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13.1

1. Conditional Probability and Expectation

References:
Section 1.5, Lehmann, TPE;
Section 2.4, Lehmann, TSH;
Billingsley, 1979, pages 395 - 407.
Williams, 1991, pages 83 - 92.

Notation: Suppose that X is an integrable rv on a probability space
(Q,A,P), and that A, C A is a sub- o — field. Typically A, = T'(B)
where T is another random variable on (,A,P), T:(Q2,A) — (T,B).

Definition 1.1. A conditional ezpectation of X given A,, denoted

E(X |A,),is an integrable A, — measurable random variable satisfying

4,

Aq

Proposition 1.2. FE(X|A,) exists.
Proof. Consider X > 0. Define v on A, by
v(Ay) = X dP for A, € A,.
44

The measure v is finite since X is integrable, and v is absolutely continuous
with respect to P|s, . hence by the Radon - Nikodym theorem there is an
A, — measurable function f such that

XdP = v(4,) = / fdp .
4y 4y

This function f has the desired properties; ie. f = E(X|A,). If
X = Xt — X~ then E(X*|Ay)) — E(X~|A,) works. mi

Theorem 1.4. (Properties of conditional expectations). Let X,Y,Y, Dbe
integrable rv’'son (2, A,P). Let D beasub— o —fieldof A. Let g be

measurable. Then for any versions of the conditional expectations the following

hold:

(1) (Linearity) E(aeX +0Y |D) = ¢« E(X|D) + bE(Y |D) as.

Gi) EY = E[E(Y|D)].

(iii)  (Monotonicity) X < Y a.s. P implies E(X|D) < E(Y|D) as.
(iv) (MCT) If 0 <Y, 1Y as. P, then E(Y,|D) 71T E(Y|D) as.
(v) Fatou) If 0 <Y, as. P, then E(limY,|D) < lim E(Y,|D)

a.S.
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(vi) (DCT) If 1Y, <X for al n and Y, — Y as. P, then

E(Y,|ID) - E(Y|D) as.

(vii) If Y is D — measurable and XY is integrable,  then
E(XY|D) = YE(X|D). as.

(viii) If F(Y) and D areindependent, then E(Y |D) = EY aus.

3

(ix)  (Stepwise smoothing). If DCECcCA, then
E[E(Y |E)|D] = E(Y|D) as.
(x) If F(Y, X,) is independent of F(X,), then
(Y|X1,X2) = E(Y|X,). as.
(xi) ¢, Holder, Liaponov, Minkowski, and Jensen inequalities hold for
E(e|D).

Jensen: ¢(E(Y|D)) < E[¢g(Y)|D] as. P|D for g convex and
g(Y) integrable.

(xii) If Y, -, Y for » > 1, then E(Y,|D) —, E(Y|D).

(xiii) ¢ is a version of E(Y |D) if and only if E(XY) = E(Xg) for all
bounded D — measurable rv’s X .

(xiv) If P(D) =0 or 1 forall D € D, then E(Y|D) = EY as.

In the case A, = T7'(B) where T:(Q,A) — (T,B), the assertion
that f = E(X|A,)- measurable is equivalent to stating that f(w) = ¢(T(w))
for all w € Q where ¢ i1s a B — measurable function on T ; see lemma 1, TSH,
page 37. Thus for A, = T7'(B) with B € B, the change of variable theorem
(lemma 2) TSH page 38 yields

/ Fdp :/ FdP :/ g(T)dP = / gdP;
Aq T-1(B) T-1(B) B

where Py is the measure induced on (T,BB) by Pr(B) = P(T7'(B)). We
may write

flw) = E(X|Ay)(w) = E(X|T(w)), A, — measurable,
or view it as the B — measurable function ¢ on T

g(t) = E(X|t), B — measurable.

For X = 1,, A€ A, the conditional expectation is called conditional
probability. Its defining equation is thus

P(A,NA) = fdP forall A, € Ay,

4q

and we denote it by P(A|A;) on € and by P(A|t) on T when
Ay, = T7Y(B) where T:(Q,A) — (T,B). Thus for each fixed set A € A,
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we have defined uniquely a.s. Pr a function P(A|[t). But in elementary
classes we think of P(A|t) as a distribution on (£, A) for ech fixed ¢. The
following theorem says that this is usually justified.

Theorem 1.5. (Existence of regular conditional probabilities). If (2,A) is
Euclidean, then there exist determinations of the functions P(A|¢) on T such
that for each fixed ¢ P(A|t) is a probability measure over A. We denote
them by Px;(4), A€ A. (These are called regular conditional probabilities.)

Theorem 1.6. If X isarandom vector and f(X) is integrable, then

B{f(X)|t} = /X F(2)dPy(x)

for all t except possibly in some set B having Pr(B) =0.
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13.2

2. Sufficiency

References:
Section 1.5, Lehmann, TPE;
Sections 1.9 and 2.5, Lehmann, TSH.

Notation: The typical statistical setup is often
Prob(X € A) = Py(A) when 6€0O istrue
where (X, A, Py) is a probability space for each 6 € © .
Definition 2.1. T7:(X,A) — (T,B) is sufficient for 6 (or for

P = {P;:0 €0} ) if there exist versions of Py(A|t) (or of their densities
pg(z |t) ) which do not depend on 6.

Example 2.2. Let X,,---,X, be iid. Bernoulli(f) with 0<6<1; let
T = Zn X;. Then T is sufficient for # since
1
polz,t) 6T — gy mXE

rele 1) = pilt) (z)etu—e)n—t :(z—)

for all # and all z having p,(t) > 0.
Example 2.3. Let X,,---,X, be iid. Poisson(f) with 0< 6 < oco; let
T = ZZL X;. Then T is sufficient for 6 since

R R a2l | 7 !

po(z[t) = ORI —(wl_._m)(;)t-

Example 2.4. Let X,,---,X, beiid. with continuous df F . then the order
statistics are sufficient for F; equivalently IF, = n~! Zé_l lix, < is sufficient
for F. (See TSH pages 40 - 42.)

Example 2.5. Let (X,A) be a measurable space and let (X" ,A") be its
n — fold product space. For any P € M = {all prob. measures on A}, let P"

denote the distribution of X,,---, X, iid P. Let IP, = n™' Zé_l ox, be
the empirical measure. Then IP, is sufficient for P € M. For the proof, see

the end of this section.

Theorem 2.6. (Neyman - Fisher - Halmos - Savage Factorization theorem). If
the distributions {P;: 6 € ©} have densities p;, w.r.t. a o — finite measure pu,
then T is sufficient for 6 if and only if there exist nonnegative B — measurable
functions g, on T and a nonnegative A — measurable function h on X such
that
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Pis) = gT(@Dh(s)  ae. (X,A,p).
Proof. TSH, theorem 2.8 and corollary 1, pages 48 - 49. m]

Example 2.7. (Markov  dependent Bernoulli trials).  Suppose that
X; ~ Bernoulli(p), 1 =1,---,n as in example 2.2, but now suppose that the
X, form a Markov chain with

P(XZ:1|XZ_1:1) = A’Z':273’...’n

Then the remaining transition probabilities are all determined, and

P(X;=1]X,,=0) = (1-Xp/g, PX;=0]X;,=1)=(1-2),

P(X;=0|X,.;,=0) = (1-2p+Ap)/q,

and
O ={(p,A):2p-1)/p\/0 <A <1,0<p <1}
Then
1-2 A
Pa()_(zg):( p;l_ p)arbsct
q"-
where
r = sz—ﬂz
? o = A1 —2p+2p)/[p(1 — \)?]
s = Zzz , b= (1—=X’pg/(1—2p+ A\p)?
=1 ¢ = (1—=2p 4 Ap)/[qg(1 = N)]
t =2z, +z,

Thus (R,S,T) = (ZLQ Xi_lX,»,ijl X;, X, + X,) is sufficient for © by
the factorization theorem; see Klotz, Ann. Statist. 1, 373 - 379.

Example 2.8. (Univariate normal). Let X,,---,X, be iid. N(u,o%).
Then ZX“ZX or (X,8%) (with §? = Z(Xi—)?f/(n—l) is suffi-
cient for (p,0?) by the factorlzation theorem.

Example 2.9. (Multivariate normal). Let X,,---,X, be iid. Ny(u,o?).
Then ZX“ZX X’ or X,Z‘) (with S n_IZXL»XZ»T — ET) is suf-
ficient for (p,3) by the factorization theorem.

Example 2.10. Suppose that X, ,---, X, areii.d. Exponential(y,o):

po(z) = o7 exp( — (& —p)/0)1p 00 (2) -

Then (minX;, n (X; — minX;)) is sufficient for (p,0) by the factorization

=1

theorem.
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Example 2.11. If Y = X3 +e in R" where e ~ N,(0,0°T), then
é = (XTX)"'XTY and SS; = ||l_f—Xé||2 are sufficient for (3,0%) by the
factorization theorem.

Example 2.12. If X,,--- X, are iid. N(u,c’y*) with ¢ known, then
(X ,S?%) is sufficient for u .

Example 2.13. Let X, X, be i.i.d. Exponential(8),
po(z) = Oexp( — 0z)l y(z) . Let 29 >0 be a fixed number, and suppose we

?

observeonly Y, = X; N\ zy, 6; = 1ix, <4y, ¢=1,---,n. Then

n

po(y.8) = [ e ="1" =)'~ = 6" exp(—6T)

=1

where N = Zé_l 6; = the number of observations failed by time z, and
T = Z Yi6; + zo(n — N) = total time on test .
=1

Thus (N ,T) is sufficient for € by the factorization theorem.
Example 2.14. Buffon’s needle problem. M. Perlman and M. J. Wichura give

a very nice series of examples of the use of sufficiency in an article titled “Sharp-
ening Buffon’s Needle”, American Statistician, 29 (1975), 157 - 163.

Proof for example 2.5: First, let
S, ={4A4€A": 7A = A forall nell};

and claim that

1
P"(A]S,) = ] Z 1y(rX) as. P".

T ell

To see this, for any integrable function f:X" — R, let ¥ = f(X), and set

folz) = %Z f9mz)

= - # of permutations of z in A

if f = 1,. Then f, is S, — measurable, since it is a symmetric function of its
arguments.  Also, since the X’s are 1identically distributed, for
AO S Sn (E A0)7
f(z)dP™(z) = [ [f(rz)dP"(z)
Ay Ay

for all 7 € II, . Summing across this equality on 7 yields

) f(z)dP"(z) = ) fo(z)dP"(z) .
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and this implies that
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13.3

3. Exponential Families and Sufficiency

Definition 3.1. Suppose that (X,A) = (R™,B™) for some m > 1, and that
X ~ P, has density

k

po(z) = c(6)expl)  Q;(6)T;(2)]h(x)

i=1

with respect a o — finite measure g on some subset of R™. The p, is a

k — parameter exponential famaly.

Example 3.2. (Bernoulli) If X = (X;,---,X,) are i.i.d. Bernoulli( )
poz) = 027(1—0)" "2 = 0D expllog(6/(1-6)) Y ]

on {0,1}" 1is an exponential family.

Example 3.3. (Normal) If X = (X,,---,X,) are iid. N(u,o%),
6= (p,0?), then

polz) = (270") " Pexp( — (2017 Y (= p)?)
= (2m0™) e exp((—1/20%) 3w + (/o) w)

is an exponential family.

Counterexample 3.4. (Shifted exponential distribution). Suppose that
X, -, X, areii.d. with the shifted Exponential(y , o) distribution

po(z) = o7 exp( — (2 —p)/0)1}, wo)(2) .
Then

n

po(z) = o7 exp[ = Y} (X; = p1)/0] L) (minz;)

=1
is not an exponential family. As noted in section 2, the factorization theorem still
works and shows that (Z (X; — min X;),minX;) are sufficient. Note that a
support set depending on 6 is not allowed for an exponential family.
Example 3.5. (Inverse Gaussian) This distribution is given by the density
A _
plasp, ) = {7 e exp( = Mo — p)/2u’z), > 0.

Here 1 1s the mean, and A is a precision parameter. It sometimes helps to
reparametrize using o = \/p’, yielding
1 1 A

p(z;a,)\) = (2r2®) 2 exp((al)/? — §log/\ — ;08 = 535—1),
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so that for a sample of size n , (Z X;, ZXi_l) is sufficient for the natural
parameter (a/2,)/2).

Theorem 3.6. For the k — parameter exponential family
T = (T\(X), -, Ty(X)) is sufficient.
Proof. This follows immediately from the factorization theorem. O

Remark 3.7. If
b
po(z) = c(G)eXp[ZGJTj(w)] h(z), # € © C R,

with respect to 1, then py(z) is said to have its natural parameterization. Note
that © 1is convex in this parametrization since, for 0 <A <1, A=1-— X\,

9.6 € © Cc R*,

/exp[Z(/\Hj + NOOT; ()] h(z) dp(z)

k

/{epoe (@0} expl> 6T ()]} h() du(z)

i=1

< ([ el o T o) | f expze o) dn(s)}"

by H8lder’s inequality with p = 1/, ¢ =1/X.
Theorem 3.8. If X has the &k =r + s parameter exponential family density

perle) = (8.9 esplY BT () + 36T, (0)] bz
i=1 j=1
w.r.t. p, then the marginal distribution of T' is the exponential family
0 paslt) = (6. exp Y1) (e,
j=1
and the conditional distribution of U given T =t is of the exponential form
i 1) = ) exp(3 i H o)
i=1

Proof. See TSH, page 52; lemma 2.8. o
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13.4

4. Applications of Sufficiency
Our first application of sufficiency is to show quite generally that nothing is

lost in terms of risk if we base decisions on a sufficient statistic.

Theorem 4.1. Let X ~ P, € P, 6€0, and let T = T(X) be sufficient
for P. Suppose the loss function is L:©® x A — R* . Then for any procedure
d=4d(-|X) € D there exists a (possibly randomized) procedure d'(-|T)
depending on X only through T(X) which has the same risk function as
d(-1X): R(#,d") = R(#,d) forall 6.

Proof. First we give the proof for a finite action space A = {a;, --,a;}.

Define a new rule d* by
I(0]T) = Bld(a;| X)|T}
by sufficiency d  does not depend on 6. Then

a/z 2) dPy(s)

— Z L(0,a;) Ey{d(a; | X)}

=1
k

= Y L(0,a;) B{E[d(a; | X)|T]}

=1
k

— Z L(6,a;) Eg{d"(a; | T)}

=/Z I'(a; |t) dPI (1)

= R(6.d),
completing the proof in the case that A is finite.

Now we prove the statement for a general action space A under the
assumption that regular conditional expectations exist. Our proof will use the

following lemma:

Lemma 4.2. If f >0, then

[ran = [ uttes f) > npan
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Proof.
/fd,u // dh dy(z / / (z)dh .
(0,f(2)) T: >h}

Now for the general proof: for a.e. (Pr) fixed value of T =1t, P(-|T=t) is
a probability distribution that does not depend on 6 (since T is sufficient).
Thus for B € B, (a o — field of subsets of the action space A ) we may define

IB10) = [ dBl2) Pyl

O

= / (bounded measurable function of z)dPxr(z|t)
X

= E{d(B|X)|T:t}.
Thus 4" : B, x T — [0,1] is a decision rule. Then

R(e,d):// (6,a)d(da | ) dPy(x)
_ /X/O d({a:L(6,a) > h} |2) dh dPy(z)

by the lemma applied to the inner integral

= /00 / d({a:L(0,a)> h}|z)dPy(z)dh by Fubini
_ /OOO /T /Xd({a:L(e,a)>h}|x)de|T(w|t)dpg(t)dh

by computing conditionally on T
= /Oo /T d"({a:L(6,a) > h}|t) dPE(t) dh

0

by the definition of d°
= / / "({a:L(0,a) > h}|t)dh dP}(t)Fubini

_ / /A L(6,a)d"(da | ) dPF (1)

by the lemma applied to the inner integral
= R(6,d).

Here is a related result which does not involve sufficiency per se, but illus-

trates the role of convexity of the loss function L(6,a) .
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Proposition 4.3. If L(6,-) is convex for each § € © and if A is convex, then

for any rule ¢ € D there is a nonrandomized rule ¢* which is at least as good:
R(0,4") < R(6,¢) forall 6.
Proof.

R(0.,9) = /x /A L(6,a)¢(da|z)dPy(z)
> /x L(G,/Aa¢>(da|z))dP9(x)

by Jensen’s < since L is convex
[ 165 @) ary

X
= R(6,¢").

Note that we can think of ¢  as either
‘(Blz) = ¢ B "By xX 0,1
¢( |$) /Aa¢(da|z)( )7 ¢ A X - [ ’ ]7

or as

qb*(:z) = /Aagb(da|$), ¢ X = A.

Theorem 4.4. Let X ~ Py € P = {P;:0 €0} and let T be sufficient for
P . Suppose that L(6,a) is a convex function of & for each 6 € ® and that
S is an estimator of ¢(#) (possibly randomized, § = ¢(-|X) ) with finite risk

R(6.S5) = E4L(6,S) < forall 6 € ©.
Let S° = E(S|T). Then
(i) R(6,S") < R(4,S) forall €O.

If L(6,a) is a strictly convex function of «, then strict inequality holds in (i)

unless § = § a.s.
Proof. By Jensen’s inequality for conditional expectations we have
E[L(6,S)|T] > L6,E(S|T)) as.
Hence
R(6,5) = E,L(6,S)
B {B[L(6,5)|T]}
> E,{I(0,E(5|T))}

E,L(6,S") = R(#,S").

v
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If L is strictly convex, then the inequality is strict unless § = 8§ a.s. o

March 14, 1997



- 15 - 13.4

13.5

5. Ancillarity and Completeness

The notion of sufficiency involves lack of dependence on 6 of a conditional
distribution. But it is also of interest to know what functions V. = V(X)) have
unconditional distributions which do not depend on 6.

Definition 5.1. Let X ~ Py, € P = {P;:6€0O}. A statistic V =V(X)
( Vi(X,A) = (V,C)) is ancillary if Py(V(X) € C) does not depend on 6
forall C € C. V s first - order ancillary if E,V(X) does not depend on 6.

Definition 5.2. Let X ~ P, and suppose that T is sufficient Then
P, = {P]:6c 0O} is complete (or T is complete) if E,h(T) = 0 for all
6 € © implies h(T)=0 a.s. Pr. Equivalently, T is complete if no non-

constant function A(T') is first - order ancillary.

Theorem 5.3. (Completeness of an exponential family). Suppose that X has
the exponential family distribution with its natural parametrization as in remark
13.3.7, T=(T,, --,T;),and P = {P]:6c©,}. Then P; is complete pro-
vided ©; contains a k — dimensional rectangle.

Proof. Uniqueness of Laplace transforms. See TSH page 132. o

Here are some examples of ancillarity and completeness.
Example 5.4. (Bernoulli). If (X,,---,X,) are iid. Bernoulli(§), then
T = ZXZ» ~ Binomial(n, ) is sufficient and complete by 13.5.3.
Example 5.5. (Normal; one-sample). If X = (X,,---,X,) areiid. N(u,o?),
then (X ,8?%) is sufficient and complete by theorem 13.5.3.
Example 5.6. (Normal; two-samples). If X =(X,,---,X,) are 1ii.d.
N(p,o*), Y =(Y,,---,Y,) are iid N(v,7’) and independent of the X;’s,
then (X ,,Y,S%,S%) is sufficient and complete by theorem 13.5.3.
Example 5.7. (Normal; two-samples with equal means). If the model is as in
example 5.6 but with p=wv, then (X,,Y,8%,S}) is sufficient, but it is not
compete since X —Y ~ N(0,0*/m +7%/n) is first-order ancillary:
EfX -Y)=p—p=0,but A(T) = X —Y # 0. [A consequence is that
there is no UMVUE of ¢(#) = ¢ in this model. Question: what is the MLE and
what is its asymptotic behavior?]
Example 5.8. (Uniform(0,6)). If X =(X,,---,X,) are ii.d Uniform(0,6) for
all 6, then T = maxX; = X, is sufficient and complete:

[
Egh(T) = / h(t)%t“—ldt =0 forall 6;
0

which implies that
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9
/ h(t)t"tdt = 0 for all 6 ;

0
which implies, since h = hT — b~ that
9 9
/ ()t dt = / h=(t)t"'dt = 0  forall 6;
0 0

which implies, by taking differences over 6 and then passing to the o — field of
sets generated by the intervals (the Borel o — field), that

/ h+(t)t”_1dt = / h_(t)t"_ldt =0 for all Borel sets A .
A A

By taking A = [t: h(¢) > 0] in this last equality we find that

/ ()" dt = 0
[t: h(t)> 0]

which implies that A (¢) = 0 a.e. Lebesgue. Choosing A = [t : h(t) < 0] yields
h=(t) = 0 a.e. Lebesgue, and hence h =0 a.e. Lebesgue. Thus we conclude
that

Py(h(T)=0) = 1 for all 6
or h(T) = 0 as. Pp.
Example 5.9. (Uniform(6—-1/2,6+1/2)). If X =(X,,---,X,) are ii.d.
Uniform(6 —1/2,64+1/2), —oo <6 < oo, then T = (X(;y,X,)) is sufficient,
but V(X) = X, — X3y is ancillary and hence T' is not complete:
n—1 n 1 1 1

06— —-) — 0
n—|—1+ 2) (n—|—1+ 2

Ey[X () — X1y —

for all 4.

Example 5.10. ( N(6,1)). If X = -, X,) are iid. N(6,1), then
VX)) = (X, -X, -, X, - X)" ~ N,(0,I —n""11") is ancillary. [Note that
X is equivalent to (X ,V(X)) ]

Example 5.11. (Logistic(f#,1) or Cauchy(6,1)). If X = (X,,---,X,) are
i.i.d. Logistic(6,1) , then T(X) = (X, -+, X(,)) is sufficient for 6 (in fact T
is minimal sufficient; see Lehmann TPE page 43), but
V(X) = o(T(X)) = (X — Xy, -5 Xiny — X(no1)) has a distribution which

is not a function of 6 and hence V is ancillary; thus T is not complete.

Example 5.12. (Nonparametric family; sufficiency of order statistics; ancillarity
of the ranks). If X = (X,,---,X,) areiid F €F, = {all continuous df’s} ,
then T(X) = (X(), +,X(,) is sufficient for F from example 13.2.47. As will
be seen below, T is complete for F € F,, = {all df’s with a density function f
w.r.t. Lebesgue measure A} C F,. If R = (R,,---,R,) = V(X) with
R; = {number of X;'s < X;}, then X is equivalent to (T,R) and
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V(X) = R is ancillary: Pp(R = r) = 1/n! for all r € II = {all permuta-
tions of {1,---.n}}. In fact, as we saw in 581 HW # ??, T and R are inde-
pendent:

1
Pr(T € A,R=r) = —'/ nldF*(z), A € B"(ordered), r €
A

n!
This phenomenon is quite general, as is shown by the following theorem.

Theorem 5.13. (Basu). If Tis complete and sufficient for the family
P = {P,:0 € O}, then any ancillary statistic V is independent of T .

Proof. Since V is ancillary, Py(V € A) = p, does not depend on 6 for all
A. Since T is sufficient for P, P(V € A|T) does not depend on 6, and
E,P(VeA|T) = P(VeEA) = py,or

EAP(V €A|T) — py} =0 for all 6.

Hence by completeness P(V € A|T) = p, as. P. Hence V is independent
of T. o

Now we will prove the completeness of the order statistics claimed in exam-
ple 5.10 above.

Theorem 5.14. (Completeness of the order statistics). Let F be a convex
class of absolutely continuous df’s which contains all uniform densities. If
X = (Xy,,X,) areiid. FeF, then T(X) = (X, ,X(,) is a com-
plete statistic for F € F .

Proof. We have to show that Eph(T) =0 for all F €F implies
Pp(h(T)=0) = 1 forall FeF.
Step 1: A function 6(z) (such as 6(z) = h(T(z))) is a function of T only if it
is symmetric in its arguments; é(rz) = 6(z) with 7z = (z,4), ", 2s,)) for
any permutation © = (n(1),---,7m(n)) of (1,---,n).

Step 2: Let f,,---,f, be n densities corresponding to F,,---,F, € F . and
let oy, --,a, > 0. Then f(z) = 21 a; fi/ 21 a; is a density correspond-
ingto F€F, and Eph(T) = 0 implies

[ o s fe e e = o

or
[ oo T aifitads = 0
j=1 =1
for all a;,---,a, > 0. The left side may be rewritten as a polynomial in
«y,-++,a, which is identically zero, and hence its coefficients must all be zero.
In particular, the coeflicient of «;----- «, must be zero. This coefficient is
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m eIl
=Y [ [own ] ftw s
mell =1
= Z //5($)H fi(z;)d= by symmetry of ¢
mell =1
=t [ [ o) ] o) ds
=1
Now let fi(z) = (b; — a,»)_ll[a“bi](w) , 4+=1,---,n,; ie. uniform densities on

[a;,b;] . Hence C =0 implies

b b
/ / 6(z)dz = 0,

hence the integral of 6 over any n — dimensional rectangle is 0, and this

implies that 6 = 0 except on a set of Lebesgue measure 0. Thus

Pp(h(T)=0) = 1 forall FeF. o
For another method of proof, see Lehmann, TPE, problem #1.5.28, page 68.

Remarks on Sufficiency and Ancillarity
Suppose w have our choice of two experiments:
(i) We observe X ~ P;°;
(ii) We observe T ~ PJ], and then conditional on T =¢ we observe
X ~ PX|t .
Then the distribution of X is P; in both cases. Thus it seems reasonable that:
A. Inferences about 6 should be identical in both models.
B. Only the experiment of observing T ~ P] is informative about 6.
We are thus lead to:

Sufficiency principle: If T is sufficient for 6 in a given model, then identical
conclusions should be drawn from data points z; and =z, having
T(z,) = T(z,). Thus T partitions the sampe space X into regions on which
identical conclusions are to be drawn. The adequacy of this principle in a deci-

sion theoretic framework was demonstrated in 13.4.1

Testing the adequacy of the model: The adequacy of the model can be tested by
seeing whether the data X given T =1, behave in accord with the known (if
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the model is true) conditional distribution Py, .

Recall that a sufficient statistic T' induces a partition of the sample space;
and in fact it is this partition, rather than the particular inducing the partition,
that is the fundamental object.

No coarser partition of the sample space that retains sufficiency is possible,

then T 1s called minimal sufficient. See theorem 5.3, corollary 5.1, lemma 5.1,

and the example in Lehmann, TPE, pages 41 - 43.
Consider again the typical statistical setup X ~ P; on (X ,A) for some
unknown 6 € © .

Definition 5.15. If X = (T,V) where the distribution of V is independent
of 6, then V is called an ancillary statistic. Then T 1is called conditionally suf-
ficient for 6: we have f4(t,v) = fo(t|v)f(v) .

More generally, suppose that 8 = (6,,6,) where 6, is a nuisance parame-

ter and @ = ©, x0,. Now suppose that X = (T,V) where P} = Pez and

PeTW:U = PﬁTlW:U for all v. Then V 1is called ancillary for 6, in the presence

of 0y: fy 4,(t,v) = fo(tlv) fo,(v) . The leads to the following conditionality

principle:

Conditionality Principle:  Conclusions about 6, are to be drawn as if V
were fixed at its observed v . Conditioning on ancillaries leads to partition-
ing the sample space (just as sufficiency does). The degree to which these
sets contain differing amounts of information about 6, determines the bene-

fits to be derived from such conditioning.

Examples showing the reasonableness of this principle appear in Cox and Hinkley

(1977), pages 32, 34, 38. They concern:
¢ Random sample size.
e  Mixtures of two normal distributions
e Conditioning on the independent variables in multiple regression.
e Two measuring instruments.
e  Configurations in location - scale models.

Examples showing difficulties with this principle center on nonuniqueness and

lack of general methods for constructing them.
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13.6

6. Unbiased Estimation

One of the classical ways of restricting the class of estimators which are to be
considered is by imposing the restriction of unbiasedness. This is a rather severe
restriction, and in fact, if a complete sufficient statistic T is available, then there

exists a unique uniform minimum variance unbiased estimator, or UMVUE.

Theorem 6.1. (Lehmann - Scheffé ). Suppose that T is complete and suffi-
cient for 6. Let S be unbiased for ¢(6) with finite variance. Then

S = E(S|T) is the unique UMVUE of ¢(6): for any unbiased estimator
§ = d(X) of g(6).

R(6.5") = E,(9(8) = §7)" < E,(9(8) — d(X))* = R(6,d)

for all 6.
Proof. First,

EeS* = E,E(S|T) = E;5 = ¢(0),
so S is unbiased. Also Vary[S'] < Vary[S] by Blackwell - Rao. Moreover,
S" does not depend on the choice of §:if §; is unbiased, then
Ey(S" —5)) = E,E(S|T) — E(5,|T)]
= Ey(S) — Ey(S5)
= g(6) — g(6) =0

*

forall # € ©. Thus §° = S as. Pp. o

Remark 6.2. Note that by the Rao - Blackwell theorem 13.4.2, an analogous
result for UM(Risk)UE holds when L(6,-) is convex for each 6: S* = E(S|T)
in fact minimizes R(0,S5) = E,L(6,S) for all § in the class of unbiased esti-
mates. See Lehmann, TPE, pages 79 - 80.

For a little on the asymptotic efficiency of UMVUE’s in parametric problems,
see Portnoy, Ann. Statist. 5 (1977), 522 - 529.

Methods for finding UMVUE estimators. 6.3. When T is sufficient and
complete we can produce UMVUE’s by several different approaches:

A. Produce an estimator of ¢(#) that is a function of T and is unbiased.
B. Find an unbiased estimator S of ¢(#) and compute E(S|T).
C. Solve E;d(T) = ¢(8) for d .

Example 6.4. (Normal(y,c”)). Suppose that X;,---,X, are iid. N(u,o?).
Then (X ,8?) is sufficient and complete by theorems 13.3.6 and 13.5.3.
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A. For estimation of ¢(6)=p, EX) = p, so X is the UMVUE of
g9(6) = p

B. If pu=0 1s known, then Y = ZT X? is sufficient and complete, and
Y/o* ~ x%,s0

orf2p P T
LT L S

B( 7 -

for r > —n and KMYT/2 is the UMVUE of ¢(0) = o .

C.(i) If 6 =(pu,0”) asin A, then ¥V = ZT (X; — X)* has (Y/o?) ~ x2_,,
SO Kn_17TY7/2 = K, . (n— 1)”2 S" is the UMVUE of ¢" by method A.

C.(ii) If g(#) = p/o, then X K, ;_; 87" is the UMVUE of ¢(d) by indepen-
dence of X |, § (under normality only!) and method A.

C.(ii) If g(0) = p+ 2,0 = 2z, where P(X <z,) = p fora fixed p €(0,1),
then X + 2,K,_,,5 is the UMVUE.

C.(iv) If 06 =1 1is known and ¢(f) = P, (X <z) = ®(z —p) with z € R
fixed, then &(( X)/\/1—=1/n) is the UMVUE. [Question: What is the
UMVUE of thls probabﬂlty if o is unknown?]

Proof. This goes by method B: §(X) = 1;x, <, is an unbiased estimator of
9() = P,(X <z);and

*

S" = E(S|T) = P(X,<z|X)
= P(X,-X<z-X|X)
= PX,-X<z-X|X=%) on [X=7

by Basu’s theorem since the ancillary X; — X ~ N
dent of X .

Example 6.5. (Bernoulli(6)). Let X,,---,X, beii.d. Bernoulli(f).
(i). Then X =T/n has E,X = 6 and hence is the UMVUE of 6.
(ii). If ¢g(6) = 6(1 —6), (T'/n)(n —T)/(n—1) is the UMVUE.

Proof. Here we use method C: Let d(t) be the estimator; then we want to

0,(1 —1/n)) is indepen-

solve

Zd 9f1—9) = (1 —6) = ¢(6).

Equivalently,
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or

20 %)t B (1f9)(1+1f9)n_2‘

t=0

By setting p = /(1 — 0) and expanding the power on the right side we find
that

Equating coefficients of p' on both sides yields d(0) = d(n) = 0,

i = C-DI0) . t= 1

or

d(t):t(zi_t) t =0,

(iii). If ¢(6) = 6" with r < n, then
T T—l T—7r+1
n n—l n—r-4+1

is the UMVUE.

Proof. Method B: 6" = Py(X;=---=X, = 1),50 § = ljx,—.ox, =1 I8
an unbiased estimator, and the UMVUE is §° = E(§|T):
S* = E(S|T=t) = P(X,=---=X,=1|T=t)
0 .t t<r
= — 1
O R G L C ) B =
t—r t
n—r.,mn
e (A RIS
t t—1 t— 1
_ i Y S

nn—l n—r—l—l

Example 6.6. (Two normal samples with equal means). Suppose that
X = (Xy,-,X,,) are iid. N(u,0?) and that ¥ = (V;,---,Y,) are ii.d.
N(p,7*). A UMVUE estimate of g(6) = u does not exist.

Proof. Suppose that ¢« = T2/0'2 is known. Then the joint density is given by

const. - exp( ZX2 zn:Y]?) % ZX —I—ZY
j=1
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SO

T, = (aixf—inQ,aZX,»JrZY;)
j=1

=1

is a complete sufficient statistic. Since

ZX—I— ZY :,um—l—ln),
= (O X+ (1/a) Y Y,)/(m + (1/a)n)

is a UMVU estimate for p. Note that S, is unbiased for the original model for
any ¢ > 0. Suppose there exists a UMVUE of ¢(f) = p in the original model,
say §° . Then Vary(S") < Vary(S,), hence also when 72 = ao?; but then
S, is the unique UMVUE, which implies $° = §,. But since @ can be arbi-
trary, this is a contradiction; §° cannot be equal to two different estimators at

the same time. o

2

Also see Lehmann, TPE, example 6.1, page 444. If ¢* and 7% are known,

then the estimator

_ _ 72/n
AX 1-\)Y ith A= ———
+ ) w o?/m + 72/n

2

has minimal variance over convex combinations of X and Y ; and if ¢° and

7% are unknown, then a perfectly reasonable estimator is obtained by replacing

A by

- fz/n

= -2
a’/m+ 7 /n
where 7 and ¢ are estimates of 7 and o .

Example 6.7. (An inadmissible UMVUE). Suppose that X, ,---
N(6,1), g(6) = 6*. Then

, X, are i.i.d.

— ¢

BAX" = 1) = Var(X) + {B(X))" -

I | =

so X — 1/n is the UMVUE of 6*. But it is inadmissible since sometimes
X’ - 1/n <0 whereas 6> >0. Thus the estimator
0(X) = ()?2 —1/n) \/ 0 has smaller risk: Lemma 5.1, TPE, page 113.

Proof. If ¢(0) € [a,b] for all § € O, then
R(6,d) = E,L(6,d)
= EyL(8, d){1jaxy <o) + Ljacxys g
+ BoL(0,d)1}, < axy<i -
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Example 6.8. (Another inadmissible UMVUE). Suppose that X,,---, X, are
iid. N(0,0%). Then T = Z? X? is sufficient and complete so the MLE

T/n = n! ZZL X? is the UMVUE of o? since E(T/n) = o’. But T/n is

inadmissible for squared error loss since: consider estimates of the form

d,(T)= ¢T : then
R(c?,d,) = Ep(c® — ¢T)’
= E{co*(T)o* —n) + (nc —1)0*}’
= c%0'2n + (nc —1)%0"
= o*{1 — 2nc + n(n+2)c*}
which is minimized by ¢ = (n+42)7'. Thus d;/,45(T) = T/(n+2) has mini-

mum squared error in the class d,. It is, in fact admissible; see TPE page 274,

and Ferguson pages 134 - 136.

See Ferguson pages 123 - 124 for a nice description of a bioassay problem in

which sufficiency was used to good advantage.
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13.7

7. Nonparametric Unbiased Estimation; U - statistics

Suppose that P is a probability distribution on some sample space (X, A)
and suppose that X,,---, X, areiid. P. Let h:X"™ — R is a symmetric

“kernel” function:

h(ﬂ—ﬁ) = h(ww(l)a"'aww(m)) = h(zla"'vwm) = h(w)

for all z € X" and w€ll,; if & is not symmetric we can symmetrize it:

replace h by

h(z) = i' > h(mz).

m'WGHm
Note that
Eph(Xyooo Xa) = [0 [ oo dP(e) - dP(s,) = o(P).
Now suppose that X,,---, X, are i1id. P with =n>m, write
X = (X,,-,X,), and let

U, = U.(X) = (i—)Zh(Xil,---,Xim)

n
where Z denotes summation over the ( ) combinations of m distinct ele-
m

c

ments {i;,--+,4,} of {1,---,n}. U, is called an mth - order U - statistic.
Clearly U, is an unbiased estimator of ¢(P):
EpU, = g(P).

Moreover, U, is a symmetric function of the data:
U,(X) = U,(rX)

for all 7 € II,). All this becomes more explicit when X = R and we write F
instead of P for the probability measure described in terms of its distribution
function. Then we write the empirical measure IP, in terms of the empirical

distribution function IF,, and this is equivalent to the order statistics

T = )_(() = (X(l),---,X(n)),and Un = Un()_(()) IIl fact, lf
S = hnXy, -, X,,)
so that ErS = g(F), then

*

" = E{$|T} = U,.
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Example 7.1. Let F, = {FEF E; X’ <},
g(F) = EpX = /mdF(z) Then
1O 1
=) X, ==Y X,
2 Xi= 00 X

is the UMVUE of g¢(F) (since T(X) = (X, -+, X(,) is sufficient and com-
plete for F,. Note that E(X,|T(X)) = X .

Example 7.2. If F, = {FEF E; X<} and
g(F) = (ErX)" = Ep(X,X,), Then

1

() 1<i<i<n

is the unique UMVUE of ¢(F) = (EzX)*.
Example 7.3. If F, = {FcF,: Ez X" <o} and
1

g(F) = Varp(X) = §EF(X1 —X2)27
Then
1 1 1 t _
U = = Z _(Xi_Xj)2 = (X; - X)2 = 5’
(2)19@92 n—1a

is the unique UMVUE of ¢(F) = o*(F).
Example 7.4. If F €F,

o(F) = Floo) = [ 1 (@) dF ().

then U, = er_l 1~ o 2(Xi) = IF,(z,) is the unique UMVUE of ¢(F).
Example 7.5. Suppose that (X;,Y;),---,(X,,Y,) areiid. F on R?. Set

mmz/fwww—FWwwmwwwww

:/ / 2y, 2s)dF(2) - dF (z3)

where z; = (z;,y;), 1 = ,5 , and
1
h(zl )T Zs) = 4 1/)(5151 y Ly, fEB) ¢($1 y T4, fﬂs) ¢(y1 y Y2, ys) ¢(y1 yYa s ?/5)
where
77/)(1/,1 7u2’u3) - 1[“2 <w] T 1[“3 <ul -
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Remark 7.6. Note that U, has a close relative, the m th order V - statistic
V, defined by

v,

mz Zh W X )

=1

_ /.../mh(;pl,---,xm)dIPn(xl)---dIPn(xm)

in which the sum is extended to include all of the diagonal terms.

Remark 7.7. A necessary condition for ¢(P) to have an unbiased estimate is
that g(aP, + (1 —a)P,y) be a polynomlal (in « ) of degree m < n.

Proof. If ¢(P / / = dP™(z) , then

g(aP, + (1—a)Py)

= [ [ Mo daPi () + (1= @Pe)} -+ aPi(en) + (1-a)Pis

is a polynomial of degree m .

Remark 7.8. There is a lot of theory and probability tools available for U —
statistics. See Serfling (1980), chapter 5, and Lehmann, Nonparametrics, (1975),
appendix 5. For some very interesting work on U-processes, see e.g. Arcones and
Giné, Ann. Prob. 21 (1993), 1494 - 1542, a topic which was apparently initiated
by Silverman (1983).
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