivalent conditions. In particular, (5) holds for all bounded continuous functions, if it holds

for all bounded uniformly continuous functions. Recall too the continuous mapping theorem:

if µn converges weakly to µ and h : X → Y, a second metric space, is continuous almost

everywhere (µ), then µn ◦ h−1 converges weakly to µ ◦ h−1.

If Xn and X are random elements with distributions µn and µ, then Xn converges in

distribution to X iff µn converges weakly to µ. These relations are denoted by Xn ⇒ X

and µn ⇒ µ. With this notation, Slutsky’s Theorem may be stated: If Xn ⇒ X and

d(Xn, Yn) →p 0, then Yn ⇒ X. Billingsley [1] is recommended for background on weak

convergence.

Donsker’s Theorem. SSn ⇒ IB; that is, Ψn converges weakly to Ψ. As a corollary: if

h : C[0, 1] → IR is continuous almost everywhere (Ψ), then h(IBn) converges in distribution

to h(IB).

Example 1 Let λ denote Lebesgue measure. Then the function h defined on C[0, 1] by

h(f) = λ{t : f(t) > 0}

is continuous at every f for which λ{t : f(t) = 0} = 0 and, therefore, almost everywhere

(Ψ). So, Nn = h(IBn) converges in distribution to h(IB). It follows

P [h(IB) ≤ x] =
2

π
arcsin(

√
x)

for 0 < x < 1 and then that relation (1) holds for any F with mean 0 and variance 1.

Some Details. Let hc(f) = λ{t : f(t) > c}. If d(f, g) ≤ ε, then clearly {t : f(t) > ε} ⊆
{t : g(t) > 0} ⊆ {t : f(t) > −ε} and, therefore, hε(f) ≤ h(g) ≤ h−ε(f). So, if d(f, fn) → 0,

then hε(f) ≤ lim infn→∞ h(fn) ≤ lim supn→∞ h(fn) ≤ h−ε(f) for all ε > 0. Letting ε ↓ 0,

h(f) ≤ lim inf
n→∞

h(fn) ≤ lim sup
n→∞

h(fn) ≤ λ{t : f(t) ≥ 0}

from which the continuity follows. It remains to show that λ{t : IBt(ω) = 0} = 0 for almost

every ω; and this follows from

E [λ{t : IBt(ω) = 0}] =

∫ 1

0

P [IBt = 0]λ{dt} = 0.
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Skorohod Embedding. If F is any distribution function with mean 0 and finite variance

0 < σ2 < ∞, then, on a suitably rich probability space, there are a standard Brownian motion

and stopping times 0 = τ0 < τ1 < τ2 < · · · for which

[τk − τk−1, IB(τk) − IB(τk−1)] are i.i.d.,

E[τk − τk−1] = σ2,

IB(τk) − IB(τk−1) ∼ F

It is easy to describe the proof in the special case that F is a two point distribution, assigning

masses b/(a + b) and a/(a + b) to −a and b, where 0 < a, b < ∞. Let

τ1 = inf{t > 0 : IBt /∈ [−a, b]}.

Then IB(τ1) = −a or b with probability b/(a + b) or a/(a + b), since E[IB(τ1)] = 0 (by a

continous version of Wald’s Lemma). Now, let

τ2 = inf{t > τ1 : IB(t + τ1) − IB(τ1) /∈ [−a, b]},

etc. · · · , and use the Strong Markov Property. To get from two point distributions to a

general F requires showing that any F with mean 0 can be represented as an average of two

point distributions.

Skorohod Embedding and Donsker. Let

IBn(t) =
1√
n

IB(nt).

Then IBn is again a standard Brownian motion and, so, has distribution Ψ. Next, since

Donsker’s Theorem refers only to the distribution of SSn, there is no loss of generality is sup-

pose that Sk = IB(τk) for all k. With this assumption, it suffices to show that d[IBn, SSn] →p 0.

To see this, first observe that τn/n → σ2 w.p.1, by the Strong Law of Large Numbers, and

then that

d[IBn, SSn] ≤ max
k≤n

|IBn(
τk

n
) − IBn(

k

n
)| + max

|s−t|≤1/n
|IBn(s) − IBn(t)|

=≤ C max
k≤n

[

√

|τk

n
− k

n
| log[|τk

n
− k

n
|]−1

]

+ C

√

1

n
log(n),

(∗)

by Levy’s Inequality, and this approaches 0 in probability, by a simple application of Levy’s

Theorem.

Rates. It is possible to get rates of convergence in this argument. Suppose for example

that E(X4
1 ) < ∞. Then, (it can be shown that) E(τ 2

1 ) < ∞, in which case

|τn − n| = O[
√

n log log(n)] w.p.1,
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by the Law of the Iterated Logarithm. Then maxk≤n |τk − n| = Op[
√

n log log(n)] too, and

the last line in (*) is of order

√√
n log2(n) = n− 1

4 log(n).

Skorohod embedding encounters a barrier at this point. Even if there are higher moments,

the argument does not give better rates of convergence.

Strong Approximation.

· · ·

The Least Concave Majorant (or Greatest Convex Minorant). A function f

(defined on a convex subset C of a Hilbert space H is said to be concave if −f is convex;

that is,

f [αx + (1 − α)y] ≥ αf(x) + (1 − α)f(y)

for all x, y ∈ C and 0 ≤ α ≤ 1. It is easily seen that the infimum, f∗ = infi∈I fi, of any

collection fi, i ∈ I, of concave functions is again concave. For if i ∈ I, x, y ∈ C, and

0 ≤ α ≤ 1, then

fi[αx + (1 − α)y] ≥ αfi(x) + (1 − α)fi(y) ≥ αf∗(x) + (1 − α)f∗(y)

and, therefore,

f∗[αx + (1 − α)y] ≥ αf∗(x) + (1 − α)f∗(y).

It follows that if f is any bounded function on C, then there is a unique function f̃ for which

f̃ ≥ f ; f̃ is concave; if h is any concave function for which h ≥ f , then h ≥ f̃ .

For existence, it suffices to let f̃ be the infimum of all concave functions that majorize f .

There is at least one, since f is bounded. Uniqueness is clear. The function f̃ is called the

least concave majorant of f and may also be denoted by L(f).

Marshal’s Lemma. Now let ‖f‖ = supx∈C |f(x)| for bounded functions f on C. If f, g

are bounded functions, then f(x) ≤ g(x) + [f(x) − g(x)] ≤ g̃(x) + ‖f − g‖ for all x ∈ C.

Since the right side is concave, f̃ ≤ g̃ + ‖f − g‖. Then reversing the roles of f and g, yields

‖f̃ − g̃‖ ≤ ‖f − g‖. (6)

That is, L is a contraction. It follows that if g is any concave function, then

‖f̃ − g‖ ≤ ‖f − g‖. (7)
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More on Derivatives of Concave Functions. Suppose now that C is a subinterval

of IR. Let f and g are concave functions and ε2 = ‖f − g‖. If t0 ∈ Co and d(t0, C
′) ≥ ε, then

g(t0 + ε) − g(t0)

ε
− 2ε ≤ f ′

r(t0) ≤ f ′
`(t0) ≤

g(t0) − g(t0 − ε)

ε
+ 2ε. (8)

To establish the left inequality, simply observe that

f ′
r(t0) ≥

f(t0) − f(t0 − ε)

ε

≥ g(t0) − g(t0 − ε)

ε
− 2‖f − g‖

ε
≥ g(t0) − g(t0 − ε)

ε
− 2ε.

The right side of (8) may be established similarly. As a corollary: if ‖fn−f‖ → 0 as n → ∞,

t0 ∈ Co, and f ′
r(t0) = f ′

`(t0), then f ′
nr(t0) → f ′

r(t0).

Back to Broken Lines and Brownian Motion. Now (re)consider the broken line

SSn; regard SSn as a random element taking values in C[0, 1]; and recall Donsker’s Theorem,

SSn ⇒ IB. Next, let S̃Sn and B̃ denote the least concave majorants of SSn and IB. Then

SSn ⇒ IB, by the Continuous Mapping Theorem.

· · ·

The Space D[0,1]. Let D[0, 1] be the space of all functions on [0, 1] that are right

continuous on [0, 1) and have (finite) left limits on (0, 1]. Further, let Λ be the set of all

continuous, strictly increasing functions λ : [0, 1] →onto [0, 1], and let

d(f, g) = inf
λ∈Λ

sup
0≤t≤1

[|f(t) − g[λ(t)]| + |λ(t) − t|] .

Then it is easily verfied that d is a metric. For example, if f = 1[0, 1
2
) and g = 1[0, 1

2
+ε), where

0 < ε < 1/2, then d(f, g) ≤ ε. It can be shown that D[0, 1] is a topologically complete metric

space.

Problem 2 Show that addition is not a continuous function with respect to the product

topology on D[0, 1]2.
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