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The Problem. The isotonic regression problem may be stated as follows: suppose that

yi:6i+€i>i:17"'7n7 (]-)

where
—OO<(91§62§"'§6n<00 (2)
and €y, - - - , €, are uncorrelated random errors with means 0 and variances of the form E(e?) =
o2 Jw;, where wy, -+ ,w, > 0 are known and 0 < 0% < oo may be known or unknown. For

example, if y; is the average of n; independent measurments of 6; and all random errors
have the same variance, then w; = n;. For another example, suppose that 6; = f(¢;), where
—0 <t <ty < -+ < t, < oo and p is a non-decreasing function. The least squares

estimates minimize .
SS = "wily: — 0> = |y — 62, (3)

i=1
with respect of @ = [0 - - - ,6,,]', subject to (2), where y = [y1,- -+, yn) and w = [wy, - -, wy,]".

Example 1 The following data (part of a larger data set) give temperature anomalies from
1856 to 1880 (1900 = base): —.381,—.461,—.415,—.225,---  —.289,—.295. A plot of the

data is given in Figure 1.

The Solution. The set €2 of § € IR" for which (2) is a convex subset of IR". Thus, the
minimization problem has a unique solution é, the projection of y onto 2 with respect to
(s Vs and 0 € Q is characterized by the conditions 6 € , (y—é, é>w =0, and (y—é,&}w <0

for all £ € €2. The latter two conditions may be written
széz(yz - éz) =0 and Z wi(yi - éz)fz <0 (4)
=1 =1

1



Figure 1: Global Temperature Anomalies

for all € € Q. As a corollary (y — 6,1),, = 0, since +1 € €.
The Cumulative Sum Diagram. Let
Ye=vy1+-+ Uk

and

Wi =wi + - +wy,
for k=0,---,n; and let © and Y be piecewise linear functions with knots at Wy, .-+, W,
for which é(Wk) = O, and Y (W) = Yy. Then © is a convex function, since @2(15) = 0, for
Wi_1 <t <W, k=1,---,n, and this is a non-decreasing function. Moreover O(t) < Y (t)
for 0 < t < W,. By the piecewise linearity, it suffices to show this when ¢t = Wj. Let
¢ =1[-1,---,-1,0,---) (k—1s). Then —Zle wylye — 0] < 0 and, therefore O(W;) =

Or <Y, =Y (W,).

It will be shown that © is the largest convex function that is less than or equal to Y,
but two preliminary results are needed first. If ék < ék-‘,—l, then é)k = Y,. To see this, let
1, =[1,---,1,0,---,0)". Then 0+ al, € Q for all sufficiently small 0 < o < 041 — O, so
that (y — 6,0 + alg), < 0; and this implies +(y — é,a1k>w < 0, or equivalently, Y;, = Oy
Next, if 0 <t < W, let j > 0 be the largest index for which W; < ¢ and @j =Y, and let
k < n be the smallest index for which ©; = Y. Then © is linear on [W;, Wi]. For otherwise,
there would be an i for which j < i < k and 6; < éi—l—l; but then Y; = (:)(WZ), contradicting
the definition of j or k.

Now, let G be any convex function for which G(t) < Y (t) for 0 <t < Wp;let 0 <t < Wy;



Figure 2: The Cumulative Sum Diagram and its Greatest Convex Minorant

and let j and k be as above. Then
(t = W;)G(Wi) + (W), = )G(W;)

G(t) < T
_ (= W)Yi+ (Wi = )Y
= Wi — W,
(t —W)O(Wy) + (W — )O(W;) -
< T = O(1).

The cumulative sum diagram and its greatest convex minorant are displayed in Figure 2.
Thus, 0y, is the left hand derivative of the greatest convex minorant O to the cumulative sum
diagram Y .

The following is implicit in the derivation. If ¢ € {él, e ,én} =V, say, then

> (y;—c)e;=0.

j:éj:c

For the set of j for which éj = c is an interval {i,---,k}. Let e; = 1 or 0 depending on
whether 6; = ¢, or not. Then 0 + ae € Q for small «, so that (y — 0, e)w = 0 by (4) and

Y (yi—cowj=0=(y—0,e),=0

j:éj:c

As a consequence, if h: V — IR is any function, then

n

Z(yi - éz)h(éz)wz = 0. (5)

i=1
This may be seen by summing over the distinct values of h.

The Pool Adjacent Violators Algorithm. The characterization of O is the basis for
the following algorithm: starting with ° = y:
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a) If éf_l < 9;‘3, let 6 = 6% and stop.
b) Otherwise, let j be the smallest index for which é;?_l > éf, let

Nk Nk
wj_lﬁj_l + wjﬁj

0t =00 =
Wj—1 + w;

and éf“ < é’f for j — 1 # 1 # j; then go back to a). The algorithm terminates after a finite

number of steps. The proof that it delivers 0 is left as an exercise.

Problem 1 . Global temperature anomalies from 1856 to 2005 may be found at the website
http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.dat or by entering ”temperature

anomalies” in Google. Find the isotonic regression with equal weights for this data set, and

superimpose the estimated regression function on a scatter plot, as in Figure 1.

The Min-Max Formula. Let
wiy; + -+ wiy; Y (W) =Y Wig)

av(z,j) = =
( j) wl-—i-“-—l—wj Wj—VVi_l
for 1 <i < j <n. Then
O = maxmin av(i, j) (6)

for 1 < k < n. To see this (geometrically), let S = {¢: 6, < 6,} U{0,n} and observe that

0, = max min OUV;) = O(i-) = max min O(W;) — O(Wi-1)

i<k j>k W; — W,y i€S,i<k j€S,j>k W, =W,y

by convexity. Next, recalling that O, =Y, fortes ,
5 Y(W;) =Y (Wio1)

0, = max min
i€S,i<k jes,j>k VV] —W,_4

Clearly,

i LW5) = Y(Wii) < min Y(W;) =Y (Wi_y)
>k W; — W, j€S,j 2k W; — W4
In fact, there is equality. For if j > k and ¢ € S, then

YW;) —Y(Wi) o O(W;) — O(W;_1) > in O(Wy) — O(Wi1)
W; — Wi o W; — Wi T jESj'>k W — Wi .
Relation (6) follows from this and a dual argument for .

Generalized Isotonic Regression. Now let I be an interval; let v» — IR be a convex

function, and let

U(w, 2) = d(w) = ¥(z) = ¢'(2)(w - 2)
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forw,ze€I. If y1, - ,y, € I, then

=1 =1 i=1

for all 0 € Q. Consequently, the left side of (7) is minimized when 0 = 6. To see this,
observe first that

U(y;, 0;) — [V (ys, ;) + V(0;,0:)] = (yi) — (0:) — ¥ (0:) (y: — 6;)

— [ () = & (0:) = &' (6:) (v — 0s)
+9(0;) — & (6:) — ¢'(6:)(6: — 6)
= ['(0;) = ' (0)) (s — 0s)-
So, )
LHES(7) — RHS(7) = 3wl (6:) — 4/ (6:)) (s — 6).
Here

by (5). Next & = [¢(01),--- ,1¥(0,)]" € Q, since 9’ is non-decreasing, and
Zwilbl(ez’)(yi —0;) = (&, y—0), <0,
i=1

by (4). It follows that LHS(7)-RHS(7) > 0, completing the proof of (7).

Example 2 . If Y; ~ Poisson(w;0;), ¢ = 1,--- ,n are independent, then the log-likelihood

function is

“bly) = Zm%m —6]+C,

where C' does not depend on . Here y = [y1, - ,yn) and 8 = [0, -+ ,6,] denote the
vectors. Let 1¥(z) = zlog(z) — z. Then ¥'(2) = log(z), so that 1 is convex. Next

W(y;, 0:) = [yilog(y:) — yi] — [0 log(6s) — 0] — (yi — 0:) log(0;) = 0 — vibi + Y (i),
and

—L(0ly) = sz (vi, 0:) + C".

Suppose now that the 6, are non—decreasmg, so that 6 € Q. Then the MLE is isotonic

regression 0 of y with weights w.

Remarks. This material is taken from [1].
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