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Prologue:An Identity. Let qλ and Qλ denote the Poisson mass function and distribution

function with parameter λ,

qλ(n) =
λne−λ

n!
and Qλ(n) =

n
∑

k=0

qλ(k) (1)

and let hn and Hn denote the Γ(n, 1) density and distribution function

hn(y) =
yn−1e−y

(n − 1)!
and Hn(y) =

∫ y

0

hn(x)dx.

Then

Qλ(n) = 1 − Hn+1(λ) = P [χ2
2n+2 ≤ 2λ];

that is
n

∑

k=0

λke−λ

k!
=

∫ ∞

λ

sne−s

n!
ds. (2)

Equation (2) can be verified by noting that both sides approach 0 as λ → ∞ and then

showing that they have the same derivatives (There is some cancellation of the left). In

particular, it follows from (2) that Qλ(n) is decreasing in λ for all n.

The Problem: Let Nb and Ns be independent Poisson variables with means b and s,

where b is known but s is not and suppose that (only)

N = Nb + Ns ∼ Poisson(b + s)

is observed. The goal is to set confidence intervals, or upper confidence bounds for s.

Frequentist Solutions: UMA Bounds: Uniformly most accurate confidence bounds

may be found by inverting tests of H0 : s ≥ t. Ignoring randomization, the UMP test of this

hypothesis rejects when N ≤ nt, where nt is the greatest integer n for which

Qb+t(n) = Pt [N ≤ n] ≤ α
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and 1 − α is the desired confidence coefficient. So, if N = n, then the confidence set is

Cn = {t : nt > n}. To understand the nature of the nt, let λn solve the equation

Qλ(n) = α.

Then 0 < λ0 < λ1 < · · · < λn → ∞. Then s ∈ Cn iff Qb+s(n) > α iff s ≤ tn := λn − b.

Observe that tn can be negative if n is small and b is large.

The Unified Method: Now consider testing H0 : s = t, using a likeihood ratio test. The

likelihood function, MLE, and likelihood ratio test statistics

L(s|n) =
1

n!
(b + s)ne−(b+s),

ŝ = max[0, n − b],

and

Λt(n) =
L(t|n)

L(ŝ|n)
.

Let ct be the largest value of c for which

Pt [Λt(N) ≥ c] ≥ 1 − α.

The the unified confidence sets are C = {s : Λs(n) ≥ cs}. These is just the usual likeli-

hood ratio intervals, but without the chi-squared approximation. The ct have to computed

numerically. This was done by Feldman and Cousins, [3].

Example 1 : The KARMEN Data: In a study of nuetrino oscillations, a group at the Las

Alamos claimed to have detected a poitive signal (which showed that the nuetrino has mass).

In a followup study the KARMEN Group found N = 0 with b = 3 and a unified confidence

interval of 0 ≤ s ≤ 1.??. The Las Alamos data suggested a signal in the range 1 ≤ s ≤ 1.5,

and the KARMEN Group came perilously close to saying that they had disproved the Las

Alamos results. ♦

Dependence on b when N = 0. For the KARMEN Data, consider testing the hpothesis

H0 : s ≥ 1, and let N ∗ be an independent copy of N , representing a hypothetical replication

of the experiment. When N = 0 and b = 3, the p-value is

p = P1[N
∗ = 0] = e−(b+1) = e−4 = .01833 · · · ,

which is significant at the usual levels. However, if N = 0, then necessarily Nb = 0 and

Ns = 0. So, the background count was lower than expected. It seems unfair (and also not

very wise) to regard a low background count as evidence against H0 : s ≥ 1. To go further
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observe that if Nb and Ns were both observed Nb would be an ancillary statistic and Ns a

complete sufficient statistic, and Nb and Ns are observed when N = 0. So, when N = 0,

P1[N
∗ = 0|N∗

b = 0] = e−1 = .3679 · · ·

seems a more reasonable p value.

Litmus Tests. The simple problem is made much more interesting and difficult by im-

posing:

(L1) The solution should not depend on b when N = 0.

(L2) The solution should be equivariant under monotone transformations of s.

As noted above, if N = 0, then Nb = 0 and Ns = 0. Once this is known the apriori

expectation of Nb cannot be relevant. It is implicit in (L1) that there should be limited

dependence on b when N = 1, say. The consensus among the physicists that I know is

that (L2) is necessary. The UMA and Unified Intervals satisfy (L2), but not (L1). Bayesian

solutions will satisfy (L1).

A Bayesian Solution. The Bayesian solution with a uniform prior has several things

to recommend it. If s has a uniform prior, then the posterior density is

g(s|n) =
1

cnn!
(b + s)ne−(b+s) (3)

where

cn =

∫ ∞

0

1

n!
(b + s)ne−(b+s)ds =

∫ ∞

b

tne−t

n!
dt.

Using the identity (1),

cn =
n

∑

k=0

bke−b

k!
= P [Nb ≤ n]

(The distribution of Nb does not depend on s). Let P n denote posterior probability when

N = n, and let G(·|n) denote the posterior distribution function. Then

1 − G(t|n) = P n[s > t] =

∫ ∞

t
(s + b)ne−(s+b)ds/n!

∫ ∞

0
(s + b)ne−(s+b)ds/n!

=

∫ ∞

b+t
sne−sds

∫ ∞

b
sne−sds

,

which can be recognized as

1 − G(t|n) =
Pt[N ≤ n]

P [Nb ≤ n]
= Pt[N ≤ n|Nb ≤ n].

A level 1−α upper credible limit, un say, is determined by the condition that P n[s > un] = α;

that is,

α = 1 − G(un|n) = Pun
[N ≤ n|Nb ≤ n] (4)
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or equivalently, Qb+un
(n) = αQb(n).

The Frequentist Coverage Probabilities. It follows from (4) that the frequentist coverage

probability of the Bayesian intervals is at least 1 − α,

Ps [s ≤ uN ] > 1 − α (5)

for all 0 ≤ s < ∞. The proof of (5) is quite simple, given the following intuitive facts:

1 − G(t|n) = P n[s > t] is increasing in n for fixed t and 0 < u0 < u1 < · · · < un → ∞.

Assuming this for the moment, Ps[s ≤ uN ] = 1 for all s ≤ u0. For a fixed s > u0, let m = ms

be largest value of n for which un < s, so that s > uN iff N ≤ m. Thus

Ps[s > uN ] = Ps[N ≤ ms] ≤ Pum
[N ≤ m] < Pum

[N ≤ m|Nb ≤ m] = α

Conditional Frequentist Intervals. The Bayesian intervals are conditional frequentist in-

tervals in the following sense: Suppose that N = n is observed and let N ∗ denote an

independent copy of N . If 0 < s ≤ un, then there is a k ≤ n − 1 for which uk < s ≤ uk+1,

so that

Ps[s > uN∗|N∗
b ≤ n] = Ps[N

∗ ≥ k|N∗
b ≤ n] ≤ Puk

[N∗ ≥ k|N∗
b ≤ n]

and, therefore,

Ps[s > uN∗|N∗
b ≤ n] ≤ Puk

[N∗ ≥ k|N∗
b ≤ k] = α (6)

The uniform prior is not invariant under transformations of s, but invariance of the

interval can be obtained by simply forgetting the derivation and keeping the result. As

just explained, the solutions to (6) may reasonably be called conditional frequentist upper

limits. With this definition, the conditional frequentist limits satisfy both litmus tests:

the construction is equivariant under increasing transformations and does not depend on

b when N = 0. The conditional frequentist intervals are conservative for small n when

compared to the frequentist solutions. A conservative solution seems necessary in order to

avoid dependence on b when N = 0 and the embarassing possibility of a degenerate interval.

Problem 1 With α = .1 and b = 3, write computer code to compute un for n = 0, · · · , 25,

and display the results in a graph. Then compute the left side of (5) for s = 0 (0.1) 5, and

graph the result. Comment on any peculiar or interesting aspects of the graphs.

An Inequality: If X is any random variable and u and v are two non-decreasing func-

tions for which u(X) and v(X) have finite expections, then

E[u(X)v(X)] ≥ E[u(X)] × E[v(X)], (7)
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Let µ = E[u(X)] and observe that u(x) ≥ µ for all sufficiently large x. If u(x) ≥ µ for all x,

then P [u(X) = µ] = 1, and (7) is clear. Otherwise, let x0 = inf{x ∈ IR : u(x) ≥ µ}. Then

[u(x) − µ][v(x) − v(x0)] ≥ 0 for all x. It follows that E{[u(X) − µ][v(X)− v(x0)]} ≥ 0 and,

therefore,

E[u(X)v(X)] ≥ µE[v(X)] + v(x0)E[u(X)] − µv(x0) = E[u(X)] × E[v(X)], (8)

as asserted. If X is non-degenerate and v is strictly increasing, then there is strict inequality

in (7) unless u(X) = µ w.p.1. For if it is not the case that u(X) = µ w.p.1, then u(X) < µ

and u(X) > µ with positive probability; and then [u(X)−µ][v(X)−v(x0)] > 0 with positive

probability, so that {E[u(X) − µ][v(X) − v(x0)]} > 0 and there is strict inequality in (8).

Total Positivity. Let X ⊆ IR and Y ⊆ IR be Borel sets and let f : X × Y → [0,∞)

be a non-negative Borel measurable function defined on X ×Y. Then f is said to be totally

positive of order two (TP2) iff

f(x1, y1)f(x2, y2) ≥ f(x1, y2)f(x2, y1) (9)

whenver x1 < x2 and y1 < y2. Observe that if f(x, y) > 0 for all x and y, then (9) is

equivalent to
f(x2, y2)

f(x1, y2)
≥ f(x2, y1)

f(x1, y1)
;

that is, the ratio f(x2, y)/f(x1, y) must be non-decreasing whenever x1 < x2. If f has the

form f(θ, y) = pθ(y), where pθ is a family of probability densities, then the latter property

is called monotone likelihood ratio.

Here are two simple examples.

Example 2 a) If X = Y = IR, then f(x, y) = exy is strictly TP2; for in this case, the

difference between the left side of (9) and the right is

e−(x2y1+x1y2)
[

e(x2−x1)(y2−y1) − 1
]

,

which is positive when x1 < x2 and y1 < y2.

b) If X = Y = (0,∞) then f(x, y) = 1{y ≤ x}, is TP2, as may be seen by considering

cases. ♦

These examples may appear in slightly disguised form. First, if f : X × Y → [0,∞) is

TP2, X0 ⊆ X , and Y0 ⊆ Y, then the restriction of f to X0 × Y0, is again TP2. Next, if f :

X ×Y → [0,∞) is TP2, g : X → [0,∞), and h : Y → [0,∞), then f̃(x, y) = g(x)f(x, y)h(y)

is again TP2. Finally, if f : X × Y → [0,∞) is TP2, g : X̃ → X , and h : Ỹ → Y, then
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f̃(x, y) := f [g(x), h(y)] is again TP2. For example, the Poisson probability mass function

fλ(n) in (1) is TP2, as is the posterior density g(s|n) of s in (3).

Non-decreasing functions. Now let f : X × Y → (0,∞) be TP2, let ν be a sigma

finite measure on Y, and suppose that

∫

Y

f(x, y)dν(y) ≡ 1.

If v is a non-decreasing function for which

w(x) =

∫

Y

v(y)f(x, y)dν(y)

is finite for all x ∈ X , then w is a non-decreasing function. For, if x1 < x2, then

w(x2) − w(x1) =

∫

Y

v(y)

[

f(x2, y)

f(x1, y)
− 1

]

f(x1, y)dν(y)

=

∫

Y

[v(y) − w(x1)]

[

f(x2, y)

f(x1, y)
− 1

]

f(x1, y)dν(y)

≥ 0

by (7).

Back to Signals and Noise. Let G denote the posterior distribution function of s

given N = n,

G(s|n) =

∫ s

0

g(t|n)dt.

Then clearly G(s|n) is increasing s for each n. Next, I claim that 1−G(s|n) is increasing in

n for fixed s. For

1 − G(s|n) =

∫ ∞

0

1(s,∞)g(t|n)dt,

g(s|n) is TP2, and
∫ ∞

0
g(t|n)dt ≡ 1. It follows easily that 0 < u0 < u1 < · · · < un → ∞. For

1 − G(un|n) = α, so that α = 1 − G(un|n) < 1 − G(un|n + 1) and, therefore, un+1 > un.

Problem 2 Show that if X and Y are open intervals and f is positive and continuously

differentiable, then f is TP2 iff
∂2 log f(x, y)

∂x∂y
≥ 0.

Marked Poisson Variables. Now let N ∼ Poisson(b+s), as above, and let (J1, X1), (J2, X2), · · ·
be i.i.d. random vectors for which

P [Ji = 1] =
s

b + s
= 1 − P [Ji = 0]
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Xi|Ji = 0 ∼ fb and Xi|Ji = 1 ∼ fs,

where b, fb, and fs are assumed known, but s is unknown. Then

Xi ∼ f =
bfb + sfs

b + s
.

Problem 3 Show that Ns = J1 + · · · + JN and Nb = N − Ns are independent Poisson

variables with mean s and b.

The Liikelihood Function and MLE. Suppose that we observe N and X1, · · · , XN .

Then the likelihood function, log likelihood function, and score function is

L(s|n,x) =
e−(b+s)

n!

n
∏

i=1

[bfb(xi) + sfs(xi)],

`(s|n,x) =
n

∑

i=1

log[bfb(xi) + sfs(xi)] − (b + s) − log(n!),

and

`′(s|n,x) =
n

∑

i=1

fs(xi)

bfb(xi) + sfs(xi)
− 1.

Observe that `′(s|n,x) is decreasing.

Since `′(s|n,x) is decreasing, the maximum likelihood estimator can be found by a bi-

section algorithm. It may also be found by a simple application of the EM Algorithm. If

J1, · · · , JN were also observed, then the likelihood function, log-likelihood function, and score

function, and MLE would be

L̃(s|n,x, j) =
e−(b+s)

n!

n
∏

i=1

[bfb(xi)]
1−ji[sfs(xi)]

ji,

˜̀(s|n,x, j) = −(b + s) +
n

∑

i=1

{(1 − ji) log[bfb(xi)] + ji log[sfs(xi)]} − log(n!)

= −s + (j1 + · · ·+ jn) log(s) + C,

∂ ˜̀(s|n,x, j)

∂s
= −1 +

j1 + · · ·+ jn

s
,

where C does not depend on s, and

s̃ = j1 + · · · + jn.

Moreover

Es(Ji|n,x) =
sfs(xi)

bfb(xi) + sfs(xi)
,

7



and the EM Algorithm becomes: Starting with an initial guess ŝ0, let

ŝk+1 =
n

∑

i=1

ŝkfs(xi)

bfb(xi) + ŝkfs(xi)

for k = 0, 1, 2, · · · .

Problem 4 Show that if 0 < ŝ0 ≤ n, then ŝ := limk→∞ ŝk is the MLE. Then compute

the MLE when fb is Uniform on [−1, 1], fs(x) = 1 − |x| for |x| ≤ 1, n = 13, and x =

{±.8,±.6,±.4,±.3,±.2,±.1, 0}.

Observe that Es(Ji|n,x) is the conditional probability that the ith event is a signal, given

n and x, and that this is estimated by ŝfs(xi)/[bfb(xi) + ŝfs(xi)].

Regions of High Likelihood. In principle, one can compute

Λs = Λs(n,x) =
L(s|n,x)

L(ŝ|n,x)

and cs, the largest values of c for which

Ps [Λs(N,X) ≥ c] ≥ 1 − α

for each s. Then

Cn,x = {s : Λs ≥ cs}

is a level 1 − α confidence set for s. In practice, cs may be estimated by simulation for a

grid of s.

Bayesian Analysis of the Marked Poisson Model. First observe that

L(s|n,x) = Ke−s

n
∏

i=1

[1 +
s

b
r(xi)].

where

K =
bne−b

n!

n
∏

i=1

fb(xi) = L(0|n,x)

and

r(x) =
fs(x)

fb(x)
.

If s has prior density g, say, then
∫ ∞

0

L(s|n,x)g(s)ds = K

∫ ∞

0

n
∏

i=1

[1 +
s

b
r(xi)]e

−sg(s)ds

= K
n

∑

k=0

Cn,k

bk
µk

= KL̄g(n,x), say
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where

Cn,k =
∑

j1+···+jn=k

n
∏

i=1

r(xi)
ji

and

µk =

∫ ∞

0

ske−sg(s)ds.

Here g can be an improper prior, provided that µk is finite for all k. For example if g(s) = 1,

then µk = k!. The posterior density of s is then

g(s|n,x) =
1

L̄g(n,x)

n
∏

i=1

[1 +
s

b
r(xi)]e

−sg(s)

Bayesian Credible Intervals. If s ∼ Uniform, then

∫ ∞

t

L(s|n,x)ds = K

n
∑

k=0

Cn,k

bk

∫ ∞

t

ske−sds = K

n
∑

k=0

k!
Cn,k

bk
Qt(k).

Let G(·|n,x) denote the posterior distribution function of s. Then

1 − G(s|n,x) =

∑n

k=0 k!Cn,kb
−kQs(k)

∑n

k=0 k!Cn,kb−k
.

As above, upper Bayesian credible limits are determined by

1 − G(un,x|n,x) = P [s > un,x|n,x] = α.

An efficient algorithm for computing the Cn,k and C̄n,k := Cnk/
(

n

k

)

are

Cn,k = Cn−1,k + Cn−1,k−1r(xn).

and

C̄n,k =
(n − 1 − k)C̄n−1,k + kC̄n−1,k−1

n − 1
.

The Discovery Problem. The discovery problem is to determine whether s > 0. This

is sometimes called looking for a needle in a haystack, because the signal is small compared

to the background. Moreover, an extremely high degree of confidence is required for claiming

a discovery, significance at the 5σ level, roughly α = 10−6.

The (Convential) Bayesian View. The conventional way to formulate this question is as

a testing problem H0 : s = 0. Letting G denote the prior distribution function, π0 be the

prior probability that s = 0, and g̃ the conditional density of s given s > 0,
∫ ∞

0

L(s|n,x)G{ds} = π0L(0|n,x) + (1 − π0)

∫ ∞

0

L(s|n,x)g̃(s)ds

= Kπ0 + K(1 − π0)L̄g̃(n,x).

9



The posterior probability that s = 0 is

π∗ =
π0

π0 + (1 − π0)L̄g̃(n,x)
,

and the posterior odds are
π∗

0

1 − π∗
0

=
π0

1 − π0

1

L̄g̃(n,x)
.

Unfortunately, this depends crucially on π0. The (so called) Bayes Factor 1/L̄g̃(n,x) repre-

sents the amount of change in the odds. It does not depend on π0, but only on g̃.

Alternative (Bayesian) Formulation. Another way to formulate the question is to ask is

Ns > 0; that is, have we seen a signal event yet. The probability of Ns = 0 given the data

may be computed as
∫ ∞

0
e−sdG(s)

∑n

k=0 Cn,kb−k
∫ ∞

0
ske−sdG(s)ds

,

or equivalently,
π0 + (1 − π0)

∫ ∞

0
e−sg̃(s)ds

π0 + (1 − π0)
∑n

k=0 Cn,kb−k
∫ ∞

0
ske−sg̃(s)ds

, (10)

and the optimal Bayesian decision procedure is again to decide that Ns > 0 if and only if

this posterior probability is sufficiently small. This appears to depend much less crucially

on π0. It is possible to have large value of (10) even if π0 = 0. For example, if π0 = 0 and g̃

is the uniform density, then(10) is1/[
∑n

k=0 k!Cn,kb
−k].

An Inequality. Let G denote the class of (proper) prior distributions for which g̃ is a

decreasing function. Then it seem reasonable to suppose that g ∈ G, since the signal is small

if it exists. We will find a lower bound for (10) if G ∈ G. First observe that the right side

of (10) is an increasing function of π0 for fixed n,x, and g̃. To see this observe that we may

write (10) as [π0 +(1−π0)A]/[π0 +(1−π0)B], where A < B and A ≤ 1. Then the derivative

of (10) with respect to π0 is

1 − A

π0 + (1 − π0)A
− 1 − B

π0 + (1 − π0)B
≥ 1 − A

π0 + (1 − π0)B
− 1 − B

π0 + (1 − π0)B
≥ 0.

So, the infimum of π0 is attained when π0 = 0, in which case (10) becomes

∫ ∞

0
e−sg̃(s)

∑n

k=0 Cn,kb−k
∫ ∞

0
ske−sg̃(s)ds

.

Next, if g̃ is decreasing, then

∫ ∞

0

skg̃(s)e−sds ≤
∫ ∞

0

ske−sds ×
∫ ∞

0

e−sg̃(s)ds,
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by the correlation inequality, and the asertion follows directly. So, from a Bayesian veiw-

point,and a necessary condition for claiming Ns > 0 is that (10) be less than or equal to α,

or equivalently
n

∑

k=0

k!Cn,kb
−k ≥ 1

α
≈ 106.,

Discovery: The Frequentist View. From a frequentist perspective, the problem is

to test H0 : s = 0 vs. H1 : s > 0. There are several cases that can be considered. We

may use either a likelihood ratio test or a score test (defined below), and we may condition

on n or not. So far, the discussion has emphasized full likelihood (no conditioning) and

the likelihood ratio test statistic. I will now consider conditional likelihood and the score

function. This is a case that has been worked out in some detail and provides some variety.

Also, I will replace s by b × s and (implicitly) consider large values of b.

A Conditional Score Test. Then the conditional likelihood function given n, log likelhood

function, and score function are

Ln(s) =
n

∏

i=1

[

fb(xi) + sfs(xi)

1 + s

]

`n(s) =
n

∑

i=1

log[fb(xi) + sfs(xi)] − n log(1 + s),

and

`′n(s) =

n
∑

i=1

[

fs(xi)

fb(xi) + sfs(xi)

]

− n

1 + s
.

The score test rejects H0 for large values of

`′n(0) =
n

∑

i=1

[

fs(xi)

fb(xi)
− 1

]

.

The score test maximizes the derivative of the (conditional) power function at s = 0, and

so should have good power against small alternatives. The null distribution of `′n(0) may be

approximated by a simple application of the Central Limit Theorem. Observe that

E0

[

fs(xi)

fb(xi)
− 1

]

=

∫
[

fs(x)

fb(x)
− 1

]

fb(x)dx = 0

and

E0

[

fs(xi)

fb(xi)
− 1

]2

=

∫

fs(x)2

fb(x)
dx − 1 = σ2, say,

assumed finite. Thus

Zn =
`′n(0)

σ
√

n
≈ Φ
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is approximately standard normal for large n, and an approximate version of the score test

rejects H0 when Zn > 5.

Pilla, Loader, and Others. In an interesting recent paper Pilla, Loader, and others have

extended this approach to the case that fs depends on nuisance parameters, say fs = fs,θ.

In this case `′n(0) depends on θ, say

`′n(0, θ) =

n
∑

i=1

[

fs,θ(xi)

fb(xi)
− 1

]

and

σ2
θ =

∫

fs,θ(x)2

fb(x)
dx − 1.

In this case

Zn(θ) =
`′n(0, θ)

σθ

√
n

≈ Φ

is approximately standard normal for each θ. In fact, the process Zn(θ) converges in distri-

bution to a Guassian process, Z(θ) say, with mean 0 and covariance function

r(θ, ω) =
1

σθσω

[
∫

fs,θ(x)fs,ω(x)

fb(x)
dx − 1

]

A modified approximate score test is to reject H0 : s = 0 if supθ Zn(θ) > c where

P [sup
θ

Z(θ) > c] = α.

The exact distribution of supθ Z(θ) can only be found in special cases, but there are approx-

imation valid for large c in some generality. For examples, if Z(θ) is a stationary process

(that is, r(θ, ω) = r(θ − ω), then

P [ sup
a≤θ≤b

Z(θ) > z] ∼ Ce−
1

2
z2

and z → ∞.

Questions Concerns. The approach just outlined can be questioned on several counts.

These questions arise even in the absence of nuisance parameters and will be discussed in

that context.

Q1: First, is conditioning on N really a good idea? It seems to ignore the information in

N . Even in the absence of marks, one would reject H0 for a sufficiently large value of N .

Q2: Next, is the normal approximation really reasonable. Recall that we are using it in

the extreme tail (c = 5). Even if one could show that

sup
z

|P0[Zn ≤ z] − Φ(z)| ≤ 10−4,
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we would only be guaranteed an α of approximately 10−4, far short of the 5σ demanded by

the physicists. I think that an approach based on large deviation appoximations may well

be indicated.

Q3: Finally, is the score test really better than the likelihood ratio test, or even an

adequate substitute. There is some evidence that the chi-square approximations are accurate

in the tails (in the sense of relative error). Unfortunately, the only real proofs that I know

require exponential famililies–for example, Chuang and Lai [1].

Problem 5 For the full (unconditional) likelihood, find the asymptotic distributions of `′(0|N,X),

properly normalized, and λ0 = −2 log(Λ0), as b → ∞; and prove your assertions.

Research Questions 1. Develop approximations to P0[Λ0 > c] that are valid when

c = c(b) → ∞ (at a suitable rate) as b → ∞.

2. Can the type I error probability be estimated by simulation to order 10−8 say. This

would require some sophistication.
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