Convex Polyhedra II: Testing Statistics 710
 October 12, 2006

The Testing Problems. Again suppose that $W=I_{n}$ and consider a polyhedral cone in \mathbb{R}^{n},

$$
\begin{equation*}
\Omega=\left\{\theta \in \Re^{n}:\left\langle\gamma_{i}, \theta\right\rangle \geq 0, i=1, \cdots, m\right\}, \tag{1}
\end{equation*}
$$

where $\gamma_{1}, \cdots, \gamma_{m} \in \Re^{n}$ are linearly independent; let $L=\operatorname{span}\left\{\gamma_{1}, \cdots, \gamma_{m}\right\}$; and suppose that $y \sim \operatorname{Normal}\left[\theta, \sigma^{2} I_{n}\right]$. The following three hypotheses are considered: $H_{0}: \theta \in L^{\perp}$, $H_{1}: \theta \in \Omega$, and $H_{2}: \theta \in \mathbb{R}^{n}$. For example, in monotone regression, H_{0} is the hypothesis that the regression function is constant; in convex regression, it is the hypothesis that the regression function is linear.

First consider H_{0} vs. $H_{1}-H_{0}$. The log-likelihood function is

$$
\begin{equation*}
\ell\left(\theta, \sigma^{2} \mid y\right)=-\frac{1}{2 \sigma^{2}}\|y-\theta\|^{2}-\frac{1}{2} n \log \left(\sigma^{2}\right), \tag{2}
\end{equation*}
$$

and the least squares estimators of θ are the maximum likelihood estimators. So, the maximum likelihood estimator under H_{0} is $\hat{\theta}^{o}=\Pi_{L^{\perp}} y$ and the unconditional maximum likelihood estimator is $\hat{\theta}=\Pi_{\Omega} y$. If σ^{2} is known, then the log-likelhood ratio statistics is

$$
\Lambda_{01}=2\left[\ell\left(\hat{\theta}, \sigma^{2}\right)-\ell\left(\hat{\theta}^{o}, \sigma^{2}\right)\right]=\frac{1}{\sigma^{2}}\left[\left\|y-\hat{\theta}^{o}\right\|^{2}-\|y-\hat{\theta}\|^{2}\right] .
$$

Here $y-\hat{\theta}^{o}=y-\hat{\theta}+\hat{\theta}-\hat{\theta}^{o}$, and $\left\|y-\hat{\theta}^{o}\right\|^{2}=\|y-\hat{\theta}\|^{2}+2\left\langle y-\hat{\theta}, \hat{\theta}-\hat{\theta}^{o}\right\rangle+\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2}=$ $\|y-\hat{\theta}\|^{2}+\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2}$ and, therefore,

$$
\Lambda_{01}=\frac{1}{\sigma^{2}}\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2} .
$$

If σ^{2} is unknown, then the maximum likelihood estimators are

$$
\hat{\sigma}^{2}=\frac{\|y-\hat{\theta}\|^{2}}{n} \quad \text { and } \quad \hat{\sigma}_{0}^{2}=\frac{\left\|y-\hat{\theta}^{o}\right\|^{2}}{n}
$$

and the likelihood ratio statistics is

$$
\Lambda_{01}=2\left[\ell\left(\hat{\theta}, \hat{\sigma}^{2}\right)-\ell\left(\hat{\theta}^{o}, \hat{\sigma}_{0}^{2}\right)\right]=n \log \left[\frac{\left\|y-\hat{\theta}^{o}\right\|^{2}}{\|y-\hat{\theta}\|^{2}}\right]=\log \left[\frac{\left\|\hat{\theta}^{o}-\hat{\theta}\right\|^{2}+\|y-\hat{\theta}\|^{2}}{\|y-\hat{\theta}\|^{2}}\right] .
$$

Of course, an equivalent test is to reject if

$$
\frac{\left\|\hat{\theta}^{o}-\hat{\theta}\right\|^{2}}{\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2}+\|y-\hat{\theta}\|^{2}}
$$

is large.
Next, consider testing H_{1} vs H_{2}, when σ^{2} is known. For H_{2}, the maximum likelihood estimator is y, and

$$
\Lambda_{12}=2\left[\ell\left(y, \sigma^{2}\right)-\ell\left(\hat{\theta}, \sigma^{2}\right)\right]=\frac{1}{\sigma^{2}}\|y-\hat{\theta}\|^{2}
$$

If σ^{2} unknown, then an independent estimate is required,
Least Favorable Configurations. Since both null hypotheses are composite, the dependence of the test statistics on parameters, under the hypotheses must be assessed. For H_{0} vs. H_{1} this is simple. The distributions of $\left\|\hat{\theta}^{o}-\hat{\theta}\right\|^{2}$ and $\|y-\hat{\theta}\|^{2}$ are the same for all $\theta \in L^{\perp}$. This is a simple consequence of the following: if $z \in \mathbb{R}^{n}$ and $\theta \in L^{\perp}$, then

$$
\begin{equation*}
\hat{\theta}(z+\theta)=\hat{\theta}(z)+\theta \quad \text { and } \quad \hat{\theta}^{o}(z+\theta)=\hat{\theta}^{o}(z)+\theta . \tag{3}
\end{equation*}
$$

To establish the first of these assertions, it suffices to show that $\hat{\theta}(z)+\theta$ satisfies the necessary and sufficient conditions for $\hat{\theta}(z+\theta)$. Clearly, $\hat{\theta}(z)+\theta \in \Omega$ and

$$
\langle z+\theta-[\hat{\theta}(z)+\theta], \xi\rangle=\langle z-\hat{\theta}(z), \xi\rangle \leq 0
$$

for all $\xi \in \Omega$. Also,

$$
\langle z+\theta-[\hat{\theta}(z)+\theta], \hat{\theta}(z)+\theta\rangle=\langle z-\hat{\theta}(z), \hat{\theta}(z)+\theta\rangle=0,
$$

since $\hat{\theta}(z) \pm \theta \in \Omega$. The second assertion in (3) may be established similarly (and more easily). To complete the argument, observe that if $y \sim \operatorname{Normal}\left(\theta, I_{n}\right)$, where $\theta \in L^{\perp}$, then y has the same distribution as $z+\theta$, where $z \sim \Phi^{n}$. It follows that

$$
\left[\left\|\hat{\theta}(y)-\hat{\theta}^{o}(y)\right\|^{2},\|y-\hat{\theta}(y)\|^{2}\right]=^{\mathrm{d}}\left[\left\|\hat{\theta}(z)-\hat{\theta}^{o}(z)\right\|^{2},\|z-\hat{\theta}(z)\|^{2}\right] .
$$

The situation is slightly more complicated for testing H_{1} vs H_{2}, since the distribution of $\|y-\hat{\theta}(y)\|^{2}$ does depend on $\theta \in \Omega$, but a bound can be derived. If $y=z+\theta$, where $z \in \mathbb{R}^{n}$ and $\theta \in \Omega$, then $\hat{\theta}(z)+\theta \in \Omega$, so that

$$
\|y-\hat{\theta}(y)\|^{2}=\inf _{\xi \in \Omega}\|y-\xi\|^{2} \leq\|z+\theta-[\hat{\theta}(z)+\theta]\|^{2}=\|z-\hat{\theta}(z)\|^{2}
$$

So,

$$
\max _{\theta \in \Omega} P_{\theta}\left[\|y-\hat{\theta}(y)\|^{2}>u\right] \leq P\left[\|z-\hat{\theta}(z)\|^{2}>u\right]=P_{0}\left[\|y-\hat{\theta}(y)\|^{2}>u\right] .
$$

The Null Distribution. The main result is that if $\theta \in L$, then

$$
\begin{align*}
P_{\theta}\left[\frac{1}{\sigma^{2}}\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2} \leq u,\right. & \left.\frac{1}{\sigma^{2}}\|y-\hat{\theta}\|^{2} \leq v\right] \\
& =\sum_{k=m}^{n} P\left[\chi_{k-m}^{2} \leq u\right] P\left[\chi_{n-k}^{2} \leq v\right] q(n, k), \tag{*}
\end{align*}
$$

where

$$
q(n, k)=P_{0}[D=k] .
$$

Two preliminary results are need to establish this. First, recall the relation $\hat{\theta}=\Pi_{L_{\hat{j}}} y+\Pi_{L^{\perp}} y$, where $\hat{J}=\left\{j \leq m:\left\langle\gamma_{j}, \hat{\theta}\right\rangle>0\right\}$. Recall too the definitions of Γ_{J} and Δ_{J} and observe that $\Gamma_{J}^{\prime} \Pi_{L_{J}}=\left(\Delta_{J}^{\prime} \Delta_{J}\right)^{-1} \Delta_{J}^{\prime}$ and $\Delta_{j}^{\prime} \Pi_{K_{J}}=\left(\Gamma_{J}^{\prime} \Gamma_{J}\right)^{-1} \Gamma_{J}$. It follows easily that

$$
\{y: \operatorname{hat} J(y)=J\}=\left\{y \in \mathbb{R}^{n}: \Gamma_{J}^{\prime} \Pi_{L_{J}} y>0 \text { and } \Delta_{J c}^{\prime} \Pi_{K_{J c}^{\perp}}^{\perp} y \leq 0\right\} .
$$

Next, recall that if $z \sim \Phi^{n}$, then $\|z\|$ and $z /\|z\|$ are independent. In fact, if $Q \neq 0$ is any projection matrix, then $\|Q z\|$ and $Q z /\|Q Z\|$ are independent. To see this recall that the eigen values of a projection matrix are either 0 or 1 , so that Q may be written as $Q=C \operatorname{diag}\left[I_{k}, 0\right] C^{\prime}$, where $1 \leq k \leq n$ and C is orthogonal. Then $C z \sim \operatorname{Normal}\left[0, \operatorname{diag}\left(I_{k}, 0\right)\right]$, so that $C z=\left[w^{\prime}, 0, \cdots, 0\right]^{\prime}$, where $w \sim \Phi^{k}$. The independence of $\|z\|$ and $z /\|z\|$ now follows easily from that of $\|w\|$ and $w /\|w\|$.

For the proof of $\left({ }^{*}\right)$, we may suppose that $\theta=0$ and $\sigma=1$. Then

$$
P_{0}\left[\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2} \leq u,\|y-\hat{\theta}\|^{2} \leq v\right]=\sum_{J} P\left[\hat{J}(y)=J,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u,\left\|\Pi_{K_{\frac{1}{J}}} y\right\|^{2} \leq v\right]
$$

Here $\Pi_{L_{J}} y$ and $\Pi_{K_{J c}^{\perp}} y$ are independent. So,

$$
\begin{aligned}
P[\hat{J}(y) & \left.=J,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u,\left\|\Pi_{K_{J}^{\perp}} y\right\|^{2} \leq v\right] \\
& =P\left[\Gamma_{J}^{\prime} \Pi_{L_{J}} y>0, \Delta_{J^{c}} \Pi_{K_{J^{c}}^{\perp}} \leq 0,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u,\left\|\Pi_{K_{J}^{\perp}} y\right\|^{2} \leq v\right] \\
& =P\left[\Gamma_{J}^{\prime} \Pi_{L_{J}} y>0,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u\right] \times P\left[\Delta_{J^{c}} \Pi_{K_{J_{c}^{c}}^{\perp}} \leq 0,\left\|\Pi_{K_{J}^{\perp}} y\right\|^{2} \leq v\right]
\end{aligned}
$$

Next, using the independence of norms and angles

$$
P\left[\Gamma_{J}^{\prime} \Pi_{L_{J}} y>0,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u\right]=P\left[\Gamma_{J}^{\prime} \Pi_{L_{J}} y>0\right] P\left[\left\|\Pi_{L_{J}} y\right\|^{2} \leq u\right]
$$

and

$$
P\left[\Delta_{J^{c}} \Pi_{K_{J}^{\perp} c} \leq 0,\left\|\Pi_{K_{J}^{\perp}} y\right\|^{2} \leq v\right] .
$$

So, letting $k=\# J$

$$
\begin{aligned}
P[\hat{J}(y) & \left.=J,\left\|\Pi_{L_{J}} y\right\|^{2} \leq u,\left\|\Pi_{K_{J}^{\perp}} y\right\|^{2} \leq v\right] \\
& =P\left[\Gamma_{J}^{\prime} \Pi_{L_{J}} y>0\right] \times P\left[\left\|\Pi_{L_{J}} y\right\|^{2} \leq u\right] \times P\left[\Delta_{J_{c} \Pi_{K_{J c}^{\perp}}} \leq 0\right] \times P\left[\left\|\Pi_{K_{J}^{\frac{1}{J}}} y\right\|^{2} \leq v\right] \\
& =P\left[\chi_{k-m}^{2} \leq u\right] P\left[\chi_{n-k}^{2} \leq v\right] P[\hat{J}=J]
\end{aligned}
$$

in which the independence of $\Pi_{L_{J}} y$ and $\Pi_{K_{J}^{\perp}}$ has been used again. Relation $(*)$ then follows by writing

$$
\sum_{J}=\sum_{k=0}^{n-m} \sum_{\# J=k} .
$$

So, for the case of known σ^{2},

$$
P_{\theta}\left[\Lambda_{01}>c\right]=P_{0}\left[\frac{1}{\sigma^{2}}\left\|\hat{\theta}-\hat{\theta}^{o}\right\|^{2}>c\right]=\sum_{k=m}^{n} P\left[\chi_{k-m}^{2}>c\right] q(n, k)
$$

for all $\theta \in L^{\perp}$, and this may set equal to any given α, by appropriate choice of c. For unknown σ^{2}, recall that if U and V are independent chi-squared variables with r and s degrees of freedom, then

$$
\frac{U}{U+V} \sim \beta\left(\frac{r}{2}, \frac{s}{2}\right) .
$$

So,

$$
P_{\theta}\left[\frac{\left\|\hat{\theta}^{o}-\hat{\theta}\right\|^{2}}{\left\|\hat{\theta}^{o}-\hat{\theta}\right\|^{2}+\|y-\hat{\theta}\|^{2}}>c\right]=\sum_{k=m}^{n} P\left[\beta\left(\frac{k-m}{2}, \frac{n-k}{2}\right)>c\right] q(n, k)
$$

for all $\theta \in L^{\perp}$.
Remark. This material is adapted from [1].

References

[1] Robertson, Tim, Farrell Wright, and Richard Dykstra (1988). Order Restricted Inference. Wiley.

