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The Problem. The isotonic regression problem may be stated as follows: suppose that

yi = θi + εi, i = 1, · · · , n, (1)

where

−∞ < θ1 ≤ θ2 ≤ · · · ≤ θn <∞ (2)

and ε1, · · · , εn are uncorrelated random errors with means 0 and variances of the form E(ε2i ) =

σ2
i /wi, where w1, · · · , wn > 0 are known and 0 < σ2 < ∞ may be known or unknown. For

example, if yi is the average of ni independent measurments of θi and all random errors

have the same variance, then wi = ni. For another example, suppose that θi = f(ti), where

−∞ < t1 < t2 < · · · < tn < ∞ and µ is a non-decreasing function. The least squares

estimates minimize

SS =
n∑

i=1

wi[yi − θi]
2 := ‖y − θ‖2

w, (3)

with respect of θ = [θ1 · · · , θn]′, subject to (2), where y = [y1, · · · , yn]
′ and w = [w1, · · · , wn]′.

Example 1 The following data (part of a larger data set) give temperature anomalies from

1856 to 1880 (1900 = base): −.381,−.461,−.415,−.225, · · · ,−.289,−.295. A plot of the

data is given in Figure 1.

The Solution. The set Ω of θ ∈ IRn for which (2) is a convex subset of IRn. Thus, the

minimization problem has a unique solution θ̂, the projection of y onto Ω with respect to

〈·, ·〉w; and θ̂ ∈ Ω is characterized by the conditions θ̂ ∈ Ω, 〈y− θ̂, θ̂〉w = 0, and 〈y− θ̂, ξ〉w ≤ 0

for all ξ ∈ Ω. The latter two conditions may be written

n∑

i=1

wiθ̂i(yi − θ̂i) = 0 and

n∑

i=1

wi(yi − θ̂i)ξi ≤ 0 (4)
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Figure 1: Global Temperature Anomalies

for all ξ ∈ Ω. As a corollary 〈y − θ̂, 1〉w = 0, since ±1 ∈ Ω.

The Cumulative Sum Diagram. Let

Θ̂k = θ̂1 + · · · + θ̂k

Yk = y1 + · · ·+ yk,

and

Wk = w1 + · · · + wk

for k = 0, · · · , n; and let Θ̂ and Y be piecewise linear functions with knots at W0, · · · ,Wn

for which Θ̂(Wk) = Θ̂k and Y (Wk) = Yk. Then Θ̂ is a convex function, since Θ̂′
`(t) = θ̂k for

Wk−1 < t ≤ Wk, k = 1, · · · , n, and this is a non-decreasing function. Moreover Θ̂(t) ≤ Y (t)

for 0 ≤ t ≤ Wn. By the piecewise linearity, it suffices to show this when t = Wk. Let

ξ = [−1, · · · ,−1, 0, · · · ]′ (k − 1’s). Then −
∑k

i=1 wk[yk − θ̂k] ≤ 0 and, therefore Θ̂(Wk) =

Θ̂k ≤ Yk = Y (Wk).

It will be shown that Θ̂ is the largest convex function that is less than or equal to Y ,

but two preliminary results are needed first. If θ̂k < θ̂k+1, then Θ̂k = Yk. To see this, let

1k = [1, · · · , 1, 0, · · · , 0]′. Then θ̂ ± α1k ∈ Ω for all sufficiently small 0 < α < θk+1 − θk, so

that 〈y − θ̂, θ̂ ± α1k〉w ≤ 0; and this implies ±〈y − θ̂, α1k〉w ≤ 0, or equivalently, Yk = Θ̂k.

Next, if 0 < t < Wn, let j ≥ 0 be the largest index for which Wj < t and Θ̂j = Yj, and let

k ≤ n be the smallest index for which Θ̂k = Yk. Then Θ̂ is linear on [Wj,Wk]. For otherwise,

there would be an i for which j < i < k and θ̂i < θ̂i+1; but then Yi = Θ̂(Wi), contradicting

the definition of j or k.

Now, let G be any convex function for which G(t) ≤ Y (t) for 0 ≤ t ≤ Wn; let 0 < t < Wn;
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Figure 2: The Cumulative Sum Diagram and its Greatest Convex Minorant

and let j and k be as above. Then

G(t) ≤
(t−Wj)G(Wk) + (Wk − t)G(Wj)

Wk −Wj

≤
(t−Wj)Yk + (Wk − t)Yj

Wk −Wj

≤
(t−Wj)Θ̂(Wk) + (Wk − t)Θ̂(Wj)

Wk −Wj

= Θ̂(t).

The cumulative sum diagram and its greatest convex minorant are displayed in Figure 2.

Thus, θ̂k is the left hand derivative of the greatest convex minorant Θ̂ to the cumulative sum

diagram Y .

The following is implicit in the derivation. If c ∈ {θ̂1, · · · , θ̂n} = V , say, then

∑

j:θ̂j=c

(yj − c)cj = 0.

For the set of j for which θ̂j = c is an interval {i, · · · , k}. Let ej = 1 or 0 depending on

whether θj = c, or not. Then θ̂ ± αe ∈ Ω for small α, so that 〈y − θ̂, e〉w = 0 by (4) and

∑

j:θ̂j=c

(yj − c)wj = 0 = 〈y − θ̂, e〉w = 0

As a consequence, if h : V → IR is any function, then

n∑

i=1

(yi − θ̂i)h(θ̂i)wi = 0. (5)

This may be seen by summing over the distinct values of h.

The Pool Adjacent Violators Algorithm. The characterization of Θ̂ is the basis for

the following algorithm: starting with θ̂0 = y:

3



a) If θ̂k
j−1 ≤ θ̂k

j , let θ̂ = θ̂k and stop.

b) Otherwise, let j be the smallest index for which θ̂k
j−1 > θ̂k

j ; let

θ̂k+1
j−1 = θ̂k+1

j =
wj−1θ̂

k
j−1 + wj θ̂

k
j

wj−1 + wj

and θ̂k+1
i ≤ θ̂k

I for j − 1 6= i 6= j; then go back to a). The algorithm terminates after a finite

number of steps. The proof that it delivers θ̂ is left as an exercise.

Problem 1 . Global temperature anomalies from 1856 to 2005 may be found at the website

http://cdiac.ornl.gov/ftp/trends/temp/jonescru/global.dat or by entering ”temperature

anomalies” in Google. Find the isotonic regression with equal weights for this data set, and

superimpose the estimated regression function on a scatter plot, as in Figure 1.

The Min-Max Formula. Let

av(i, j) =
wiyi + · · ·+ wjyj

wi + · · ·+ wj

=
Y (Wj) − Y(Wi−1)

Wj −Wi−1

for 1 ≤ i ≤ j ≤ n. Then

θ̂k = max
i≤k

min
j≥k

av(i, j) (6)

for 1 ≤ k ≤ n. To see this (geometrically), let S = {` : θ̂` < θ̂`} ∪ {0, n} and observe that

θ̂k = max
i≤k

min
j≥k

Θ̂(Wj) − Θ̂(Wi−1)

Wj −Wi−1
= max

i∈S,i≤k
min

j∈S,j≥k

Θ̂(Wj) − Θ̂(Wi−1)

Wj −Wi−1
,

by convexity. Next, recalling that Θ̂` = Y` for ` ∈ S,

θ̂k = max
i∈S,i≤k

min
j∈S,j≥k

Y (Wj) − Y (Wi−1)

Wj −Wi−1
.

Clearly,

min
j≥k

Y (Wj) − Y (Wi−1)

Wj −Wi−1

≤ min
j∈S,j≥k

Y (Wj) − Y (Wi−1)

Wj −Wi−1

In fact, there is equality. For if j ≥ k and i ∈ S, then

Y (Wj) − Y (Wi−1)

Wj −Wi−1
≥

Θ̂(Wj) − Θ̂(Wi−1)

Wj −Wi−1
≥ min

j′∈S,j′≥k

Θ̂(Wj′) − Θ̂(Wi−1)

Wj′ −Wi−1
.

Relation (6) follows from this and a dual argument for i.

Generalized Isotonic Regression. Now let I be an interval; let ψ → IR be a convex

function, and let

Ψ(w, z) = ψ(w) − ψ(z) − ψ′(z)(w − z)
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for w, z ∈ I. If y1, · · · , yn ∈ I, then

n∑

i=1

Ψ(yi, θi)wi ≥

n∑

i=1

Ψ(yi, θ̂i)wi +

n∑

i=1

Ψ(θ̂i, θi)wi (7)

for all θ ∈ Ω. Consequently, the left side of (7) is minimized when θ = θ̂. To see this,

observe first that

Ψ(yi, θi) − [Ψ(yi, θ̂i) + Ψ(θ̂i, θi)] = ψ(yi) − ψ(θi) − ψ′(θi)(yi − θi)

− [ψ(yi) − ψ(θ̂i) − ψ′(θ̂i)(yi − θ̂i)

+ ψ(θ̂i) − ψ(θi) − ψ′(θi)(θ̂i − θi)

= [ψ′(θ̂i) − ψ′(θi)](yi − θ̂i).

So,

LHS(7) − RHS(7) =
n∑

i=1

wi[ψ
′(θ̂i) − ψ′(θi)](yi − θ̂i).

Here
n∑

i=1

wiψ
′(θ̂i)(yi − θ̂i) = 0,

by (5). Next ξ = [ψ(θ1), · · · , ψ(θn)]′ ∈ Ω, since ψ′ is non-decreasing, and

n∑

i=1

wiψ
′(θi)(yi − θ̂i) = 〈ξ, y − θ̂〉w ≤ 0,

by (4). It follows that LHS(7)-RHS(7) ≥ 0, completing the proof of (7).

Example 2 . If Yi ∼ Poisson(wiθi), i = 1, · · · , n are independent, then the log-likelihood

function is

`(θ|y) =
n∑

i=1

wi[yi log(θi) − θi] + C,

where C does not depend on θ. Here y = [y1, · · · , yn]
′ and θ = [θ1, · · · , θn]′ denote the

vectors. Let ψ(z) = z log(z) − z. Then ψ′(z) = log(z), so that ψ is convex. Next

Ψ(yi, θi) = [yi log(yi) − yi] − [θi log(θi) − θi] − (yi − θi) log(θi) = θi − yiθi + ψ(yi),

and

−`(θ|y) =

n∑

i=1

wiΨ(yi, θi) + C ′.

Suppose now that the θi are non-decreasing, so that θ ∈ Ω. Then the MLE is isotonic

regression θ̂ of y with weights w.

Remarks. This material is taken from [1].
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