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The Testing Problems. Again suppose that W = In and consider a polyhedral cone

in IRn,

Ω = {θ ∈ <n : 〈γi, θ〉 ≥ 0, i = 1, · · · , m}, (1)

where γ1, · · · , γm ∈ <n are linearly independent; let L = span{γ1, · · · , γm}; and suppose

that y ∼ Normal[θ, σ2In]. The following three hypotheses are considered: H0 : θ ∈ L⊥,

H1 : θ ∈ Ω, and H2 : θ ∈ IRn. For example, in monotone regression, H0 is the hypothesis

that the regression function is constant; in convex regression, it is the hypothesis that the

regression function is linear.

First consider H0 vs. H1 − H0. The log-likelihood function is

`(θ, σ2|y) = −
1

2σ2
‖y − θ‖2 −

1

2
n log(σ2), (2)

and the least squares estimators of θ are the maximum likelihood estimators. So, the maxi-

mum likelihood estimator under H0 is θ̂o = ΠL⊥y and the unconditional maximum likelihood

estimator is θ̂ = ΠΩy. If σ2 is known, then the log-likelhood ratio statistics is

Λ01 = 2
[

`(θ̂, σ2) − `(θ̂o, σ2)
]

=
1

σ2

[

‖y − θ̂o‖2 − ‖y − θ̂‖2
]

.

Here y − θ̂o = y − θ̂ + θ̂ − θ̂o, and ‖y − θ̂o‖2 = ‖y − θ̂‖2 + 2〈y − θ̂, θ̂ − θ̂o〉 + ‖θ̂ − θ̂o‖2 =

‖y − θ̂‖2 + ‖θ̂ − θ̂o‖2 and, therefore,

Λ01 =
1

σ2
‖θ̂ − θ̂o‖2.

If σ2 is unknown, then the maximum likelihood estimators are

σ̂2 =
‖y − θ̂‖2

n
and σ̂2

0 =
‖y − θ̂o‖2

n
,
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and the likelihood ratio statistics is

Λ01 = 2
[

`(θ̂, σ̂2) − `(θ̂o, σ̂2
0)

]

= n log

[

‖y − θ̂o‖2

‖y − θ̂‖2

]

= log

[

‖θ̂o − θ̂‖2 + ‖y − θ̂‖2

‖y − θ̂‖2

]

.

Of course, an equivalent test is to reject if

‖θ̂o − θ̂‖2

‖θ̂ − θ̂o‖2 + ‖y − θ̂‖2

is large.

Next, consider testing H1 vs H2, when σ2 is known. For H2, the maximum likelihood

estimator is y, and

Λ12 = 2
[

`(y, σ2) − `(θ̂, σ2)
]

=
1

σ2
‖y − θ̂‖2.

If σ2 unknown, then an independent estimate is required,

Least Favorable Configurations. Since both null hypotheses are composite, the de-

pendence of the test statistics on parameters, under the hypotheses must be assessed. For

H0 vs. H1 this is simple. The distributions of ‖θ̂o − θ̂‖2 and ‖y − θ̂‖2 are the same for all

θ ∈ L⊥. This is a simple consequence of the following: if z ∈ IRn and θ ∈ L⊥, then

θ̂(z + θ) = θ̂(z) + θ and θ̂o(z + θ) = θ̂o(z) + θ. (3)

To establish the first of these assertions, it suffices to show that θ̂(z)+θ satisfies the necessary

and sufficient conditions for θ̂(z + θ). Clearly, θ̂(z) + θ ∈ Ω and

〈z + θ − [θ̂(z) + θ], ξ〉 = 〈z − θ̂(z), ξ〉 ≤ 0

for all ξ ∈ Ω. Also,

〈z + θ − [θ̂(z) + θ], θ̂(z) + θ〉 = 〈z − θ̂(z), θ̂(z) + θ〉 = 0,

since θ̂(z) ± θ ∈ Ω. The second assertion in (3) may be established similarly (and more

easily). To complete the argument, observe that if y ∼ Normal(θ, In), where θ ∈ L⊥, then y

has the same distribution as z + θ, where z ∼ Φn. It follows that

[‖θ̂(y) − θ̂o(y)‖2, ‖y − θ̂(y)‖2] =d [‖θ̂(z) − θ̂o(z)‖2, ‖z − θ̂(z)‖2].

The situation is slightly more complicated for testing H1 vs H2, since the distribution of

‖y − θ̂(y)‖2 does depend on θ ∈ Ω, but a bound can be derived. If y = z + θ, where z ∈ IRn

and θ ∈ Ω, then θ̂(z) + θ ∈ Ω, so that

‖y − θ̂(y)‖2 = inf
ξ∈Ω

‖y − ξ‖2 ≤ ‖z + θ − [θ̂(z) + θ]‖2 = ‖z − θ̂(z)‖2.
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So,

max
θ∈Ω

Pθ[‖y − θ̂(y)‖2 > u] ≤ P [‖z − θ̂(z)‖2 > u] = P0[‖y − θ̂(y)‖2 > u].

The Null Distribution. The main result is that if θ ∈ L, then

Pθ[
1

σ2
‖θ̂ − θ̂o‖2 ≤ u,

1

σ2
‖y − θ̂‖2 ≤ v]

=
n

∑

k=m

P [χ2
k−m ≤ u]P [χ2

n−k ≤ v]q(n, k),
(∗)

where

q(n, k) = P0[D = k].

Two preliminary results are need to establish this. First, recall the relation θ̂ = ΠL
Ĵ
y+ΠL⊥y,

where Ĵ = {j ≤ m : 〈γj, θ̂〉 > 0}. Recall too the definitions of ΓJ and ∆J and observe that

Γ′
JΠLJ

= (∆′
J∆J)−1∆′

J and ∆′
jΠKJ

= (Γ′
JΓJ)−1ΓJ . It follows easily that

{y : hatJ(y) = J} = {y ∈ IRn : Γ′

JΠLJ
y > 0 and ∆′

JcΠK⊥
Jc

y ≤ 0}.

Next, recall that if z ∼ Φn, then ‖z‖ and z/‖z‖ are independent. In fact, if Q 6= 0 is

any projection matrix, then ‖Qz‖ and Qz/‖QZ‖ are independent. To see this recall that

the eigen values of a projection matrix are either 0 or 1, so that Q may be written as

Q = Cdiag[Ik, 0]C ′, where 1 ≤ k ≤ n and C is orthogonal. Then Cz ∼ Normal[0, diag(Ik, 0)],

so that Cz = [w′, 0, · · · , 0]′, where w ∼ Φk. The independence of ‖z‖ and z/‖z‖ now follows

easily from that of ‖w‖ and w/‖w‖.

For the proof of (*), we may suppose that θ = 0 and σ = 1. Then

P0

[

‖θ̂ − θ̂o‖2 ≤ u, ‖y − θ̂‖2 ≤ v
]

=
∑

J

P
[

Ĵ(y) = J, ‖ΠLJ
y‖2 ≤ u, ‖ΠK⊥

J

y‖2 ≤ v
]

Here ΠLJ
y and ΠK⊥

Jc
y are independent. So,

P [Ĵ(y) = J, ‖ΠLJ
y‖2 ≤ u, ‖ΠK⊥

J

y‖2 ≤ v]

= P [Γ′

JΠLJ
y > 0, ∆JcΠK⊥

Jc
≤ 0, ‖ΠLJ

y‖2 ≤ u, ‖ΠK⊥
J

y‖2 ≤ v]

= P [Γ′

JΠLJ
y > 0, ‖ΠLJ

y‖2 ≤ u] × P [∆JcΠK⊥
Jc

≤ 0, ‖ΠK⊥
J

y‖2 ≤ v]

Next, using the independence of norms and angles

P [Γ′

JΠLJ
y > 0, ‖ΠLJ

y‖2 ≤ u] = P [Γ′

JΠLJ
y > 0]P [‖ΠLJ

y‖2 ≤ u]

and

P [∆JcΠK⊥
Jc

≤ 0, ‖ΠK⊥
J

y‖2 ≤ v].
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So, letting k = #J

P [Ĵ(y) = J, ‖ΠLJ
y‖2 ≤ u, ‖ΠK⊥

J

y‖2 ≤ v]

= P [Γ′

JΠLJ
y > 0] × P [‖ΠLJ

y‖2 ≤ u] × P [∆JcΠK⊥
Jc

≤ 0] × P [‖ΠK⊥
J

y‖2 ≤ v]

= P [χ2
k−m ≤ u]P [χ2

n−k ≤ v]P [Ĵ = J ]

in which the independence of ΠLJ
y and ΠK⊥

J

has been used again. Relation (*) then follows

by writing
∑

J

=

n−m
∑

k=0

∑

#J=k

.

So, for the case of known σ2,

Pθ [Λ01 > c] = P0

[

1

σ2
‖θ̂ − θ̂o‖2 > c

]

=

n
∑

k=m

P [χ2
k−m > c]q(n, k)

for all θ ∈ L⊥, and this may set equal to any given α, by appropriate choice of c. For

unknown σ2, recall that if U and V are independent chi-squared variables with r and s

degrees of freedom, then
U

U + V
∼ β(

r

2
,
s

2
).

So,

Pθ

[

‖θ̂o − θ̂‖2

‖θ̂o − θ̂‖2 + ‖y − θ̂‖2
> c

]

=

n
∑

k=m

P

[

β(
k − m

2
,
n − k

2
) > c

]

q(n, k)

for all θ ∈ L⊥.

Remark. This material is adapted from [1].
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