2009 Fall Stat 426 : Homework 1

Moulinath Banerjee
University of Michigan
Announcement: The homework carries 50 points and contributes 5 points to the total grade. Your score on the homework is scaled down to out of 5 and recorded.

1. A geometric random variable W takes values $\{1,2,3$, . . . $\}$ and $P(W=j)=\theta(1-\theta)^{j-1}$, where $0<\theta<1$.
(a) Prove that for any two positive integers i, j, it is the case that, $P(W>i+j \mid W>i)=P(W>j)$.
(b) Indeed, the converse is also true. We show that if W is a discrete random variable taking values $\{1,2,3$, . . . $\}$ with probabilities $\left\{p_{1}, p_{2}, p_{3}, \ldots.\right\}$ and satisfies the memoryless property, then W must follow a geometric distribution.

Follow these steps to establish the fact that W is geometric. Using the fact that W has the memoryless property, show that

$$
P(W>m)=(P(W>1))^{m},
$$

for any $m \geq 2$. As a first step towards proving this show that

$$
P(W>2)=(P(W>1))^{2}
$$

Define $\theta=P(W=1)$ and $1-\theta=P(X>1)$. You now have,

$$
P(W>m)=(1-\theta)^{m},
$$

for any $m \geq 2$. Use this to show that for any $m \geq 2$,

$$
P(W=m)=\theta(1-\theta)^{m-1} .
$$

But for $m=1$,

$$
P(W=m)=P(W=1)=\theta=\theta(1-\theta)^{m-1}
$$

trivially and the proof is complete. ($5+7=12$ points)
2. If X is random variable with distribution function F, with continuous non-vanishing density f, obtain the density function of the random variable $Y=X^{k}$, for an even integer k.

Hint: Express the probability of the event $\left(X^{k} \leq y\right)$ in terms of the distribution function F of X and proceed from there. (6 points)
3. Let T be an exponential random variable with parameter β and let W be a random variable independent of T which assumes the value 1 with probability $2 / 3$ and the value -1 with probability $1 / 3$. Find the density of $X=W T$.

Hint: It would help to split up the event $\{X \leq x\}$ as the union of $\{X \leq x, W=1\}$ and $\{X \leq x, W=-1\}$. (7 points)
4. (a) A line is drawn through the point $(-1,0)$ in a random direction. Let $(0, Y)$ denote the point at which it cuts the Y axis. Show that Y has the standard Cauchy density:

$$
f_{Y}(y)=\frac{1}{\pi} \frac{1}{1+y^{2}}, y \in \mathbb{R} .
$$

(b) Let X and Y be i.i.d. $N(0,1)$ random variables. Show that X / Y also has the standard Cauchy density. $(7+7=14$ points)
5. Let X be an $\operatorname{Exp}(1)$ random variable. Let $[X]$ denote the largest integer not exceeding X. Show that

$$
P([X]=m, X-[X] \leq t)=e^{-\lambda m}\left(1-e^{-\lambda t}\right) .
$$

Work out the marginals of $[X]$ and $X-[X]$ and deduce that these two random variables are independent. $(6+5=11$ points)

