Chapter 1 Special Distributions

1. Special Distributions

Bernoulli, binomial, geometric, and negative binomial
Sampling with and without replacement; Hypergeometric
Finite sample variance correction
Poisson and an "informal" Poisson process
Stationary and independent increments
Exponential and Gamma; Strong Markov property
Normal, and the classical CLT; Chi-square
Uniform, beta, uniform order statistics
Cauchy
Rademacher, and symmetrization
Multinomial, and its moments
2. Convolution and related formulas

Sums, products, and quotients
Student's t; Snedecor's F; and beta
3. The multivariate normal distribution

Properties of covariance matrices
Characteristic function
Marginals, independence, and linear combinations
Linear independence
The multivariate normal density
Conditional densities
Facts about Chi-square distributions
4. General integration by parts formulas

Representations of random variables
Formulas for means, variances, and covariances via integration by parts

Chapter 1

Special Distributions

1 Special Distributions

Independent Bernoulli Trials

If $P(X=1)=p=1-P(X=0)$, then X is said to be a $\operatorname{Bernoulli}(p)$ random variable. We refer to the event $[X=1]$ as success, and to $[X=0]$ as failure.

Let X_{1}, \ldots, X_{n} be i.i.d. Bernoulli (p), and let $S_{n}=X_{1}+\cdots+X_{n}$ denote the number of successes in n independent $\operatorname{Bernoulli}(p)$ trials. Now

$$
P\left(X_{i}=x_{i}, i=1, \ldots, n\right)=p^{\sum_{1}^{n} x_{i}}(1-p)^{n-\sum_{1}^{n} x_{i}}
$$

if all x_{i} equal 0 or 1 ; this formula gives the joint distribution of X_{1}, \ldots, X_{n}. From this we obtain

$$
\begin{equation*}
P\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0, \ldots, n, \tag{1}
\end{equation*}
$$

since each of the $\binom{n}{k}$ different placings of k 1's in an n-vector containing k 's and $n-k 0$'s has probability $p^{k}(1-p)^{n-k}$ from the previous sentence. We say that $S_{n} \sim \operatorname{Binomial}(n, p)$ when (1) holds. Note that $\operatorname{Binomial}(1, p)$ is the same as $\operatorname{Bernoulli}(p)$.

Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli (p). Let $Y_{1} \equiv W_{1} \equiv \min \left\{n: S_{n}=1\right\}$. Since $\left[Y_{1}=k\right]=\left[X_{1}=\right.$ $0, \ldots, X_{k-1}=0, X_{k}=1$], we have

$$
\begin{equation*}
P\left(Y_{1}=k\right)=(1-p)^{k-1} p \quad \text { for } \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

We say that $Y_{1} \sim \operatorname{Geometric}(p)$. Now let $W_{m} \equiv \min \left\{n: S_{n}=m\right\}$. We call W_{m} the waiting time to the m -th success. Let $Y_{m} \equiv W_{m}-W_{m-1}$ for $m \geq 1$, with $W_{0} \equiv 0$; we call the Y_{m} 's the interarrival times. Note that $\left[W_{m}=k\right]=\left[S_{k-1}=m-1, X_{k}=1\right]$. Hence

$$
\begin{equation*}
P\left(W_{m}=k\right)=\binom{k-1}{m-1} p^{m}(1-p)^{k-m} \quad \text { for } k=m, m+1, \ldots \tag{3}
\end{equation*}
$$

We say that $W_{m} \sim \operatorname{Negative~} \operatorname{Binomial}(m, p)$.
Exercise 1.1 Show that Y_{1}, Y_{2}, \ldots are i.i.d. $\operatorname{Geometric}(p)$.
Since the number of successes in $n_{1}+n_{2}$ trials is the number of successes in the first n_{1} trials plus the number of successes in the next n_{2} trials, it is clear that for independent $Z_{i} \sim \operatorname{Binomial}\left(n_{i}, p\right)$,

$$
\begin{equation*}
Z_{1}+Z_{2} \sim \operatorname{Binomial}\left(n_{1}+n_{2}, p\right) . \tag{4}
\end{equation*}
$$

Likewise, for independent $Z_{i} \sim \operatorname{Negative~} \operatorname{Binomial}\left(m_{i}, p\right)$,

$$
\begin{equation*}
Z_{1}+Z_{2} \sim \text { Negative Binomial }\left(m_{1}+m_{2}, p\right) . \tag{5}
\end{equation*}
$$

Urn Models

Suppose that an urn contains N balls of which M bear the number 1 and $N-M$ bear the number 0 . Thoroughly mix the balls in the urn. Draw one ball at random. Let X_{1} denote the number on the ball. Then $X_{1} \sim \operatorname{Bernoulli}(p)$ with $p=M / N$. Now replace the ball back in the urn, thoroughly mix, and draw at random a second ball with number X_{2}, and so forth. Let $S_{n}=X_{1}+\cdots+X_{n} \sim \operatorname{Binomial}(n, p)$ with $p=M / N$.

Suppose now that the same scheme is repeated except that the balls are not replaced. In this sampling without replacement scheme X_{1}, \ldots, X_{n} are dependent $\operatorname{Bernoulli}(p)$ random variables with $p=M / N$. Also

$$
\begin{equation*}
P\left(S_{n}=k\right)=\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}} \tag{6}
\end{equation*}
$$

provided the value k is possible (i.e. $k \leq M$ and $n-k \leq N-M$). We say that $S_{n} \sim$ Hypergeometric (N, M, n).

Suppose now that sampling is done without replacement, but the N balls in the urn bear the numbers a_{1}, \ldots, a_{N}. Let X_{1}, \ldots, X_{n} denote the numbers on the first n balls drawn, and let $S_{n} \equiv$ $X_{1}+\cdots+X_{n}$. We call this the finite sampling model. Call $\bar{a} \equiv \sum_{1}^{N} a_{i} / N$ and $\sigma_{a}^{2} \equiv \sum_{1}^{N}\left(a_{i}-\bar{a}\right)^{2} / N$ the population mean and population variance. Note that X_{i} has expectation \bar{a} and variance σ_{a}^{2} for all $i=1, \ldots, n$, since we now assume $n \leq N$. Now from the formula for the variance of a sum of random variables and symmetry we have

$$
\begin{equation*}
0=\operatorname{Var}\left(\sum_{1}^{N} X_{i}\right)=N \operatorname{Var}\left(X_{1}\right)+N(N-1) \operatorname{Cov}\left(X_{1}, X_{2}\right) \tag{7}
\end{equation*}
$$

since $\sum_{1}^{N} X_{i}$ is a constant. Thus

$$
\begin{equation*}
\operatorname{Cov}\left[X_{1}, X_{2}\right]=-\sigma_{a}^{2} /(N-1) . \tag{8}
\end{equation*}
$$

Thus an easy computation gives

$$
\begin{equation*}
\operatorname{Var}\left[S_{n} / n\right]=\frac{\sigma_{a}^{2}}{n}\left(1-\frac{n-1}{N-1}\right), \tag{9}
\end{equation*}
$$

where $(1-(n-1) /(N-1))$ is called the correction factor for finite sampling.
Exercise 1.2 Verify (8) and (9).
Exercise 1.3 If $X \sim \operatorname{Binomial}(m, p)$ and $Y \sim \operatorname{Binomial}(n, p)$ are independent, then the conditional distribution of X given that $X+Y=N$ is Hypergeometric $(m+n, N, m)$.

The Poisson Process

Suppose now that $X_{n 1}, X_{n 2}, \ldots$, are i.i.d. $\operatorname{Bernoulli}\left(p_{n}\right)$ where $n p_{n} \rightarrow \lambda$ as $n \rightarrow \infty$. Let $S_{n}=X_{n 1}+\cdots+X_{n n}$ so that $S_{n} \sim \operatorname{Binomial}\left(n, p_{n}\right)$. An easy calculation shows that

$$
\begin{equation*}
P\left(S_{n}=k\right) \rightarrow \frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for } \quad k=0,1, \ldots \tag{10}
\end{equation*}
$$

If $P(S=k)=\lambda^{k} e^{-\lambda} / k$! for $k=0,1, \ldots$, then we say that $S \sim \operatorname{Poisson}(\lambda)$. The above can be used to model the following Geiger counter experiment. A radioactive source with "large" half life is placed near a Geiger counter. Let $\mathbb{N}(t)$ denote the number of particles registered by time t; we will say that $\{\mathbb{N}(t): t \geq 0\}$ is a Poisson process. (Do note that our treatment is purely informal.) Physical considerations lead us to believe that $\mathbb{N}\left(t_{1}\right), \mathbb{N}\left(t_{1}, t_{2}\right], \cdots, \mathbb{N}\left(t_{k-1}, t_{k}\right]$ should be independent random variables where $\mathbb{N}\left(t_{i-1}, t_{i}\right]$ denotes the increment $\mathbb{N}\left(t_{i}\right)-\mathbb{N}\left(t_{i-1}\right)$; we say that \mathbb{N} has independent increments. We now define

$$
\begin{equation*}
\lambda \equiv E \mathbb{N}(1)=\text { the intensity of the process } \tag{11}
\end{equation*}
$$

Let M denote the number of radioactive particles in our source, and let X_{i} equal 1 or 0 depending on whether or not the $i-$ th particle registers by time $=1$ or not. It seems a reasonable model to assume that X_{1}, \ldots, X_{M} are i.i.d. Bernoulli. Since $\mathbb{N}(1)=X_{1}+\cdots+X_{M}$ has mean $\lambda=E \mathbb{N}(1)=$ $M E\left(X_{1}\right)$, this leads to $\mathbb{N}(1) \sim \operatorname{Binomial}(M, \lambda / M)$. By the first paragraph of this section $\mathbb{N}(1)$ is thus approximately a Poisson (λ) random variable. We now alter our point of view slightly, and use this approximation as our model.

Thus $\mathbb{N}(1)$ is a Poisson (λ) random variable. By the stationary and independent increments we thus have

$$
\begin{equation*}
\mathbb{N}(s, t] \sim \operatorname{Poisson}(\lambda(t-s)) \quad \text { for all } 0 \leq s \leq t \tag{12}
\end{equation*}
$$

while
(13) \mathbb{N} has independent increments.

Note also that $\mathbb{N}(0)=0$. (This is actually enough to rigorously specify a Poisson process.)
Let $Y_{1} \equiv W_{1} \equiv \inf \{t>0: \mathbb{N}(t)=1\}$. Since

$$
\begin{equation*}
\left[Y_{1}>t\right]=[\mathbb{N}(t)=0] \tag{14}
\end{equation*}
$$

we see that $P\left(Y_{1}>t\right)=P(\mathbb{N}(t)=0)=e^{-\lambda t}$ by (12). Thus Y_{1} has distribution function $1-\exp (-\lambda t)$ for $t \geq 0$ and density

$$
\begin{equation*}
f_{Y_{1}}(t)=\lambda e^{-\lambda t} \quad \text { for } \quad t \geq 0 \tag{15}
\end{equation*}
$$

we say that $Y_{1} \sim \operatorname{Exponential}(\lambda)$. Now let $W_{m} \equiv \inf \{t>0: \mathbb{N}(t)=m\}$; we call W_{m} the m-th waiting time. We call $Y_{m} \equiv W_{m}-W_{m-1}, m \geq 1$, the interarrival times. In light of the physical properties of our Geiger counter model, and using (13), it seems reasonable that
(16) $\quad Y_{1}, Y_{2}, \ldots \quad$ are i.i.d. Exponential (λ).

Our assumption of the previous sentence could be expressed as
Y_{1} and $\mathbb{N}_{1}(t) \equiv \mathbb{N}\left(Y_{1}, Y_{1}+t\right]$ are independent
and \mathbb{N}_{1} is again a Poisson process with intensity λ;
we will call this the strong Markov property of the Poisson process. Now

$$
\begin{equation*}
\left[W_{m}>t\right]=[\mathbb{N}(t)<m] \tag{18}
\end{equation*}
$$

so that $P\left(W_{m}>t\right)=\sum_{k=0}^{m-1}(\lambda t)^{k-1} e^{-\lambda t} / k!$; differentiating this expression shows that W_{m} has density

$$
\begin{equation*}
f_{W_{m}}(t)=\lambda^{m} t^{m-1} e^{-\lambda t} / \Gamma(m) \quad \text { for } \quad t \geq 0 \tag{19}
\end{equation*}
$$

we say that $W_{m} \sim \operatorname{Gamma}(m, \lambda)$. Contained in this is a proof that for independent $Z_{i} \sim$ $\operatorname{Gamma}\left(m_{i}, \lambda\right)$,

$$
\begin{equation*}
Z_{1}+Z_{2} \sim \operatorname{Gamma}\left(m_{1}+m_{2}, \lambda\right) \tag{20}
\end{equation*}
$$

Exercise 1.4 Verify (10).
Exercise 1.5 Verify (16).
Exercise 1.6 Verify (19).
It is true that (19) is a density for any real number $m>0$; and the property (20) still holds for real m_{i} 's.

Exercise 1.7 If $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ are independent, then the conditional distribution of X given $X+Y=n$ is $\operatorname{Binomial}\left(n, \lambda_{1} /\left(\lambda_{1}+\lambda_{2}\right)\right)$.

Exercise 1.8 If $X \sim \operatorname{Gamma}(\alpha, \lambda)$ and $Y \sim \operatorname{Gamma}(\beta, \lambda)$ are independent, show that $X /(X+$ $Y) \sim \operatorname{Beta}(\alpha, \beta)$; i.e. $U \equiv X /(X+Y)$ has density $\{\Gamma(\alpha+\beta) / \Gamma(\alpha) \Gamma(\beta)\} u^{\alpha-1}(1-u)^{\beta-1}, 0<u<1$.

The Normal Distribution

Suppose that the random variable Z has density

$$
\begin{equation*}
\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \quad \text { for } \quad-\infty<z<\infty ; \tag{21}
\end{equation*}
$$

then Z is said to be a standard normal random variable. We let the corresponding distribution function be denoted by Φ. Thus

$$
\begin{equation*}
\Phi(z)=P(Z \leq z)=\int_{\infty}^{z} \phi(y) d y \tag{22}
\end{equation*}
$$

If $b>0$, then $F_{a+b Z}(x)=P(a+b Z \leq x)=P(Z \leq(x-a) / b)=\Phi((x-a) / b)$. Thus $a+b Z$ has density

$$
\begin{equation*}
f_{a+b Z}(x)=\frac{1}{b} \phi\left(\frac{x-a}{b}\right) \quad \text { for }-\infty<x<\infty . \tag{23}
\end{equation*}
$$

Note that (23) holds for $Z \sim f_{Z}$ if we replace ϕ by f_{Z}.
Exercise 1.9 Show that ϕ given in (21) is a density. Show that this density has mean 0 and variance 1 .

Thus $X \equiv \mu+\sigma Z \sim\left(\mu, \sigma^{2}\right)$ with density

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right) \quad \text { for } \quad-\infty<x<\infty ; \tag{24}
\end{equation*}
$$

we say that $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ or just $N\left(\mu, \sigma^{2}\right)$.
The importance of the normal distribution derives from the following theorem. Recall from the properties of expectation and variance that if X_{1}, \ldots, X_{n} are i.i.d. $\left(\mu, \sigma^{2}\right)$, then $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$ has mean 0 and variance 1 where $\bar{X}_{n} \equiv\left(X_{1}+\cdots+X_{n}\right) / n$. But much more is true.

Theorem 1.1 (Classic CLT). If X_{1}, \ldots, X_{n} are i.i.d. $\left(\mu, \sigma^{2}\right)$, then

$$
\begin{equation*}
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \rightarrow_{d} N\left(0, \sigma^{2}\right) \quad \text { as } n \rightarrow \infty . \tag{25}
\end{equation*}
$$

Hence if $\sigma>0$

$$
\begin{equation*}
\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma \rightarrow_{d} N(0,1) \quad \text { as } n \rightarrow \infty . \tag{26}
\end{equation*}
$$

This result will be stated again in Chapter 2 along with other central limit theorems. We will use it in the meantime for motivational purposes.

Suppose that Z is $N(0,1)$. Then

$$
\begin{align*}
F_{Z^{2}}(x) & =P\left(Z^{2} \leq x\right)=P(-\sqrt{x} \leq Z \leq \sqrt{x}) \tag{27}\\
& =F_{Z}(\sqrt{x})-F_{Z}(-\sqrt{x}) \\
& =\Phi(\sqrt{x})-\Phi(-\sqrt{x})
\end{align*}
$$

thus Z^{2} has density

$$
\begin{equation*}
f_{Z^{2}}(x)=\frac{1}{2 \sqrt{x}}\{\phi(\sqrt{x})+\phi(-\sqrt{x})\} \quad \text { for } \quad x \geq 0 \tag{28}
\end{equation*}
$$

Plugging into (21) shows that

$$
\begin{equation*}
f_{Z^{2}}(x)=(2 \pi x)^{-1 / 2} \exp (-x / 2) \quad \text { for } \quad x \geq 0 \tag{29}
\end{equation*}
$$

this is called the Chisquare(1) density. Note that Chisquare(1) is the same as $\operatorname{Gamma}(1 / 2,1 / 2)$. Thus (20) shows that

$$
\begin{equation*}
\text { if } X_{1}, \ldots, X_{n} \text { are i.i.d. } N(0,1) \text {, then } \sum_{1}^{m} X_{i}^{2} \sim \operatorname{Chisquare}(m) \tag{30}
\end{equation*}
$$

where Chisquare $(m) \equiv \operatorname{Gamma}(m / 2,1 / 2)$.

Uniform and Related Distributions

If $f_{X}(x)=1_{[a, b]}(x) /(b-a)$ for real numbers $-\infty<a<b<\infty$, then we say that $X \sim$ Uniform (a, b). By far the most important special case is Uniform $(0,1)$. Note that if $U \sim \operatorname{Uniform}(0,1)$, then $X \equiv(b-a) U+a \sim \operatorname{Uniform}(a, b)$.

A generalization of this is the $\operatorname{Beta}(c, d)$ family. We say $X \sim \operatorname{Beta}(c, d)$ if $f_{X}(x)=x^{c-1}(1-$ $x)^{d-1} 1_{[0,1]}(x) / B(c, d)$ where $B(c, d)=\Gamma(c) \Gamma(d) / \Gamma(c+d)$.

Suppose that ξ_{1}, \ldots, ξ_{n} are i.i.d. Uniform $(0,1)$. Let $0 \leq \xi_{n: 1} \leq \ldots \leq \xi_{n: n} \leq 1$ denote the ordered values of the ξ_{i} 's; we call the $\xi_{n: i}$'s the uniform order statistics. (Alternatively, if n is understood, then we also write $\xi_{(i)}$ for $\xi_{n: i}, i=1, \ldots, n$.) It seems intuitive that $\xi_{n: i}$ equals x if $(i-1)$ of the ξ_{i} 's fall in $[0, x), 1$ of the ξ_{i} 's is equal to x, and $n-i$ of the ξ_{i} 's fall in ($x, 1$). There are $n!/[(i-1)!(n-i)!]$ such designations of the ξ 's, and the chance of the falling in the correct parts of $[0,1]$ is $x^{i-1}(1-x)^{n-i}$. Thus

$$
\begin{equation*}
f_{\xi_{n: i}}(x)=\frac{n!}{(i-1)!(n-i)!} x^{i-1}(1-x)^{n-i} 1_{[0,1]}(x) ; \tag{31}
\end{equation*}
$$

in other words, $\xi_{n: i} \sim \operatorname{Beta}(i, n-i+1)$. Also note that the joint density of $\left(\xi_{n: 1}, \ldots, \xi_{n: n}\right)$ is given by

$$
\begin{equation*}
f_{\xi_{n: 1}, \ldots, \xi_{n: n}}\left(u_{1}, \ldots, u_{n}\right)=n!1_{A}\left(u_{1}, \ldots, u_{n}\right) \tag{32}
\end{equation*}
$$

where $A \equiv\left\{\left(u_{1}, \ldots, u_{n}\right) \in[0,1]^{n}: 0 \leq u_{1} \leq \ldots \leq u_{n} \leq 1\right\}$.

Exercise 1.10 Give a rigorous proof of (31) by computing $F_{\xi_{n: i}}$ and differentiating.
Exercise 1.11 Give a proof of (32).

The Cauchy Distribution

If $f_{X}(x)=\left\{b \pi\left[1+(x-a)^{2} / b^{2}\right]\right\}^{-1}$ on $(-\infty, \infty)$, then we say that $X \sim \operatorname{Cauchy}(a, b)$. By far the most important special case is $\operatorname{Cauchy}(0,1)$; in this case we say simply that $X \sim$ Cauchy, and its density is $\left[\pi\left(1+x^{2}\right)\right]^{-1}$ on $(-\infty, \infty)$. Verify that $E|X|=\infty$. We will see below that if X_{1}, \ldots, X_{n} are i.i.d. Cauchy, then $\bar{X}_{n} \equiv\left(X_{1}+\cdots+X_{n}\right) / n \sim$ Cauchy. These two facts make the Cauchy ideal for many counterexamples.

Rademacher Random Variables and Symmetrization

May problems become simpler if the problem is symmetrized. One way of accomplishing this is by the appropriate introduction of Rademacher random variables. We say that ϵ is a Rademacher random variable if $P(\epsilon=1)=P(\epsilon=-1)=1 / 2$. Thus $\epsilon \sim 2 \operatorname{Bernoulli}(1 / 2)-1$.

We say that X is a symmetric random variable if $X \sim-X$. If X and X^{\prime} are i.i.d., then $X^{s} \equiv\left(X-X^{\prime}\right) \sim\left(X^{\prime}-X\right)=-\left(X-X^{\prime}\right)=-X^{s}$; hence X^{s} is a symmetric random variable.

Exercise 1.12 if X is a symmetric random variable independent of the Rademacher random variable ϵ, then $X \sim \epsilon X$.

The Multinomial Distribution

Suppose that $B_{1} \cup \cdots \cup B_{k}=R$ for Borel sets B_{i} with $B_{i} \cap B_{j}=$ for $i \neq j$; we call this a partition of R. Let Y_{1}, \ldots, Y_{n} be i.i.d. random variables on (Ω, \mathcal{A}, P). Let $\underline{X}_{i} \equiv\left(X_{i 1}, \ldots, X_{i k}\right) \equiv$ $\left(1_{B_{1}}\left(Y_{i}\right), \ldots, 1_{B_{k}}\left(Y_{i}\right)\right)$ for $i=1, \ldots, n$, and set

$$
\begin{align*}
\underline{N} & \equiv\left(N_{1}, \ldots, N_{k}\right) \equiv \sum_{i=1}^{n} \underline{X}_{i} \tag{33}\\
& =\left(\sum_{i=1}^{n} X_{i 1}, \ldots, \sum_{i=1}^{n} X_{i k}\right)=\left(\sum_{i=1}^{n} 1_{B_{1}}\left(Y_{i}\right), \ldots, \sum_{i=1}^{n} 1_{B_{k}}\left(Y_{i}\right)\right) .
\end{align*}
$$

Note that $X_{1 j}, \ldots, X_{n j}$ are i.i.d. $\operatorname{Bernoulli}\left(p_{j}\right)$ with $p_{j}=P\left(Y_{i} \in B_{j}\right)$ and thus $N_{j} \sim \operatorname{Binomial}\left(n, p_{j}\right)$ marginally. Note that N_{1}, \ldots, N_{k} are dependent random variables; in particular, $N_{1}+\cdots+N_{k}=n$. The joint distribution of $\left(N_{1}, \ldots, N_{k}\right)$ is called the $\operatorname{Multinomial}(n, \underline{p})=\operatorname{Multinomial}_{k}\left(n,\left(p_{1}, \ldots, p_{k}\right)\right)$ distribution. The number of ways to designate n_{1} of the Y_{i} 's to fall in B_{1}, \ldots, n_{k} of the Y_{i} 's to fall in B_{k} is the multinomial coefficient

$$
\begin{equation*}
\binom{n}{n_{1} \cdots n_{k}} \equiv \frac{n!}{n_{1}!\cdots n_{k}!} \quad \text { where } n_{1}+\cdots+n_{k}=n \tag{34}
\end{equation*}
$$

Each such designation occurs with probability $\prod_{i=1}^{k} p_{i}^{n_{i}}$. Hence

$$
\begin{equation*}
P(\underline{N}=\underline{n})=P\left(N_{1}=n_{1}, \ldots, N_{k}=n_{k}\right)=\binom{n}{n_{1} \cdots n_{k}} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} . \tag{35}
\end{equation*}
$$

Now it is a trivial calculation that for $j \neq l$,

$$
\begin{equation*}
\operatorname{Cov}\left[X_{i j}, X_{i l}\right]=E\left(1_{B_{j}}\left(Y_{i}\right) 1_{B_{l}}\left(Y_{i}\right)\right)-E\left(1_{B_{j}}\left(Y_{i}\right)\right) E\left(1_{B_{l}}\left(Y_{i}\right)\right)=-p_{j} p_{l} . \tag{36}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\operatorname{Cov}\left[N_{j}, N_{l}\right]=-n p_{j} p_{l} \quad \text { for } j \neq l . \tag{37}
\end{equation*}
$$

Hence it follows that

$$
\left(\begin{array}{c}
N_{1} \tag{38}\\
\cdot \\
\cdot \\
\cdot \\
N_{k}
\end{array}\right) \sim\left(n\left(\begin{array}{c}
p_{1} \\
\cdot \\
\cdot \\
\cdot \\
p_{k}
\end{array}\right), n\left(\begin{array}{ccccc}
p_{1}\left(1-p_{1}\right) & \cdot & \cdot & -p_{1} p_{k} \\
\cdot & \cdot & & & \cdot \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
-p_{1} p_{k} & \cdot & \cdot & p_{k}\left(1-p_{k}\right)
\end{array}\right)\right)
$$

Exercise 1.13 Consider, in the context of the multinomial distribution, two subsets $C=\cup_{i \in I} B_{i}$ and $D=\cup_{j \in J} B_{j}$ for some subsets $I, J \subset\{1, \ldots, k\}$, not necessarily disjoint, so that C and D are not necessarily disjoint either. Let

$$
N_{C}=\sum_{i \in I} N_{i}, \quad p_{C}=\sum_{i \in I} p_{i}, \quad \hat{p}_{C}=N_{C} / n
$$

and

$$
N_{D}=\sum_{j \in J} N_{j}, \quad p_{D}=\sum_{j \in J} p_{j}, \quad \hat{p}_{D}=N_{D} / n .
$$

Compute $\operatorname{Cov}\left[N_{C}, N_{D}\right]$. [Hint: it will involve the probability $p_{C \cap D}=P\left(Y_{1} \in C \cap D\right)$.]

2 Convolution and Related Formulas

Convolution

If X and Y are independent random variables on (Ω, \mathcal{A}, P), then

$$
\begin{align*}
F_{X+Y}(z) & =P(X+Y \leq z)=\iint_{x+y \leq z} d F_{X}(x) d F_{Y}(y) \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{z-x} d F_{Y}(y) d F_{X}(x) \\
& =\int_{-\infty}^{\infty} F_{Y}(z-x) d F_{X}(x) \equiv F_{X} \star F_{Y}(z) \tag{1}
\end{align*}
$$

is a formula called the convolution formula, for F_{X+Y} in terms of F_{X} and F_{Y} (the symbol \star stands for convolution). In case X and Y have densities f_{X} and f_{Y} with respect to Lebesgue measure, then so does $X+Y$. In fact, since

$$
\begin{aligned}
\int_{-\infty}^{z} \int_{-\infty}^{\infty} f_{Y}(y-x) f_{X}(x) d x d y & =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{z} f_{Y}(y-z) d y\right\} f_{X}(x) d x \\
& =\int_{-\infty}^{\infty} F_{Y}(z-x) d F_{X}(x)=F_{X+Y}(z)
\end{aligned}
$$

it follows from (1) that $X+Y$ has a density given by

$$
\begin{equation*}
f_{X+Y}(z)=\int_{\infty}^{\infty} f_{Y}(z-x) f_{X}(x) d x \equiv f_{Y} \star f_{X}(z) \tag{2}
\end{equation*}
$$

Exercise 2.1 Use (2) to show that for X and Y independent:
(i) $X \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$ implies $X+Y \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
(ii) $X \sim \operatorname{Cauchy}\left(0, \sigma_{1}\right)$ and $Y \sim \operatorname{Cauchy}\left(0, \sigma_{2}\right)$ implies $X+Y \sim \operatorname{Cauchy}\left(0, \sigma_{1}+\sigma_{2}\right)$.
(iii) $X \sim \operatorname{Gamma}\left(r_{1}, \theta\right)$ and $Y \sim \operatorname{Gamma}\left(r_{2}, \theta\right)$ implies $X+Y \sim \operatorname{Gamma}\left(r_{1}+r_{2}, \theta\right)$.

Exercise 2.2 (i) If X_{1}, \ldots, X_{n} are i.i.d. $N(0,1)$, then $\left(X_{1}+\cdots+X_{n}\right) / \sqrt{n} \sim N(0,1)$.
(ii) If X_{1}, \ldots, X_{n} are i.i.d. Cauchy $(0,1)$, then $\left(X_{1}+\cdots+X_{n}\right) / n \sim \operatorname{Cauchy}(0,1)$.

If X and Y are independent random variables taking values in $0,1,2, \ldots$, then clearly

$$
\begin{equation*}
P(X+Y=k)=\sum_{i=0}^{k} P(X=i) P(Y=k-i) \quad \text { for } \quad k=0,1,2, \ldots \tag{3}
\end{equation*}
$$

Exercise 2.3 Use (3) to show that for X and Y independent:
(i) $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ implies $X+Y \sim \operatorname{Poisson}\left(\lambda_{1}+\lambda_{2}\right)$.
(ii) $X \sim \operatorname{Negative} \operatorname{Binomial}\left(m_{1}, p\right)$ and $Y \sim \operatorname{Negative} \operatorname{Binomial}\left(m_{2}, p\right)$ implies $X+Y \sim$ Negative $\operatorname{Binomial}\left(m_{1}+m_{2}, p\right)$.

A fundamental problem in probability theory is to determine constants a_{n} and $b_{n}>0$ for which i.i.d. random variables $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ satisfy

$$
\begin{equation*}
\left(X_{1}+\cdots+X_{n}-a_{n}\right) / b_{n} \rightarrow_{d} G \quad \text { as } n \rightarrow \infty \tag{4}
\end{equation*}
$$

for some non-degenerate distribution G. Exercise 2 gives us two examples of such convergence; each was derived via the convlution formula. However, except in certain special cases, such as exercises
2.1-2.3, the various convolution formulas are too difficult to deal with directly, at least for n-fold convolutions for large n. For this reason we need a variety of central limit theorems. These will be stated in Chapter 2.

Other Formulas

Exercise 2.4 Suppose that X and Y are independent with $P(Y>0)=1$. Show that

$$
\begin{align*}
& F_{X Y}(z) \equiv P(X Y \leq z)=\int_{0}^{\infty} F_{X}(z / y) d F_{Y}(y) \quad \text { for all } z \tag{5}\\
& F_{X / Y}(z) \equiv P(X / Y \leq z)=\int_{0}^{\infty} F_{X}(z y) d F_{Y}(y) \quad \text { for all } z \tag{6}
\end{align*}
$$

If F_{X} has a bounded density f_{X} and F_{Y} has a density f_{Y} (these are overly strong hypotheses), then $F_{X Y}$ and $F_{X / Y}$ have densities given by

$$
\begin{equation*}
f_{X Y}(z)=\int_{0}^{\infty} y^{-1} f_{X}(z / y) f_{Y}(y) d y \quad \text { for all } z \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{X / Y}(z)=\int_{0}^{\infty} y f_{X}(z y) f_{Y}(y) d y \quad \text { for all } z \tag{8}
\end{equation*}
$$

Exercise 2.5 Let $X \sim N(0,1), Y \sim \chi_{m}^{2}$, and $Z \sim \chi_{n}^{2}$ be independent. Show that

$$
\begin{align*}
& \frac{X}{\sqrt{Y / m}} \sim \text { Student's } t_{m} \equiv t(m) \tag{9}\\
& \frac{Y / m}{Z / n} \sim \text { Snedecor's } F_{m, n}=F(m, n), \text { and } \\
& \frac{Y}{Y+Z} \sim \operatorname{Beta}(m / 2, n / 2)
\end{align*}
$$

where

$$
\begin{equation*}
f_{t(m)}(x) \equiv \frac{\Gamma((m+1) / 2)}{\sqrt{\pi m} \Gamma(m / 2)} \frac{1}{\left(1+x^{2} / m\right)^{(m+1) / 2}} 1_{(-\infty, \infty)}(x) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{F(m, n)}(x)=\frac{\Gamma((m+n) / 2)}{\Gamma(m / 2) \Gamma(n / 2)} \frac{(m / n)^{m / 2} x^{m / 2-1}}{(1+m x / n)^{(m+n) / 2}} 1_{(0, \infty)}(x) . \tag{13}
\end{equation*}
$$

Exercise 2.6 If Y_{1}, \ldots, Y_{n+1} are i.i.d. Exponential (θ), then

$$
\begin{equation*}
Z_{i} \equiv \frac{Y_{1}+\cdots+Y_{i}}{Y_{1}+\cdots+Y_{n+1}} \sim \operatorname{Beta}(i, n-i+1) ; \tag{14}
\end{equation*}
$$

in other words the ratio on the left has the same distribution as the i th order statistic of a sample of $n \operatorname{Uniform}(0,1)$ random variables.

Exercise 2.7 If Y_{1}, \ldots, Y_{n+1} are i.i.d. Exponential (θ), as in Exercise 2.6, then the joint distribution of $\left(Z_{1}, \ldots, Z_{n}\right)$ is the same as that of the order statistics $\left(\xi_{n: 1}, \ldots, \xi_{n: n}\right)$ of $n \operatorname{Uniform}(0,1)$ random variables.

3 The Multivariate Normal Distribution

We say that $Y=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ is jointly normal with 0 means if there exist i.i.d. $N(0,1)$ random variables X_{1}, \ldots, X_{k} and an $n \times k$ matrix A of known constants for which $Y=A X$. Note that the $n \times n$ covariance matrix Σ of Y is

$$
\begin{equation*}
\Sigma=E\left(Y Y^{\prime}\right)=E\left(A X X^{\prime} A^{\prime}\right)=A A^{\prime} \tag{1}
\end{equation*}
$$

Theorem 3.1 The following are equivalent:
(2) Σ is the covariance matrix of some random vector Y.
$\Sigma \quad$ is symmetric and non-negative definite.
There exists an $n \times n$ matrix A such that $\Sigma=A A^{\prime}$.
Proof. (2) implies (3): Σ is symmetric since $E\left(Y_{i} Y_{j}\right)=E\left(Y_{j} Y_{i}\right)$. Also $a^{\prime} \Sigma a=\operatorname{Var}\left(a^{\prime} Y\right) \geq 0$, so that $\Sigma \geq 0$.
(3) implies (4): Since Σ is symmetric, there exists an orthogonal matrix Γ such $\Gamma^{\prime} \Sigma \Gamma=D$ with D diagonal. We let $a \equiv \Gamma b$, and since $\Sigma \geq 0$ we have

$$
0 \leq a^{\prime} \Sigma a=b^{\prime} \Gamma^{\prime} \Sigma \Gamma b=b^{\prime} D b=\sum_{i=1}^{n} d_{i i} b_{i}^{2}
$$

for all b, implying that all $d_{i i} \geq 0$. Thus

$$
\Sigma=\Gamma D \Gamma^{\prime}=\Gamma D^{1 / 2} D^{1 / 2} \Gamma^{\prime}=\left(\Gamma D^{1 / 2}\right)\left(\Gamma D^{1 / 2}\right)^{\prime} \equiv A A^{\prime}
$$

where $D^{1 / 2}$ denotes the diagonal matrix with entries $\sqrt{d_{i i}}$ on the diagonal.
(4) implies (2): Let X_{1}, \ldots, X_{n} be i.i.d. $N(0,1)$. Let $X \equiv\left(X_{1}, \ldots, X_{n}\right)^{\prime}$ and $Y=A X$. Then Y has covariance matrix $\Sigma=A A^{\prime}$.

Theorem 3.2 If $Y=A^{n \times k} X^{k \times 1}$ where $X \sim N(0, I)$, then

$$
\begin{equation*}
\phi_{Y}(t) \equiv E e^{i t^{\prime} Y}=\exp \left(-\frac{1}{2} t^{\prime} \Sigma t\right) \quad \text { with } \quad \Sigma \equiv A A^{\prime} \tag{5}
\end{equation*}
$$

and $\operatorname{rank}(\Sigma)=\operatorname{rank}(A)$. Conversely, if $\phi_{Y}(t)=\exp \left(-t^{\prime} \Sigma t / 2\right)$ with $\Sigma \geq 0$ of rank k, then
(6) $\quad Y=A^{n \times k} X^{k \times 1}$
with $\operatorname{rank}(A)=k$ and $X \sim N(0, I)$.
(Thus only $\operatorname{rank}(A)$ independent X_{i} 's are needed.)
Proof. We use the fact that the characteristic function of a standard normal random variable X_{j} is $E e^{i t X_{j}}=\exp \left(-t^{2} / 2\right)$ in the proof. Now

$$
\begin{aligned}
\phi_{Y}(t) & =E \exp \left(i t^{\prime} A X\right)=E \exp \left(i\left(A^{\prime} t\right)^{\prime} X\right) \\
& =\exp \left(-\frac{1}{2}\left(A^{\prime} t\right)^{\prime}\left(A^{\prime} t\right)\right) \\
& =\exp \left(-\frac{1}{2} t^{\prime} A A^{\prime} t\right)
\end{aligned}
$$

where we used

$$
\phi_{X}(t)=E \exp \left(i t^{\prime} X\right)=\exp \left(-|t|^{2} / 2\right)
$$

to get the third equality.
Conversely, suppose that $\phi_{Y}(t)=\exp \left(-t^{\prime} \Sigma t / 2\right)$ with $\operatorname{rank}(\Sigma)=k$. Then there exists an orthogonal matrix Γ such that
(a) $\quad \Gamma^{\prime} \Sigma \Gamma=\left(\begin{array}{cc}D & 0 \\ 0 & 0\end{array}\right)$
where D is diagonal and $k \times k$. Let $Z=\Gamma^{\prime} Y$ so that

$$
\Sigma_{Z}=\Gamma^{\prime} \Sigma \Gamma=\left(\begin{array}{ll}
D & 0 \\
0 & 0
\end{array}\right) .
$$

Then
(b) $\quad \phi_{Z}(t)=\phi_{Y}(\Gamma t)=\exp \left(-t^{\prime} \Gamma^{\prime} \Sigma \Gamma t / 2\right)=\prod_{i=1}^{k} \exp \left(-t_{i}^{2} d_{i i} / 2\right) \prod_{i=k+1}^{n} 1$
so that Z_{1}, \ldots, Z_{k} are independent $N\left(0, d_{11}\right), \ldots, N\left(0, d_{k k}\right)$ and $Z_{k+1}=\cdots=Z_{n}=0$. Let $X_{i} \equiv$ $Z_{i} / \sqrt{d_{i i}} \sim N(0,1)$ for $i=1, \ldots, k$ with $X_{k+1} \equiv \cdots \equiv X_{n}=0$. Then

$$
Y=\Gamma Z=\Gamma\left(\begin{array}{cc}
\sqrt{D} & 0 \\
0 & 0
\end{array}\right) X^{n \times 1}=\Gamma\binom{\sqrt{D}}{0} \tilde{X}^{k \times 1}=A^{n \times k} \tilde{X}^{k \times 1}
$$

with A of rank k.

Theorem 3.3 (i) If $Y=\left(Y_{1}, \ldots, Y_{k}, Y_{k+1}, \ldots, Y_{n}\right) \sim N_{n}(0, \Sigma)$ with

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \tag{7}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

then
(8) $\quad\left(Y_{1}, \ldots, Y_{k}\right)^{\prime} \sim N_{k}\left(0, \Sigma_{11}\right)$.
(ii) If $\Sigma_{12}=0$, then $\left(Y_{1}, \ldots, Y_{k}\right)^{\prime}$ and $\left(Y_{k+1}, \ldots, Y_{n}\right)^{\prime}$ are independent.
(iii) If $\left(Y_{1}, Y_{2}\right)^{\prime}$ is jointly normal, then Y_{1} and Y_{2} are indpendent if and only if $\operatorname{Cov}\left[Y_{1}, Y_{2}\right]=0$.
(iv) Linear combinations of normals are normal.

Proof. (i) Use the first k coordinates of the representation $Y=A X$.
(ii) Use the fact that
(a) $\quad \phi_{Y}(t)=\exp \left(-\frac{1}{2} t^{\prime}\left(\begin{array}{cc}\Sigma_{11} & 0 \\ 0 & \Sigma_{22}\end{array}\right) t\right)=\exp \left(-t_{1}^{\prime} \Sigma_{11} t_{1} / 2\right) \exp \left(-t_{2}^{\prime} \Sigma_{22} t_{2} / 2\right)$,
which is the product of the characteristic functions of the marginal distributions.
(iii) Just apply (ii).
(iv) Now $Z^{m \times 1} \equiv B^{m \times n} Y^{n \times 1}=B(A X)=(B A) X$.

The preceding development can be briefly summarized by introducing the notation $X \sim N_{n}(0, I) \equiv$ $N(0, I)$ and $Y \sim N_{n}(0, \Sigma)$. We will write $Y \sim N(\mu, \Sigma)$ if $Y-\mu \sim N(0, \Sigma)$. Note that P_{Y} is completely specified by μ and Σ. We call Y non-degenerate, and Y_{1}, \ldots, Y_{n} will be called linearly independent if $\operatorname{rank}(\Sigma)=n$. Of course
(9) $\quad Y$ is non-degenerate if and only if $\operatorname{rank}(A)=n$.

Exercise 3.1 Show that $\left(Y_{1}, Y_{2}\right)$ can have normal marginals without being jointly normal. [Hint: consider starting with a joint $N(0, I)$ density on R^{2} and move mass in a symmetric fashion to make the joint distribution non-normal, but still keeping the marginals normal.]

Theorem 3.4 If $Y \sim N(0, \Sigma)$ is nondegenerate, then Y has density (with respect to Lebesgue measure on R^{n}) given by

$$
\begin{equation*}
f_{Y}(y)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2} y^{\prime} \Sigma^{-1} y\right) \quad \text { for all } y \in R^{n} \tag{10}
\end{equation*}
$$

Proof. Now $Y=A X$ where $A A^{\prime}=\Sigma$, $\operatorname{rank}(A)=n,|A| \neq 0, X \sim N(0, I)$. Hence for any Borel set $B_{n} \in \mathcal{B}_{n}$
(a) $\quad P\left(X \in B_{n}\right)=\int 1_{B_{n}}(x) f_{X}(x) d x=\int 1_{B_{n}}(x) \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) d x_{1} \cdots d x_{n}$
where $f_{X}(x)=(2 \pi)^{-n / 2} \exp \left(-x^{\prime} x / 2\right)$. Since $X=A^{-1} Y$, for any Borel set B_{n},

$$
\begin{aligned}
P\left(Y \in B_{n}\right) & =P\left(A X \in B_{n}\right)=P\left(X \in A^{-1} B_{n}\right)=\int 1_{A^{-1} B_{n}}(x) f_{X}(x) d x \\
& =\int 1_{A^{-1} B_{n}}\left(A^{-1} y\right) f_{X}\left(A^{-1} y\right)\left|\frac{\partial x}{\partial y}\right| d y \\
& =\int 1_{B_{n}}(y)(2 \pi)^{-n / 2} \exp \left(-\frac{1}{2}\left(A^{-1} y\right)^{\prime}\left(A^{-1} y\right)\right)\left|\frac{\partial x}{\partial y}\right| d y \\
& =\int_{B_{n}}(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \left\lvert\, \exp \left(-\frac{1}{2} y^{\prime} \Sigma^{-1} y\right) d y\right.
\end{aligned}
$$

since $\left(A^{-1}\right)^{\prime}\left(A^{-1}\right)=\left(A A^{\prime}\right)^{-1}=\Sigma^{-1}$ and
(b) $\quad\left|\frac{\partial x}{\partial y}\right|=\left|A^{-1}\right|=\sqrt{\left|\left(A^{-1}\right)^{\prime}\right|\left|A^{-1}\right|}=\sqrt{\left|\Sigma^{-1}\right|}=1 / \sqrt{|\Sigma|}$.

Our last theorem about the multivariate normal distribution concerns the conditional distribution of one block of a joint normal random vector given a second block.

Theorem 3.5 If

$$
Y=\binom{Y^{(1)}}{Y^{(2)}} \sim N\left(\binom{\mu^{(1)}}{\mu^{(2)}},\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \tag{11}\\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)\right),
$$

where $Y^{(1)}$ is a k - vector, $Y^{(2)}$ is an $n-k$ - vector, and where Σ_{22} is nonsingular, then

$$
\begin{equation*}
\left(Y^{(1)} \mid Y^{(2)}\right) \sim N_{k}\left(\left(\mu^{(1)}+\Sigma_{12} \Sigma_{22}^{-1}\left(Y^{(2)}-\mu^{(2)}\right), \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right) .\right. \tag{12}
\end{equation*}
$$

Moreover, with $\Sigma_{11 \cdot 2} \equiv \Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$,

$$
\binom{Y^{(1)}-\mu^{(1)}+\Sigma_{12} \Sigma_{22}^{-1}\left(Y^{(2)}-\mu^{(2)}\right)}{Y^{(2)}-\mu^{(2)}} \sim N_{n}\left(\binom{0}{0},\left(\begin{array}{cc}
\Sigma_{11 \cdot 2} & 0 \tag{13}\\
0 & \Sigma_{22}
\end{array}\right)\right) .
$$

Proof. Without loss of generality, suppose that $\mu^{(i)}=0, i=1,2$; otherwise subtract $\mu^{(i)}$ from $Y^{(i)}, i=1,2$. Then
(a) $\quad Z \equiv\binom{Z^{(1)}}{Z^{(2)}} \equiv\binom{Y^{(1)}-\Sigma_{12} \Sigma_{22}^{-1} Y^{(2)}}{Y^{(2)}}$
is just a linear combination of the Y_{i} 's; and so it is normal, and all we need to know is μ_{Z} and Σ_{Z}. But $\Sigma_{Z, 12}=\Sigma_{12}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{22}=0$, so that $Z^{(1)}$ and $Z^{(2)}$ are independent by Theorem 3.3. Also, $\Sigma_{Z, 22}=\Sigma_{22}$ and

$$
\begin{equation*}
\Sigma_{Z, 11}=\Sigma_{11}-2 \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}+\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{22} \Sigma_{22}^{-1} \Sigma_{21}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}=\Sigma_{11 \cdot 2} \tag{b}
\end{equation*}
$$

Note that
(c) $\quad|\Sigma|=\left|\Sigma_{22}\right|\left|\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right|$.

Some Facts about Chi-Square Distributions

If $X \sim N_{n}(0, I)$, then $\|X\|^{2}=X^{\prime} X=\sum_{i=1}^{n} X_{i}^{2} \sim \chi_{n}^{2}$, the Chisquare distribution with n degrees of freedom.

Corollary 1 If $Y \sim N_{n}(0, \Sigma)$ with Σ positive definite, then $Y^{\prime} \Sigma^{-1} Y \sim \chi_{n}^{2}$.
Proof. $\quad Y=A X$ where A is nonsingular and $X \sim N_{n}(0, I)$ and $\Sigma=A A^{\prime}$. Hence $\Sigma^{-1}=$ $\left(A^{\prime}\right)^{-1} A^{-1}$ and it follows that $Y^{\prime} \Sigma^{-1} Y=X^{\prime} A^{\prime}\left(A^{\prime}\right)^{-1} A^{-1} A X=X^{\prime} X \sim \chi_{n}^{2}$.

Now for the noncentral Chisquare distributions: we will develop these in a series of steps as follows:
(a) Suppose that $X \sim N(\mu, 1)$. Define $Y \equiv X^{2}, \delta=\mu^{2}$. Then Y has density

$$
\begin{equation*}
f_{Y}(y)=\sum_{k=0}^{\infty} p_{k}(\delta / 2) g(y ;(2 k+1) / 2,1 / 2) \tag{4}
\end{equation*}
$$

where $p_{k}(\delta / 2)=\exp (-\delta / 2)(\delta / 2)^{k} / k!$, and $g(\cdot ;(2 k+1) / 2,1 / 2)$ is the $\left.\operatorname{Gamma}(2 k+1) / 2,1 / 2\right)=$ Chisquare $(2 k+1)$ density. Another way to say this is: $(Y \mid K=k) \sim \chi_{2 k+1}^{2}$ where $K \sim \operatorname{Poisson}(\delta / 2)$. We will say that Y has the noncentral chisquare distribution with 1 degree of freedom and noncentrality parameter δ, and write $Y \sim \chi_{1}^{2}(\delta)$ in this case.
(b) Now suppose that $X_{1} \sim N(\mu, 1)$, and $X_{2}, \ldots, X_{n} \sim N(0,1)$, and all of X_{1}, \ldots, X_{n} are independent. Define $Y \equiv X^{\prime} X=|X|^{2}, \delta=\mu^{2}$. Then Y has density

$$
\begin{equation*}
f_{Y}(y)=\sum_{k=0}^{\infty} p_{k}(\delta / 2) g(y ;(2 k+n) / 2,1 / 2) \tag{5}
\end{equation*}
$$

where $p_{k}(\delta / 2)=\exp (-\delta / 2)(\delta / 2)^{k} / k!$, and $g(\cdot ;(2 k+n) / 2,1 / 2)$ is the $\operatorname{Gamma}((2 k+n) / 2,1 / 2)=$ Chisquare $(2 k+n)$ density. Another way to say this is: $(Y \mid K=k) \sim \chi_{2 k+n}^{2}$ where $K \sim \operatorname{Poisson}(\delta / 2)$. We will say that Y has the noncentral chisquare distribution with n degrees of freedom and noncentrality parameter δ, and write $Y \sim \chi_{n}^{2}(\delta)$ in this case.
(c) Now suppose that $X \sim N_{n}(\mu, I)$ and let $Y \equiv X^{\prime} X$. Then $Y \sim \chi_{n}^{2}(\delta)$ with $\delta=\mu^{\prime} \mu=|\mu|^{2}$.

Proof. Let Γ be an $n \times n$ orthogonal matrix with first row $\mu /|\mu|=\mu / \sqrt{\mu^{\prime} \mu}$. Then $Z \equiv \Gamma X \sim$ $N_{n}\left(\Gamma \mu, \Gamma \Gamma^{\prime}\right)=N_{n}\left((|\mu|, 0, \ldots, 0)^{\prime}, I\right)$, and hence by (b) above
(a) $\quad Y \equiv X^{\prime} X=Z^{\prime} \Gamma \Gamma^{\prime} Z=Z^{\prime} Z \sim \chi_{n}^{2}(\delta)$
with $\delta=|\mu|^{2}=\mu^{\prime} \mu$.
(d) Now suppose that $X \sim N_{n}(\mu, \Sigma)$ where Σ is nonsingular. Let $Y \equiv X^{\prime} \Sigma^{-1} X$. Then $Y \sim \chi_{n}^{2}(\delta)$ with $\delta=\mu^{\prime} \Sigma^{-1} \mu$.
Proof. Define $Z \equiv \Sigma^{-1 / 2} X$ where $\Sigma^{1 / 2}\left(\Sigma^{1 / 2}\right)^{\prime}=\Sigma$. Then $Z \sim N_{n}\left(\Sigma^{-1 / 2} \mu, I\right)$, so by (c),
(a) $\quad Y=X^{\prime} \Sigma^{-1} X=Z^{\prime} Z \sim \chi_{n}^{2}(\delta)$
with $\delta=\mu^{\prime}\left(\Sigma^{-1 / 2}\right)^{\prime} \Sigma^{-1 / 2} \mu=\mu^{\prime} \Sigma^{-1} \mu$.

Exercise 3.2 Verify (4).
Exercise 3.3 Verify (5).

4 Integration by Parts

Integration by Fubini's theorem or "integration by parts" formulas are useful in many contexts. Here we record a few of the most useful ones.

Proposition 4.1 Suppose that the left-continuous function U and the right-continuous function V are nondecreasing functions (\uparrow). Then for any $a \leq b$

$$
\begin{equation*}
U_{+}(b) V(b)-U(a) V_{-}(a)=\int_{[a, b]} U d V+\int_{[a, b]} V d U \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
U(b) V(b)-U(a) V(a)=\int_{(a, b]} U d V+\int_{[a, b)} V d U \tag{2}
\end{equation*}
$$

where $U_{+}(x) \equiv \lim _{y \downarrow x} U(y)$ and $V_{-}(x) \equiv \lim _{y \uparrow x} V(y)$.

Proof. We can apply Fubini's theorem 4.1.2 at steps (a) and (b) to obtain

$$
\begin{equation*}
\left[U_{+}(b)-U(a)\right]\left[V(b)-V_{-}(a)\right]=\int_{[a, b]}\left\{\int_{[a, b]} d U\right\} d V \tag{a}
\end{equation*}
$$

a) $\quad \int_{[a, b]} \int_{[a, b]}\left\{1_{x<y]}(x, y)+1_{[x \geq y]}\right\} d U(x) d V(y)$

$$
\begin{align*}
& =\int_{[a, b]}[U(y)-U(a)] d V(y)+\int_{[a, b]}\left[V(x)-V_{-}(a)\right] d U(x) \tag{b}\\
& =\int_{[a, b]} U d V-U(a)\left[V(b)-V_{-}(a)\right]+\int_{[a, b]} V d U-V_{-}(a)\left[U_{+}(b)-U(a)\right]
\end{align*}
$$

A bit of algebra now gives (1). The proof of (2) is similar.

Mean, Variances, and Covariances

If $\xi \sim \operatorname{Uniform}(0,1)$ and F is an arbitrary distribution function, then we will see in section 2.3 that $X \equiv F^{-1}(\xi)$ has distribution function F. Note note that this X satisfies

$$
\begin{equation*}
X=\int_{(0,1)} F^{-1}(t) d 1_{[\xi \leq t]} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
X=\int_{(-\infty, \infty)} x d 1_{[X \leq x]} \tag{4}
\end{equation*}
$$

where $1_{[\xi \leq t]}$ is a random distribution function that puts mass 1 at the point $\xi(\omega)$ and $1_{[X \leq x]}$ is a random distribution function that puts mass 1 at the point $X(\omega)$. If X has mean μ, then

$$
\begin{equation*}
\mu=\int_{(0,1)} F^{-1}(t) d t=\int_{(-\infty, \infty)} x d F(x) \tag{5}
\end{equation*}
$$

Moreover, when μ is finite we can write

$$
\begin{equation*}
X-\mu=\int_{(0,1)} F^{-1}(t) d\left(1_{[\xi \leq t]}-t\right)=-\int_{(0,1)}\left(1_{[\xi \leq t]}-t\right) d F^{-1}(t) \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
X-\mu=\int_{(-\infty, \infty)} x d\left(1_{[X \leq x]}-F(x)\right)=\int_{(-\infty, \infty)}\left(1_{[X \leq x]}-F(x)\right) d x . \tag{7}
\end{equation*}
$$

The first formula in each of (6) and (7) is trivial; the second follows from integration by parts. For example, (6) is justified by

$$
\left|t F^{-1}(t)\right| \leq\left|\int_{0}^{t} F^{-1}(s) d s\right| \rightarrow 0 \quad \text { as } t \rightarrow 0
$$

when $E|X|=\int_{0}^{1}\left|F^{-1}(t)\right| d t<\infty$, and the analogous result $(1-t) F^{-1}(t) \rightarrow 0$ as $t \rightarrow 1$. Thus when $\operatorname{Var}(X)<\infty$, Fubini's theorem gives

$$
\begin{align*}
\operatorname{Var}(X) & =E\left\{\int_{(0,1)}\left(1_{[\xi \leq s]}-s\right) d F^{-1}(s) \int_{(0,1)}\left(1_{[\xi \leq t]}-t\right) d F^{-1}(t)\right\} \\
& =\int_{(0,1)} \int_{(0,1)} E\left\{\left(1_{[\xi \leq s]}-s\right)\left(1_{[\xi \leq t]}-t\right)\right\} d F^{-1}(s) d F^{-1}(t) \\
& =\int_{(0,1)} \int_{(0,1)}(s \wedge t-s t) d F^{-1}(s) d F^{-1}(t) \tag{8}
\end{align*}
$$

via (6), and the parallel formula
(9) $\quad \operatorname{Var}(X)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[F(x \wedge y)-F(x) F(y)] d x d y$
via (7). Of course we already know that

$$
\begin{equation*}
\operatorname{Var}(X)=\int_{0}^{1}\left[F^{-1}(t)-\mu\right]^{2} d t=\int_{-\infty}^{\infty}(x-\mu)^{2} d F(x) \tag{10}
\end{equation*}
$$

Now suppose that X, Y are random variables and let G, H denote measurable functions.
Proposition 4.2 (Formulas for means, moments, and covariances).
(i) If $X \geq 0$ has distribution function F, then

$$
\begin{equation*}
E(X)=\int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{1} F^{-1}(t) d t \tag{11}
\end{equation*}
$$

(ii) If $E|X|<\infty$, then

$$
\begin{equation*}
E(X)=-\int_{-\infty}^{0} F(x) d x+\int_{0}^{\infty}(1-F(x)) d x=\int_{0}^{1} F^{-1}(t) d t . \tag{12}
\end{equation*}
$$

(iii) If $X \geq 0$, then

$$
\begin{equation*}
E\left(X^{r}\right)=r \int_{0}^{\infty} x^{r-1}(1-F(x)) d x=\int_{0}^{1}\left[F^{-1}(t)\right]^{r} d t . \tag{13}
\end{equation*}
$$

(iv) If (X, Y) has joint distribution function F with marginal distribution functions F_{X}, F_{Y}, and G, H are nondecreasing, then

$$
\begin{equation*}
\operatorname{Cov}[G(X), H(Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[F(x, y)-F_{X}(x) F_{Y}(y)\right] d G(x) d H(y) \tag{14}
\end{equation*}
$$

Note the special case $G=H=I$ with $I(x) \equiv x$ for all $x \in R$.
(v) If K is \uparrow and left continuous and $\xi \sim \operatorname{Uniform}(0,1)$ (perhaps $K=h\left(F^{-1}\right)$ for an \uparrow left continuous function h and for $X \equiv F^{-1}(\xi)$ for a distribution function F)

$$
\begin{align*}
\operatorname{Var}[K(\xi)] & =\int_{0}^{1} \int_{0}^{1}(s \wedge t-s t) d K(s) d K(t) \tag{15}\\
& =\int_{-\infty}^{\infty} \int_{\infty}^{\infty}[F(x \wedge y)-F(x) F(y)] d h(x) d h(y) \tag{16}\\
& =\operatorname{Var}[h(X)] . \tag{17}
\end{align*}
$$

(vi) If $X \geq 0$ is integer - valued,

$$
\begin{equation*}
E(X)=\sum_{k=1}^{\infty} P(X \geq k) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(X^{2}\right)=\sum_{k=0}^{\infty}(2 k+1) P(X>k) \tag{19}
\end{equation*}
$$

Exercise 4.1 Prove the formulas (11) - (13) using Fubini's theorem.
Exercise 4.2 Give an extension of (13) to arbitrary random variables in the case $r=$ an integer k.

Exercise 4.3 Prove formulas (14) and (15).
Exercise 4.4 For any distribution function F we have

$$
\int[F(x+\theta)-F(x)] d x=\theta \quad \text { for each } \quad \theta \geq 0
$$

Exercise 4.5 How should the left side of (1) be altered if we replace $[a, b]$ in both places on the right side of (1) by (a, b), or by $(a, b]$, or by $[a, b)$?

