Isotonic Regression Statistics 710 September 26, 2006

The Problem. The isotonic regression problem may be stated as follows: suppose that

$$
\begin{equation*}
y_{i}=\theta_{i}+\epsilon_{i}, i=1, \cdots, n \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
-\infty<\theta_{1} \leq \theta_{2} \leq \cdots \leq \theta_{n}<\infty \tag{2}
\end{equation*}
$$

and $\epsilon_{1}, \cdots, \epsilon_{n}$ are uncorrelated random errors with means 0 and variances of the form $E\left(\epsilon_{i}^{2}\right)=$ σ_{i}^{2} / w_{i}, where $w_{1}, \cdots, w_{n}>0$ are known and $0<\sigma^{2}<\infty$ may be known or unknown. For example, if y_{i} is the average of n_{i} independent measurments of θ_{i} and all random errors have the same variance, then $w_{i}=n_{i}$. For another example, suppose that $\theta_{i}=f\left(t_{i}\right)$, where $-\infty<t_{1}<t_{2}<\cdots<t_{n}<\infty$ and μ is a non-decreasing function. The least squares estimates minimize

$$
\begin{equation*}
S S=\sum_{i=1}^{n} w_{i}\left[y_{i}-\theta_{i}\right]^{2}:=\|y-\theta\|_{w}^{2}, \tag{3}
\end{equation*}
$$

with respect of $\theta=\left[\theta_{1} \cdots, \theta_{n}\right]^{\prime}$, subject to (2), where $y=\left[y_{1}, \cdots, y_{n}\right]^{\prime}$ and $w=\left[w_{1}, \cdots, w_{n}\right]^{\prime}$.
Example 1 The following data (part of a larger data set) give temperature anomalies from 1856 to 1880 (1900 = base): $-.381,-.461,-.415,-.225, \cdots,-.289,-.295$. A plot of the data is given in Figure 1.

The Solution. The set Ω of $\theta \in \mathbb{R}^{n}$ for which (2) is a convex subset of \mathbb{R}^{n}. Thus, the minimization problem has a unique solution $\hat{\theta}$, the projection of y onto Ω with respect to $\langle\cdot, \cdot\rangle_{w}$; and $\hat{\theta} \in \Omega$ is characterized by the conditions $\hat{\theta} \in \Omega,\langle y-\hat{\theta}, \hat{\theta}\rangle_{w}=0$, and $\langle y-\hat{\theta}, \xi\rangle_{w} \leq 0$ for all $\xi \in \Omega$. The latter two conditions may be written

$$
\begin{equation*}
\sum_{i=1}^{n} w_{i} \hat{\theta}_{i}\left(y_{i}-\hat{\theta}_{i}\right)=0 \quad \text { and } \quad \sum_{i=1}^{n} w_{i}\left(y_{i}-\hat{\theta}_{i}\right) \xi_{i} \leq 0 \tag{4}
\end{equation*}
$$

Figure 1: Global Temperature Anomalies
for all $\xi \in \Omega$. As a corollary $\langle y-\hat{\theta}, \mathbf{1}\rangle_{w}=0$, since $\pm \mathbf{1} \in \Omega$.
The Cumulative Sum Diagram. Let

$$
\begin{aligned}
& \hat{\Theta}_{k}=\hat{\theta}_{1}+\cdots+\hat{\theta}_{k} \\
& Y_{k}=y_{1}+\cdots+y_{k},
\end{aligned}
$$

and

$$
W_{k}=w_{1}+\cdots+w_{k}
$$

for $k=0, \cdots, n$; and let $\hat{\Theta}$ and Y be piecewise linear functions with knots at W_{0}, \cdots, W_{n} for which $\hat{\Theta}\left(W_{k}\right)=\hat{\Theta}_{k}$ and $Y\left(W_{k}\right)=Y_{k}$. Then $\hat{\Theta}$ is a convex function, since $\hat{\Theta}_{\ell}^{\prime}(t)=\hat{\theta}_{k}$ for $W_{k-1}<t \leq W_{k}, k=1, \cdots, n$, and this is a non-decreasing function. Moreover $\hat{\Theta}(t) \leq Y(t)$ for $0 \leq t \leq W_{n}$. By the piecewise linearity, it suffices to show this when $t=W_{k}$. Let $\xi=[-1, \cdots,-1,0, \cdots]^{\prime}(k-1$'s $)$. Then $-\sum_{i=1}^{k} w_{k}\left[y_{k}-\hat{\theta}_{k}\right] \leq 0$ and, therefore $\hat{\Theta}\left(W_{k}\right)=$ $\hat{\Theta}_{k} \leq Y_{k}=Y\left(W_{k}\right)$.

It will be shown that $\hat{\Theta}$ is the largest convex function that is less than or equal to Y, but two preliminary results are needed first. If $\hat{\theta}_{k}<\hat{\theta}_{k+1}$, then $\hat{\Theta}_{k}=Y_{k}$. To see this, let $\mathbf{1}_{k}=[1, \cdots, 1,0, \cdots, 0]^{\prime}$. Then $\hat{\theta} \pm \alpha \mathbf{1}_{k} \in \Omega$ for all sufficiently small $0<\alpha<\theta_{k+1}-\theta_{k}$, so that $\left\langle y-\hat{\theta}, \hat{\theta} \pm \alpha \mathbf{1}_{k}\right\rangle_{w} \leq 0$; and this implies $\pm\left\langle y-\hat{\theta}, \alpha \mathbf{1}_{k}\right\rangle_{w} \leq 0$, or equivalently, $Y_{k}=\hat{\Theta}_{k}$. Next, if $0<t<W_{n}$, let $j \geq 0$ be the largest index for which $W_{j}<t$ and $\hat{\Theta}_{j}=Y_{j}$, and let $k \leq n$ be the smallest index for which $\hat{\Theta}_{k}=Y_{k}$. Then $\hat{\Theta}$ is linear on $\left[W_{j}, W_{k}\right]$. For otherwise, there would be an i for which $j<i<k$ and $\hat{\theta}_{i}<\hat{\theta}_{i+1}$; but then $Y_{i}=\hat{\Theta}\left(W_{i}\right)$, contradicting the definition of j or k.

Now, let G be any convex function for which $G(t) \leq Y(t)$ for $0 \leq t \leq W_{n}$; let $0<t<W_{n}$;

Figure 2: The Cumulative Sum Diagram and its Greatest Convex Minorant
and let j and k be as above. Then

$$
\begin{aligned}
G(t) & \leq \frac{\left(t-W_{j}\right) G\left(W_{k}\right)+\left(W_{k}-t\right) G\left(W_{j}\right)}{W_{k}-W_{j}} \\
& \leq \frac{\left(t-W_{j}\right) Y_{k}+\left(W_{k}-t\right) Y_{j}}{W_{k}-W_{j}} \\
& \leq \frac{\left(t-W_{j}\right) \hat{\Theta}\left(W_{k}\right)+\left(W_{k}-t\right) \hat{\Theta}\left(W_{j}\right)}{W_{k}-W_{j}}=\hat{\Theta}(t) .
\end{aligned}
$$

The cumulative sum diagram and its greatest convex minorant are displayed in Figure 2. Thus, $\hat{\theta}_{k}$ is the left hand derivative of the greatest convex minorant $\hat{\Theta}$ to the cumulative sum diagram Y.

The following is implicit in the derivation. If $c \in\left\{\hat{\theta}_{1}, \cdots, \hat{\theta}_{n}\right\}=V$, say, then

$$
\sum_{j: \hat{\theta}_{j}=c}\left(y_{j}-c\right) c_{j}=0
$$

For the set of j for which $\hat{\theta}_{j}=c$ is an interval $\{i, \cdots, k\}$. Let $e_{j}=1$ or 0 depending on whether $\theta_{j}=c$, or not. Then $\hat{\theta} \pm \alpha e \in \Omega$ for small α, so that $\langle y-\hat{\theta}, e\rangle_{w}=0$ by (4) and

$$
\sum_{j: \hat{\theta}_{j}=c}\left(y_{j}-c\right) w_{j}=0=\langle y-\hat{\theta}, e\rangle_{w}=0
$$

As a consequence, if $h: V \rightarrow \mathbb{R}$ is any function, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left(y_{i}-\hat{\theta}_{i}\right) h\left(\hat{\theta}_{i}\right) w_{i}=0 \tag{5}
\end{equation*}
$$

This may be seen by summing over the distinct values of h.
The Pool Adjacent Violators Algorithm. The characterization of $\hat{\Theta}$ is the basis for the following algorithm: starting with $\hat{\theta}^{0}=y$:
a) If $\hat{\theta}_{j-1}^{k} \leq \hat{\theta}_{j}^{k}$, let $\hat{\theta}=\hat{\theta}^{k}$ and stop.
b) Otherwise, let j be the smallest index for which $\hat{\theta}_{j-1}^{k}>\hat{\theta}_{j}^{k}$; let

$$
\hat{\theta}_{j-1}^{k+1}=\hat{\theta}_{j}^{k+1}=\frac{w_{j-1} \hat{\theta}_{j-1}^{k}+w_{j} \hat{\theta}_{j}^{k}}{w_{j-1}+w_{j}}
$$

and $\hat{\theta}_{i}^{k+1} \leq \hat{\theta}_{I}^{k}$ for $j-1 \neq i \neq j$; then go back to a). The algorithm terminates after a finite number of steps. The proof that it delivers $\hat{\theta}$ is left as an exercise.

Problem 1 . Global temperature anomalies from 1856 to 2005 may be found at the website
http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.dat or by entering "temperature anomalies" in Google. Find the isotonic regression with equal weights for this data set, and superimpose the estimated regression function on a scatter plot, as in Figure 1.

The Min-Max Formula. Let

$$
\operatorname{av}(i, j)=\frac{w_{i} y_{i}+\cdots+w_{j} y_{j}}{w_{i}+\cdots+w_{j}}=\frac{\left.Y\left(W_{j}\right)-Y_{(} W_{i-1}\right)}{W_{j}-W_{i-1}}
$$

for $1 \leq i \leq j \leq n$. Then

$$
\begin{equation*}
\hat{\theta}_{k}=\max _{i \leq k} \min _{j \geq k} \operatorname{av}(i, j) \tag{6}
\end{equation*}
$$

for $1 \leq k \leq n$. To see this (geometrically), let $S=\left\{\ell: \hat{\theta}_{\ell}<\hat{\theta}_{\ell}\right\} \cup\{0, n\}$ and observe that

$$
\hat{\theta}_{k}=\max _{i \leq k} \min _{j \geq k} \frac{\hat{\Theta}\left(W_{j}\right)-\hat{\Theta}\left(W_{i-1}\right)}{W_{j}-W_{i-1}}=\max _{i \in S, i \leq k} \min _{j \in S, j \geq k} \frac{\hat{\Theta}\left(W_{j}\right)-\hat{\Theta}\left(W_{i-1}\right)}{W_{j}-W_{i-1}},
$$

by convexity. Next, recalling that $\hat{\Theta}_{\ell}=Y_{\ell}$ for $\ell \in S$,

$$
\hat{\theta}_{k}=\max _{i \in S, i \leq k} \min _{j \in S, j \geq k} \frac{Y\left(W_{j}\right)-Y\left(W_{i-1}\right)}{W_{j}-W_{i-1}}
$$

Clearly,

$$
\min _{j \geq k} \frac{Y\left(W_{j}\right)-Y\left(W_{i-1}\right)}{W_{j}-W_{i-1}} \leq \min _{j \in S, j \geq k} \frac{Y\left(W_{j}\right)-Y\left(W_{i-1}\right)}{W_{j}-W_{i-1}}
$$

In fact, there is equality. For if $j \geq k$ and $i \in S$, then

$$
\frac{Y\left(W_{j}\right)-Y\left(W_{i-1}\right)}{W_{j}-W_{i-1}} \geq \frac{\hat{\Theta}\left(W_{j}\right)-\hat{\Theta}\left(W_{i-1}\right)}{W_{j}-W_{i-1}} \geq \min _{j^{\prime} \in S, j^{\prime} \geq k} \frac{\hat{\Theta}\left(W_{j^{\prime}}\right)-\hat{\Theta}\left(W_{i-1}\right)}{W_{j^{\prime}}-W_{i-1}}
$$

Relation (6) follows from this and a dual argument for i.
Generalized Isotonic Regression. Now let I be an interval; let $\psi \rightarrow \mathbb{R}$ be a convex function, and let

$$
\Psi(w, z)=\psi(w)-\psi(z)-\psi^{\prime}(z)(w-z)
$$

for $w, z \in I$. If $y_{1}, \cdots, y_{n} \in I$, then

$$
\begin{equation*}
\sum_{i=1}^{n} \Psi\left(y_{i}, \theta_{i}\right) w_{i} \geq \sum_{i=1}^{n} \Psi\left(y_{i}, \hat{\theta}_{i}\right) w_{i}+\sum_{i=1}^{n} \Psi\left(\hat{\theta}_{i}, \theta_{i}\right) w_{i} \tag{7}
\end{equation*}
$$

for all $\theta \in \Omega$. Consequently, the left side of (7) is minimized when $\theta=\hat{\theta}$. To see this, observe first that

$$
\begin{aligned}
\Psi\left(y_{i}, \theta_{i}\right)-\left[\Psi\left(y_{i}, \hat{\theta}_{i}\right)+\Psi\left(\hat{\theta}_{i}, \theta_{i}\right)\right]= & \psi\left(y_{i}\right)-\psi\left(\theta_{i}\right)-\psi^{\prime}\left(\theta_{i}\right)\left(y_{i}-\theta_{i}\right) \\
- & {\left[\psi\left(y_{i}\right)-\psi\left(\hat{\theta}_{i}\right)-\psi^{\prime}\left(\hat{\theta}_{i}\right)\left(y_{i}-\hat{\theta}_{i}\right)\right.} \\
& +\psi\left(\hat{\theta}_{i}\right)-\psi\left(\theta_{i}\right)-\psi^{\prime}\left(\theta_{i}\right)\left(\hat{\theta}_{i}-\theta_{i}\right) \\
= & {\left[\psi^{\prime}\left(\hat{\theta}_{i}\right)-\psi^{\prime}\left(\theta_{i}\right)\right]\left(y_{i}-\hat{\theta}_{i}\right) . }
\end{aligned}
$$

So,

$$
\operatorname{LHS}(7)-\operatorname{RHS}(7)=\sum_{i=1}^{n} w_{i}\left[\psi^{\prime}\left(\hat{\theta}_{i}\right)-\psi^{\prime}\left(\theta_{i}\right)\right]\left(y_{i}-\hat{\theta}_{i}\right) .
$$

Here

$$
\sum_{i=1}^{n} w_{i} \psi^{\prime}\left(\hat{\theta}_{i}\right)\left(y_{i}-\hat{\theta}_{i}\right)=0
$$

by (5). Next $\xi=\left[\psi\left(\theta_{1}\right), \cdots, \psi\left(\theta_{n}\right)\right]^{\prime} \in \Omega$, since ψ^{\prime} is non-decreasing, and

$$
\sum_{i=1}^{n} w_{i} \psi^{\prime}\left(\theta_{i}\right)\left(y_{i}-\hat{\theta}_{i}\right)=\langle\xi, y-\hat{\theta}\rangle_{w} \leq 0
$$

by (4). It follows that $\operatorname{LHS}(7)-\operatorname{RHS}(7) \geq 0$, completing the proof of (7).
Example 2. If $Y_{i} \sim \operatorname{Poisson}\left(w_{i} \theta_{i}\right), i=1, \cdots, n$ are independent, then the log-likelihood function is

$$
\ell(\theta \mid y)=\sum_{i=1}^{n} w_{i}\left[y_{i} \log \left(\theta_{i}\right)-\theta_{i}\right]+C
$$

where C does not depend on θ. Here $y=\left[y_{1}, \cdots, y_{n}\right]^{\prime}$ and $\theta=\left[\theta_{1}, \cdots, \theta_{n}\right]^{\prime}$ denote the vectors. Let $\psi(z)=z \log (z)-z$. Then $\psi^{\prime}(z)=\log (z)$, so that ψ is convex. Next

$$
\Psi\left(y_{i}, \theta_{i}\right)=\left[y_{i} \log \left(y_{i}\right)-y_{i}\right]-\left[\theta_{i} \log \left(\theta_{i}\right)-\theta_{i}\right]-\left(y_{i}-\theta_{i}\right) \log \left(\theta_{i}\right)=\theta_{i}-y_{i} \theta_{i}+\psi\left(y_{i}\right),
$$

and

$$
-\ell(\theta \mid y)=\sum_{i=1}^{n} w_{i} \Psi\left(y_{i}, \theta_{i}\right)+C^{\prime}
$$

Suppose now that the θ_{i} are non-decreasing, so that $\theta \in \Omega$. Then the MLE is isotonic regression $\hat{\theta}$ of y with weights w.

Remarks. This material is taken from [1].

References

[1] Robertson, T., F. Wright, and R. Dykstra (1988). Order Restricted Inference. Wiley

