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Chapter 1

Special Distributions

1 Special Distributions

Independent Bernoulli Trials
If P (X = 1) = p = 1 − P (X = 0), then X is said to be a Bernoulli(p) random variable. We

refer to the event [X = 1] as success, and to [X = 0] as failure.
Let X1, . . . , Xn be i.i.d. Bernoulli(p), and let Sn = X1+ · · ·+Xn denote the number of successes

in n independent Bernoulli(p) trials. Now

P (Xi = xi, i = 1, . . . , n) = p
∑n

1 xi(1 − p)n−
∑n

1 xi

if all xi equal 0 or 1; this formula gives the joint distribution of X1, . . . , Xn. From this we obtain

P (Sn = k) =
(

n

k

)
pk(1 − p)n−k for k = 0, . . . , n,(1)

since each of the
(
n
k

)
different placings of k 1’s in an n−vector containing k 1’s and n − k 0’s has

probability pk(1 − p)n−k from the previous sentence. We say that Sn ∼ Binomial(n, p) when (1)
holds. Note that Binomial(1, p) is the same as Bernoulli(p).

Let X1, X2, . . . be i.i.d. Bernoulli(p). Let Y1 ≡ W1 ≡ min{n : Sn = 1}. Since [Y1 = k] = [X1 =
0, . . . , Xk−1 = 0, Xk = 1], we have

P (Y1 = k) = (1 − p)k−1p for k = 1, 2, . . . .(2)

We say that Y1 ∼ Geometric(p). Now let Wm ≡ min{n : Sn = m}. We call Wm the waiting
time to the m-th success. Let Ym ≡ Wm − Wm−1 for m ≥ 1, with W0 ≡ 0; we call the Ym’s the
interarrival times. Note that [Wm = k] = [Sk−1 = m − 1, Xk = 1]. Hence

P (Wm = k) =
(

k − 1
m − 1

)
pm(1 − p)k−m for k = m, m + 1, . . . .(3)

We say that Wm ∼ Negative Binomial(m, p).

Exercise 1.1 Show that Y1, Y2, . . . are i.i.d. Geometric(p).

Since the number of successes in n1+n2 trials is the number of successes in the first n1 trials plus
the number of successes in the next n2 trials, it is clear that for independent Zi ∼Binomial(ni, p),

Z1 + Z2 ∼ Binomial(n1 + n2, p).(4)
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4 CHAPTER 1. SPECIAL DISTRIBUTIONS

Likewise, for independent Zi ∼Negative Binomial(mi, p),

Z1 + Z2 ∼ Negative Binomial(m1 + m2, p) .(5)

Urn Models
Suppose that an urn contains N balls of which M bear the number 1 and N − M bear the

number 0. Thoroughly mix the balls in the urn. Draw one ball at random. Let X1 denote the
number on the ball. Then X1 ∼ Bernoulli(p) with p = M/N . Now replace the ball back in
the urn, thoroughly mix, and draw at random a second ball with number X2, and so forth. Let
Sn = X1 + · · · + Xn ∼ Binomial(n, p) with p = M/N .

Suppose now that the same scheme is repeated except that the balls are not replaced. In this
sampling without replacement scheme X1, . . . , Xn are dependent Bernoulli(p) random variables
with p = M/N . Also

P (Sn = k) =

(
M
k

)(
N−M
n−k

)
(
N
n

)(6)

provided the value k is possible (i.e. k ≤ M and n − k ≤ N − M). We say that Sn ∼
Hypergeometric(N, M, n).

Suppose now that sampling is done without replacement, but the N balls in the urn bear the
numbers a1, . . . , aN . Let X1, . . . , Xn denote the numbers on the first n balls drawn, and let Sn ≡
X1 + · · ·+Xn. We call this the finite sampling model. Call a ≡

∑N
1 ai/N and σ2

a ≡
∑N

1 (ai−a)2/N
the population mean and population variance. Note that Xi has expectation a and variance σ2

a for
all i = 1, . . . , n, since we now assume n ≤ N . Now from the formula for the variance of a sum of
random variables and symmetry we have

0 = V ar

(
N∑
1

Xi

)
= NV ar(X1) + N(N − 1)Cov(X1, X2)(7)

since
∑N

1 Xi is a constant. Thus

Cov[X1, X2] = −σ2
a/(N − 1) .(8)

Thus an easy computation gives

V ar[Sn/n] =
σ2

a

n

(
1 − n − 1

N − 1

)
,(9)

where (1 − (n − 1)/(N − 1)) is called the correction factor for finite sampling.

Exercise 1.2 Verify (8) and (9).

Exercise 1.3 If X ∼ Binomial(m, p) and Y ∼ Binomial(n, p) are independent, then the conditional
distribution of X given that X + Y = N is Hypergeometric(m + n, N, m).

The Poisson Process
Suppose now that Xn1, Xn2, . . . , are i.i.d. Bernoulli(pn) where npn → λ as n → ∞. Let

Sn = Xn1 + · · · + Xnn so that Sn ∼ Binomial(n, pn). An easy calculation shows that

P (Sn = k) → λk

k!
e−λ for k = 0, 1, . . . .(10)
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If P (S = k) = λke−λ/k! for k = 0, 1, . . ., then we say that S ∼ Poisson(λ). The above can be
used to model the following Geiger counter experiment. A radioactive source with “large” half -
life is placed near a Geiger counter. Let N(t) denote the number of particles registered by time
t; we will say that {N(t) : t ≥ 0} is a Poisson process. (Do note that our treatment is purely
informal.) Physical considerations lead us to believe that N(t1), N(t1, t2], · · ·, N(tk−1, tk] should be
independent random variables where N(ti−1, ti] denotes the increment N(ti)− N(ti−1); we say that
N has independent increments. We now define

λ ≡ EN(1) = the intensity of the process .(11)

Let M denote the number of radioactive particles in our source, and let Xi equal 1 or 0 depending
on whether or not the i−th particle registers by time = 1 or not. It seems a reasonable model to
assume that X1, . . . , XM are i.i.d. Bernoulli. Since N(1) = X1 + · · · + XM has mean λ = EN(1) =
ME(X1), this leads to N(1) ∼ Binomial(M, λ/M). By the first paragraph of this section N(1) is
thus approximately a Poisson(λ) random variable. We now alter our point of view slightly, and use
this approximation as our model.

Thus N(1) is a Poisson(λ) random variable. By the stationary and independent increments we
thus have

N(s, t] ∼ Poisson(λ(t − s)) for all 0 ≤ s ≤ t(12)

while

N has independent increments .(13)

Note also that N(0) = 0. (This is actually enough to rigorously specify a Poisson process.)
Let Y1 ≡ W1 ≡ inf{t > 0 : N(t) = 1}. Since

[Y1 > t] = [N(t) = 0],(14)

we see that P (Y1 > t) = P (N(t) = 0) = e−λt by (12). Thus Y1 has distribution function 1−exp(−λt)
for t ≥ 0 and density

fY1(t) = λe−λt for t ≥ 0 ;(15)

we say that Y1 ∼ Exponential(λ). Now let Wm ≡ inf{t > 0 : N(t) = m}; we call Wm the m−th
waiting time. We call Ym ≡ Wm − Wm−1, m ≥ 1, the interarrival times. In light of the physical
properties of our Geiger counter model, and using (13), it seems reasonable that

Y1, Y2, . . . are i.i.d. Exponential(λ) .(16)

Our assumption of the previous sentence could be expressed as

Y1 and N1(t) ≡ N(Y1, Y1 + t] are independent(17)
and N1 is again a Poisson process with intensity λ ;

we will call this the strong Markov property of the Poisson process. Now

[Wm > t] = [N(t) < m] ,(18)

so that P (Wm > t) =
∑m−1

k=0 (λt)k−1e−λt/k!; differentiating this expression shows that Wm has
density

fWm(t) = λmtm−1e−λt/Γ(m) for t ≥ 0 ;(19)
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we say that Wm ∼ Gamma(m, λ). Contained in this is a proof that for independent Zi ∼
Gamma(mi, λ),

Z1 + Z2 ∼ Gamma(m1 + m2, λ).(20)

Exercise 1.4 Verify (10).

Exercise 1.5 Verify (16).

Exercise 1.6 Verify (19).

It is true that (19) is a density for any real number m > 0; and the property (20) still holds for
real mi’s.

Exercise 1.7 If X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) are independent, then the conditional
distribution of X given X + Y = n is Binomial(n, λ1/(λ1 + λ2)).

Exercise 1.8 If X ∼ Gamma(α, λ) and Y ∼ Gamma(β, λ) are independent, show that X/(X +
Y ) ∼ Beta(α, β); i.e. U ≡ X/(X +Y ) has density {Γ(α+β)/Γ(α)Γ(β)}uα−1(1−u)β−1, 0 < u < 1.

The Normal Distribution
Suppose that the random variable Z has density

φ(z) =
1√
2π

exp(−z2

2
) for −∞ < z < ∞;(21)

then Z is said to be a standard normal random variable. We let the corresponding distribution
function be denoted by Φ. Thus

Φ(z) = P (Z ≤ z) =
∫ z

∞
φ(y)dy .(22)

If b > 0, then Fa+bZ(x) = P (a + bZ ≤ x) = P (Z ≤ (x − a)/b) = Φ((x − a)/b). Thus a + bZ has
density

fa+bZ(x) =
1
b
φ

(
x − a

b

)
for −∞ < x < ∞ .(23)

Note that (23) holds for Z ∼ fZ if we replace φ by fZ .

Exercise 1.9 Show that φ given in (21) is a density. Show that this density has mean 0 and
variance 1.

Thus X ≡ µ + σZ ∼ (µ, σ2) with density

1√
2πσ2

exp

(
−1

2

(
x − µ

σ

)2
)

for −∞ < x < ∞ ;(24)

we say that X ∼ Normal(µ, σ2) or just N(µ, σ2).
The importance of the normal distribution derives from the following theorem. Recall from the

properties of expectation and variance that if X1, . . . , Xn are i.i.d. (µ, σ2), then
√

n(Xn −µ)/σ has
mean 0 and variance 1 where Xn ≡ (X1 + · · · + Xn)/n. But much more is true.
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Theorem 1.1 (Classic CLT). If X1, . . . , Xn are i.i.d. (µ, σ2), then
√

n(Xn − µ) →d N(0, σ2) as n → ∞ .(25)

Hence if σ > 0
√

n(Xn − µ)/σ →d N(0, 1) as n → ∞ .(26)

This result will be stated again in Chapter 2 along with other central limit theorems. We will
use it in the meantime for motivational purposes.

Suppose that Z is N(0, 1). Then

FZ2(x) = P (Z2 ≤ x) = P (−
√

x ≤ Z ≤
√

x)(27)
= FZ(

√
x) − FZ(−

√
x)

= Φ(
√

x) − Φ(−
√

x) ;

thus Z2 has density

fZ2(x) =
1

2
√

x

{
φ(
√

x) + φ(−
√

x)
}

for x ≥ 0 .(28)

Plugging into (21) shows that

fZ2(x) = (2πx)−1/2 exp(−x/2) for x ≥ 0;(29)

this is called the Chisquare(1) density. Note that Chisquare(1) is the same as Gamma(1/2, 1/2).
Thus (20) shows that

if X1, . . . , Xn are i.i.d. N(0, 1), then
m∑
1

X2
i ∼ Chisquare(m)(30)

where Chisquare(m) ≡ Gamma(m/2, 1/2).

Uniform and Related Distributions
If fX(x) = 1[a,b](x)/(b − a) for real numbers −∞ < a < b < ∞, then we say that X ∼

Uniform(a, b). By far the most important special case is Uniform(0, 1). Note that if U ∼ Uniform(0, 1),
then X ≡ (b − a)U + a ∼ Uniform(a, b).

A generalization of this is the Beta(c, d) family. We say X ∼ Beta(c, d) if fX(x) = xc−1(1 −
x)d−11[0,1](x)/B(c, d) where B(c, d) = Γ(c)Γ(d)/Γ(c + d).

Suppose that ξ1, . . . , ξn are i.i.d. Uniform(0, 1). Let 0 ≤ ξn:1 ≤ . . . ≤ ξn:n ≤ 1 denote the
ordered values of the ξi’s; we call the ξn:i’s the uniform order statistics. (Alternatively, if n is
understood, then we also write ξ(i) for ξn:i, i = 1, . . . , n.) It seems intuitive that ξn:i equals x if
(i−1) of the ξi’s fall in [0, x), 1 of the ξi’s is equal to x, and n− i of the ξi’s fall in (x, 1). There are
n!/[(i − 1)!(n − i)!] such designations of the ξ’s, and the chance of the falling in the correct parts
of [0, 1] is xi−1(1 − x)n−i. Thus

fξn:i
(x) =

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i1[0,1](x) ;(31)

in other words, ξn:i ∼ Beta(i, n− i + 1). Also note that the joint density of (ξn:1, . . . , ξn:n) is given
by

fξn:1,...,ξn:n(u1, . . . , un) = n!1A(u1, . . . , un)(32)

where A ≡ {(u1, . . . , un) ∈ [0, 1]n : 0 ≤ u1 ≤ . . . ≤ un ≤ 1} .
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Exercise 1.10 Give a rigorous proof of (31) by computing Fξn:i
and differentiating.

Exercise 1.11 Give a proof of (32).

The Cauchy Distribution
If fX(x) = {bπ[1+ (x−a)2/b2]}−1 on (−∞,∞), then we say that X ∼ Cauchy(a, b). By far the

most important special case is Cauchy(0, 1); in this case we say simply that X ∼ Cauchy, and its
density is [π(1 + x2)]−1 on (−∞,∞). Verify that E|X| = ∞. We will see below that if X1, . . . , Xn

are i.i.d. Cauchy, then Xn ≡ (X1 + · · ·+ Xn)/n ∼ Cauchy. These two facts make the Cauchy ideal
for many counterexamples.

Rademacher Random Variables and Symmetrization
May problems become simpler if the problem is symmetrized. One way of accomplishing this is

by the appropriate introduction of Rademacher random variables. We say that ε is a Rademacher
random variable if P (ε = 1) = P (ε = −1) = 1/2. Thus ε ∼ 2 Bernoulli(1/2) − 1.

We say that X is a symmetric random variable if X ∼ −X. If X and X ′ are i.i.d., then
Xs ≡ (X − X ′) ∼ (X ′ − X) = −(X − X ′) = −Xs; hence Xs is a symmetric random variable.

Exercise 1.12 if X is a symmetric random variable independent of the Rademacher random vari-
able ε, then X ∼ εX.

The Multinomial Distribution
Suppose that B1 ∪ · · · ∪ Bk = R for Borel sets Bi with Bi ∩ Bj = for i �= j; we call this a

partition of R. Let Y1, . . . , Yn be i.i.d. random variables on (Ω,A, P ). Let Xi ≡ (Xi1, . . . , Xik) ≡
(1B1(Yi), . . . , 1Bk

(Yi)) for i = 1, . . . , n, and set

N ≡ (N1, . . . , Nk) ≡
n∑

i=1

Xi(33)

=

(
n∑

i=1

Xi1, . . . ,

n∑
i=1

Xik

)
=

(
n∑

i=1

1B1(Yi), . . . ,
n∑

i=1

1Bk
(Yi)

)
.

Note that X1j , . . . , Xnj are i.i.d. Bernoulli(pj) with pj = P (Yi ∈ Bj) and thus Nj ∼ Binomial(n, pj)
marginally. Note that N1, . . . , Nk are dependent random variables; in particular, N1+ · · ·+Nk = n.
The joint distribution of (N1, . . . , Nk) is called the Multinomial(n, p) = Multinomialk(n, (p1, . . . , pk))
distribution. The number of ways to designate n1 of the Yi’s to fall in B1, . . ., nk of the Yi’s to fall
in Bk is the multinomial coefficient(

n

n1 · · ·nk

)
≡ n!

n1! · · ·nk!
where n1 + · · · + nk = n .(34)

Each such designation occurs with probability
∏k

i=1 pni
i . Hence

P (N = n) = P (N1 = n1, . . . , Nk = nk) =
(

n

n1 · · ·nk

)
pn1
1 · · · pnk

k .(35)

Now it is a trivial calculation that for j �= l,

Cov[Xij , Xil] = E(1Bj (Yi)1Bl
(Yi)) − E(1Bj (Yi))E(1Bl

(Yi)) = −pjpl .(36)
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Thus

Cov[Nj , Nl] = −npjpl for j �= l .(37)

Hence it follows that


N1

·
·
·

Nk


 ∼


n




p1

·
·
·

pk


 , n




p1(1 − p1) · · · −p1pk

· · ·
· · ·
· · ·

−p1pk · · · pk(1 − pk)





 .(38)

Exercise 1.13 Consider, in the context of the multinomial distribution, two subsets C = ∪i∈IBi

and D = ∪j∈JBj for some subsets I, J ⊂ {1, . . . , k}, not necessarily disjoint, so that C and D are
not necessarily disjoint either. Let

NC =
∑
i∈I

Ni, pC =
∑
i∈I

pi, p̂C = NC/n ,

and
ND =

∑
j∈J

Nj , pD =
∑
j∈J

pj , p̂D = ND/n .

Compute Cov[NC , ND]. [Hint: it will involve the probability pC∩D = P (Y1 ∈ C ∩ D).]
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2 Convolution and Related Formulas

Convolution
If X and Y are independent random variables on (Ω,A, P ), then

FX+Y (z) = P (X + Y ≤ z) =
∫ ∫

x+y≤z
dFX(x)dFY (y)

=
∫ ∞

−∞

∫ z−x

−∞
dFY (y)dFX(x)

=
∫ ∞

−∞
FY (z − x)dFX(x) ≡ FX 	 FY (z)(1)

is a formula called the convolution formula, for FX+Y in terms of FX and FY (the symbol 	 stands
for convolution). In case X and Y have densities fX and fY with respect to Lebesgue measure,
then so does X + Y . In fact, since∫ z

−∞

∫ ∞

−∞
fY (y − x)fX(x)dxdy =

∫ ∞

−∞

{∫ z

−∞
fY (y − z)dy

}
fX(x)dx

=
∫ ∞

−∞
FY (z − x)dFX(x) = FX+Y (z) ,

it follows from (1) that X + Y has a density given by

fX+Y (z) =
∫ ∞

∞
fY (z − x)fX(x)dx ≡ fY 	 fX(z) .(2)

Exercise 2.1 Use (2) to show that for X and Y independent:
(i) X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2) implies X + Y ∼ N(µ1 + µ2, σ

2
1 + σ2

2).
(ii) X ∼ Cauchy(0, σ1) and Y ∼ Cauchy(0, σ2) implies X + Y ∼ Cauchy(0, σ1 + σ2).
(iii) X ∼ Gamma(r1, θ) and Y ∼ Gamma(r2, θ) implies X + Y ∼ Gamma(r1 + r2, θ).

Exercise 2.2 (i) If X1, . . . , Xn are i.i.d. N(0, 1), then (X1 + · · · + Xn)/
√

n ∼ N(0, 1).
(ii) If X1, . . . , Xn are i.i.d. Cauchy(0, 1), then (X1 + · · · + Xn)/n ∼ Cauchy(0, 1).

If X and Y are independent random variables taking values in 0, 1, 2, . . ., then clearly

P (X + Y = k) =
k∑

i=0

P (X = i)P (Y = k − i) for k = 0, 1, 2, . . . .(3)

Exercise 2.3 Use (3) to show that for X and Y independent:
(i) X ∼ Poisson(λ1) and Y ∼ Poisson(λ2) implies X + Y ∼ Poisson(λ1 + λ2).
(ii) X ∼ Negative Binomial(m1, p) and Y ∼ Negative Binomial(m2, p) implies X + Y ∼ Negative
Binomial(m1 + m2, p).

A fundamental problem in probability theory is to determine constants an and bn > 0 for which
i.i.d. random variables X1, X2, . . . , Xn, . . . satisfy

(X1 + · · · + Xn − an)/bn →d G as n → ∞(4)

for some non-degenerate distribution G. Exercise 2 gives us two examples of such convergence; each
was derived via the convlution formula. However, except in certain special cases, such as exercises
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2.1 - 2.3, the various convolution formulas are too difficult to deal with directly, at least for n−fold
convolutions for large n. For this reason we need a variety of central limit theorems. These will be
stated in Chapter 2.

Other Formulas

Exercise 2.4 Suppose that X and Y are independent with P (Y > 0) = 1. Show that

FXY (z) ≡ P (XY ≤ z) =
∫ ∞

0
FX(z/y)dFY (y) for all z ,(5)

FX/Y (z) ≡ P (X/Y ≤ z) =
∫ ∞

0
FX(zy)dFY (y) for all z .(6)

If FX has a bounded density fX and FY has a density fY (these are overly strong hypotheses),
then FXY and FX/Y have densities given by

fXY (z) =
∫ ∞

0
y−1fX(z/y)fY (y)dy for all z ,(7)

and

fX/Y (z) =
∫ ∞

0
yfX(zy)fY (y)dy for all z .(8)

Exercise 2.5 Let X ∼ N(0, 1), Y ∼ χ2
m, and Z ∼ χ2

n be independent. Show that

X√
Y/m

∼ Student’s tm ≡ t(m) ,(9)

Y/m

Z/n
∼ Snedecor’s Fm,n = F (m, n) , and(10)

Y

Y + Z
∼ Beta(m/2, n/2)(11)

where

ft(m)(x) ≡ Γ((m + 1)/2)√
πmΓ(m/2)

1
(1 + x2/m)(m+1)/2

1(−∞,∞)(x)(12)

and

fF (m,n)(x) =
Γ((m + n)/2)
Γ(m/2)Γ(n/2)

(m/n)m/2xm/2−1

(1 + mx/n)(m+n)/2
1(0,∞)(x) .(13)

Exercise 2.6 If Y1, . . . , Yn+1 are i.i.d. Exponential(θ), then

Zi ≡
Y1 + · · · + Yi

Y1 + · · · + Yn+1
∼ Beta(i, n − i + 1) ;(14)

in other words the ratio on the left has the same distribution as the ith order statistic of a sample
of n Uniform(0, 1) random variables.

Exercise 2.7 If Y1, . . . , Yn+1 are i.i.d. Exponential(θ), as in Exercise 2.6, then the joint distribution
of (Z1, . . . , Zn) is the same as that of the order statistics (ξn:1, . . . , ξn:n) of n Uniform(0, 1) random
variables.
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3 The Multivariate Normal Distribution

We say that Y = (Y1, . . . , Yn)′ is jointly normal with 0 means if there exist i.i.d. N(0, 1) random
variables X1, . . . , Xk and an n× k matrix A of known constants for which Y = AX. Note that the
n × n covariance matrix Σ of Y is

Σ = E(Y Y ′) = E(AXX ′A′) = AA′.(1)

Theorem 3.1 The following are equivalent:

Σ is the covariance matrix of some random vector Y .(2)
Σ is symmetric and non-negative definite .(3)
There exists an n × n matrix A such that Σ = AA′ .(4)

Proof. (2) implies (3): Σ is symmetric since E(YiYj) = E(YjYi). Also a′Σa = V ar(a′Y ) ≥ 0,
so that Σ ≥ 0.

(3) implies (4): Since Σ is symmetric, there exists an orthogonal matrix Γ such Γ′ΣΓ = D with
D diagonal. We let a ≡ Γb, and since Σ ≥ 0 we have

0 ≤ a′Σa = b′Γ′ΣΓb = b′Db =
n∑

i=1

diib
2
i

for all b, implying that all dii ≥ 0. Thus

Σ = ΓDΓ′ = ΓD1/2D1/2Γ′ = (ΓD1/2)(ΓD1/2)′ ≡ AA′

where D1/2 denotes the diagonal matrix with entries
√

dii on the diagonal.
(4) implies (2): Let X1, . . . , Xn be i.i.d. N(0, 1). Let X ≡ (X1, . . . , Xn)′ and Y = AX. Then

Y has covariance matrix Σ = AA′. �

Theorem 3.2 If Y = An×kXk×1 where X ∼ N(0, I), then

φY (t) ≡ Eeit′Y = exp
(
−1

2
t′Σt

)
with Σ ≡ AA′(5)

and rank(Σ) = rank(A). Conversely, if φY (t) = exp(−t′Σt/2) with Σ ≥ 0 of rank k, then

Y = An×kXk×1 with rank(A) = k and X ∼ N(0, I) .(6)

(Thus only rank(A) independent Xi’s are needed.)

Proof. We use the fact that the characteristic function of a standard normal random variable
Xj is EeitXj = exp(−t2/2) in the proof. Now

φY (t) = E exp(it′AX) = E exp(i(A′t)′X)

= exp
(
−1

2
(A′t)′(A′t)

)

= exp
(
−1

2
t′AA′t

)
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where we used
φX(t) = E exp(it′X) = exp(−|t|2/2)

to get the third equality.
Conversely, suppose that φY (t) = exp(−t′Σt/2) with rank(Σ) = k. Then there exists an

orthogonal matrix Γ such that

Γ′ΣΓ =
(

D 0
0 0

)
(a)

where D is diagonal and k × k. Let Z = Γ′Y so that

ΣZ = Γ′ΣΓ =
(

D 0
0 0

)
.

Then

φZ(t) = φY (Γt) = exp(−t′Γ′ΣΓt/2) =
k∏

i=1

exp(−t2i dii/2)
n∏

i=k+1

1(b)

so that Z1, . . . , Zk are independent N(0, d11), . . . , N(0, dkk) and Zk+1 = · · · = Zn = 0. Let Xi ≡
Zi/

√
dii ∼ N(0, 1) for i = 1, . . . , k with Xk+1 ≡ · · · ≡ Xn = 0. Then

Y = ΓZ = Γ
( √

D 0
0 0

)
Xn×1 = Γ

( √
D
0

)
X̃k×1 = An×kX̃k×1

with A of rank k. �

Theorem 3.3 (i) If Y = (Y1, . . . , Yk, Yk+1, . . . , Yn) ∼ Nn(0,Σ) with

Σ =
(

Σ11 Σ12

Σ21 Σ22

)
,(7)

then

(Y1, . . . , Yk)′ ∼ Nk(0,Σ11) .(8)

(ii) If Σ12 = 0, then (Y1, . . . , Yk)′ and (Yk+1, . . . , Yn)′ are independent.
(iii) If (Y1, Y2)′ is jointly normal, then Y1 and Y2 are indpendent if and only if Cov[Y1, Y2] = 0.
(iv) Linear combinations of normals are normal.

Proof. (i) Use the first k coordinates of the representation Y = AX.
(ii) Use the fact that

φY (t) = exp
(
−1

2
t′

(
Σ11 0
0 Σ22

)
t

)
= exp(−t′1Σ11t1/2) exp(−t′2Σ22t2/2) ,(a)

which is the product of the characteristic functions of the marginal distributions.
(iii) Just apply (ii).
(iv) Now Zm×1 ≡ Bm×nY n×1 = B(AX) = (BA)X. �
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The preceding development can be briefly summarized by introducing the notation X ∼ Nn(0, I) ≡
N(0, I) and Y ∼ Nn(0,Σ). We will write Y ∼ N(µ,Σ) if Y − µ ∼ N(0,Σ). Note that PY is com-
pletely specified by µ and Σ. We call Y non-degenerate, and Y1, . . . , Yn will be called linearly
independent if rank(Σ) = n. Of course

Y is non-degenerate if and only if rank(A) = n .(9)

Exercise 3.1 Show that (Y1, Y2) can have normal marginals without being jointly normal. [Hint:
consider starting with a joint N(0, I) density on R2 and move mass in a symmetric fashion to make
the joint distribution non-normal, but still keeping the marginals normal.]

Theorem 3.4 If Y ∼ N(0,Σ) is nondegenerate, then Y has density (with respect to Lebesgue
measure on Rn) given by

fY (y) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
y′Σ−1y

)
for all y ∈ Rn .(10)

Proof. Now Y = AX where AA′ = Σ, rank(A) = n, |A| �= 0, X ∼ N(0, I). Hence for any Borel
set Bn ∈ Bn

P (X ∈ Bn) =
∫

1Bn(x)fX(x)dx =
∫

1Bn(x)φ(x1) · · ·φ(xn)dx1 · · · dxn(a)

where fX(x) = (2π)−n/2 exp(−x′x/2). Since X = A−1Y , for any Borel set Bn,

P (Y ∈ Bn) = P (AX ∈ Bn) = P (X ∈ A−1Bn) =
∫

1A−1Bn
(x)fX(x)dx

=
∫

1A−1Bn
(A−1y)fX(A−1y)

∣∣∣∂x

∂y

∣∣∣dy

=
∫

1Bn(y)(2π)−n/2 exp
(
−1

2
(A−1y)′(A−1y)

) ∣∣∣∂x

∂y

∣∣∣dy

=
∫

Bn

(2π)−n/2|Σ|−1/2| exp
(
−1

2
y′Σ−1y

)
dy

since (A−1)′(A−1) = (AA′)−1 = Σ−1 and∣∣∣∂x

∂y

∣∣∣ = |A−1| =
√

|(A−1)′||A−1| =
√

|Σ−1| = 1/
√

|Σ| .(b)

�

Our last theorem about the multivariate normal distribution concerns the conditional distribu-
tion of one block of a joint normal random vector given a second block.

Theorem 3.5 If

Y =
(

Y (1)

Y (2)

)
∼ N

((
µ(1)

µ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,(11)

where Y (1) is a k− vector, Y (2) is an n − k - vector, and where Σ22 is nonsingular, then

(Y (1)
∣∣∣Y (2)) ∼ Nk((µ(1) + Σ12Σ−1

22 (Y (2) − µ(2)) , Σ11 − Σ12Σ−1
22 Σ21) .(12)
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Moreover, with Σ11·2 ≡ Σ11 − Σ12Σ−1
22 Σ21,(

Y (1) − µ(1) + Σ12Σ−1
22 (Y (2) − µ(2))

Y (2) − µ(2)

)
∼ Nn

((
0
0

)
,

(
Σ11·2 0

0 Σ22

))
.(13)

Proof. Without loss of generality, suppose that µ(i) = 0, i = 1, 2; otherwise subtract µ(i) from
Y (i), i = 1, 2. Then

Z ≡
(

Z(1)

Z(2)

)
≡

(
Y (1) − Σ12Σ−1

22 Y (2)

Y (2)

)
(a)

is just a linear combination of the Yi’s; and so it is normal, and all we need to know is µZ and ΣZ .
But ΣZ,12 = Σ12 − Σ12Σ−1

22 Σ22 = 0, so that Z(1) and Z(2) are independent by Theorem 3.3. Also,
ΣZ,22 = Σ22 and

ΣZ,11 = Σ11 − 2Σ12Σ−1
22 Σ21 + Σ12Σ−1

22 Σ22Σ−1
22 Σ21 = Σ11 − Σ12Σ−1

22 Σ21 = Σ11·2 .(b)

Note that

|Σ| = |Σ22||Σ11 − Σ12Σ−1
22 Σ21| .(c)

Some Facts about Chi-Square Distributions

If X ∼ Nn(0, I), then ‖X‖2 = X ′X =
∑n

i=1 X2
i ∼ χ2

n, the Chisquare distribution with n degrees
of freedom.

Corollary 1 If Y ∼ Nn(0,Σ) with Σ positive definite, then Y ′Σ−1Y ∼ χ2
n.

Proof. Y = AX where A is nonsingular and X ∼ Nn(0, I) and Σ = AA′. Hence Σ−1 =
(A′)−1A−1 and it follows that Y ′Σ−1Y = X ′A′(A′)−1A−1AX = X ′X ∼ χ2

n. �

Now for the noncentral Chisquare distributions: we will develop these in a series of steps as
follows:

(a) Suppose that X ∼ N(µ, 1). Define Y ≡ X2, δ = µ2. Then Y has density

fY (y) =
∞∑

k=0

pk(δ/2)g(y; (2k + 1)/2, 1/2)(4)

where pk(δ/2) = exp(−δ/2)(δ/2)k/k!, and g(·; (2k + 1)/2, 1/2) is the Gamma(2k + 1)/2, 1/2) =
Chisquare(2k+1) density. Another way to say this is: (Y |K = k) ∼ χ2

2k+1 where K ∼ Poisson(δ/2).
We will say that Y has the noncentral chisquare distribution with 1 degree of freedom and noncen-
trality parameter δ, and write Y ∼ χ2

1(δ) in this case.

(b) Now suppose that X1 ∼ N(µ, 1), and X2, . . . , Xn ∼ N(0, 1), and all of X1, . . . , Xn are inde-
pendent. Define Y ≡ X ′X = |X|2, δ = µ2. Then Y has density

fY (y) =
∞∑

k=0

pk(δ/2)g(y; (2k + n)/2, 1/2)(5)
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where pk(δ/2) = exp(−δ/2)(δ/2)k/k!, and g(·; (2k + n)/2, 1/2) is the Gamma((2k + n)/2, 1/2) =
Chisquare(2k+n) density. Another way to say this is: (Y |K = k) ∼ χ2

2k+n where K ∼ Poisson(δ/2).
We will say that Y has the noncentral chisquare distribution with n degrees of freedom and non-
centrality parameter δ, and write Y ∼ χ2

n(δ) in this case.

(c) Now suppose that X ∼ Nn(µ, I) and let Y ≡ X ′X. Then Y ∼ χ2
n(δ) with δ = µ′µ = |µ|2.

Proof. Let Γ be an n × n orthogonal matrix with first row µ/|µ| = µ/
√

µ′µ. Then Z ≡ ΓX ∼
Nn(Γµ,ΓΓ′) = Nn((|µ|, 0, . . . , 0)′, I), and hence by (b) above

Y ≡ X ′X = Z ′ΓΓ′Z = Z ′Z ∼ χ2
n(δ)(a)

with δ = |µ|2 = µ′µ. �

(d) Now suppose that X ∼ Nn(µ,Σ) where Σ is nonsingular. Let Y ≡ X ′Σ−1X. Then Y ∼ χ2
n(δ)

with δ = µ′Σ−1µ.

Proof. Define Z ≡ Σ−1/2X where Σ1/2(Σ1/2)′ = Σ. Then Z ∼ Nn(Σ−1/2µ, I), so by (c),

Y = X ′Σ−1X = Z ′Z ∼ χ2
n(δ)(a)

with δ = µ′(Σ−1/2)′Σ−1/2µ = µ′Σ−1µ. �

Exercise 3.2 Verify (4).

Exercise 3.3 Verify (5).



4. INTEGRATION BY PARTS 17

4 Integration by Parts

Integration by Fubini’s theorem or “integration by parts” formulas are useful in many contexts.
Here we record a few of the most useful ones.

Proposition 4.1 Suppose that the left-continuous function U and the right-continuous function
V are nondecreasing functions (↑). Then for any a ≤ b

U+(b)V (b) − U(a)V−(a) =
∫

[a,b]
UdV +

∫
[a,b]

V dU(1)

and

U(b)V (b) − U(a)V (a) =
∫

(a,b]
UdV +

∫
[a,b)

V dU(2)

where U+(x) ≡ limy↓x U(y) and V−(x) ≡ limy↑x V (y).

Proof. We can apply Fubini’s theorem 4.1.2 at steps (a) and (b) to obtain

[U+(b) − U(a)][V (b) − V−(a)] =
∫

[a,b]

{∫
[a,b]

dU

}
dV

=
∫

[a,b]

∫
[a,b]

{1x<y](x, y) + 1[x≥y]}dU(x)dV (y)(a)

=
∫

[a,b]
[U(y) − U(a)]dV (y) +

∫
[a,b]

[V (x) − V−(a)]dU(x)(b)

=
∫

[a,b]
UdV − U(a)[V (b) − V−(a)] +

∫
[a,b]

V dU − V−(a)[U+(b) − U(a)] .

A bit of algebra now gives (1). The proof of (2) is similar. �

Mean, Variances, and Covariances

If ξ ∼ Uniform(0, 1) and F is an arbitrary distribution function, then we will see in section 2.3
that X ≡ F−1(ξ) has distribution function F . Note note that this X satisfies

X =
∫

(0,1)
F−1(t)d1[ξ≤t](3)

and

X =
∫

(−∞,∞)
xd1[X≤x](4)

where 1[ξ≤t] is a random distribution function that puts mass 1 at the point ξ(ω) and 1[X≤x] is a
random distribution function that puts mass 1 at the point X(ω). If X has mean µ, then

µ =
∫

(0,1)
F−1(t)dt =

∫
(−∞,∞)

xdF (x) .(5)
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Moreover, when µ is finite we can write

X − µ =
∫

(0,1)
F−1(t)d(1[ξ≤t] − t) = −

∫
(0,1)

(1[ξ≤t] − t)dF−1(t)(6)

or

X − µ =
∫

(−∞,∞)
xd(1[X≤x] − F (x)) =

∫
(−∞,∞)

(1[X≤x] − F (x))dx .(7)

The first formula in each of (6) and (7) is trivial; the second follows from integration by parts. For
example, (6) is justified by

|tF−1(t)| ≤ |
∫ t

0
F−1(s)ds| → 0 as t → 0

when E|X| =
∫ 1
0 |F−1(t)|dt < ∞, and the analogous result (1− t)F−1(t) → 0 as t → 1. Thus when

V ar(X) < ∞, Fubini’s theorem gives

V ar(X) = E

{∫
(0,1)

(1[ξ≤s] − s)dF−1(s)
∫

(0,1)
(1[ξ≤t] − t)dF−1(t)

}

=
∫

(0,1)

∫
(0,1)

E{(1[ξ≤s] − s)(1[ξ≤t] − t)}dF−1(s)dF−1(t)

=
∫

(0,1)

∫
(0,1)

(s ∧ t − st)dF−1(s)dF−1(t)(8)

via (6), and the parallel formula

V ar(X) =
∫ ∞

−∞

∫ ∞

−∞
[F (x ∧ y) − F (x)F (y)]dxdy(9)

via (7). Of course we already know that

V ar(X) =
∫ 1

0
[F−1(t) − µ]2dt =

∫ ∞

−∞
(x − µ)2dF (x) .(10)

Now suppose that X, Y are random variables and let G, H denote measurable functions.

Proposition 4.2 (Formulas for means, moments, and covariances).
(i) If X ≥ 0 has distribution function F , then

E(X) =
∫ ∞

0
(1 − F (x))dx =

∫ 1

0
F−1(t)dt .(11)

(ii) If E|X| < ∞, then

E(X) = −
∫ 0

−∞
F (x)dx +

∫ ∞

0
(1 − F (x))dx =

∫ 1

0
F−1(t)dt .(12)

(iii) If X ≥ 0, then

E(Xr) = r

∫ ∞

0
xr−1(1 − F (x))dx =

∫ 1

0
[F−1(t)]rdt .(13)
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(iv) If (X, Y ) has joint distribution function F with marginal distribution functions FX , FY , and
G, H are nondecreasing, then

Cov[G(X), H(Y )] =
∫ ∞

−∞

∫ ∞

−∞
[F (x, y) − FX(x)FY (y)]dG(x)dH(y) .(14)

Note the special case G = H = I with I(x) ≡ x for all x ∈ R.
(v) If K is ↑ and left continuous and ξ ∼ Uniform(0, 1) (perhaps K = h(F−1) for an ↑ left
continuous function h and for X ≡ F−1(ξ) for a distribution function F )

V ar[K(ξ)] =
∫ 1

0

∫ 1

0
(s ∧ t − st)dK(s)dK(t)(15)

=
∫ ∞

−∞

∫ ∞

∞
[F (x ∧ y) − F (x)F (y)]dh(x)dh(y)(16)

= V ar[h(X)] .(17)

(vi) If X ≥ 0 is integer - valued,

E(X) =
∞∑

k=1

P (X ≥ k)(18)

and

E(X2) =
∞∑

k=0

(2k + 1)P (X > k) .(19)

Exercise 4.1 Prove the formulas (11) - (13) using Fubini’s theorem.

Exercise 4.2 Give an extension of (13) to arbitrary random variables in the case r = an integer
k.

Exercise 4.3 Prove formulas (14) and (15).

Exercise 4.4 For any distribution function F we have∫
[F (x + θ) − F (x)]dx = θ for each θ ≥ 0 .

Exercise 4.5 How should the left side of (1) be altered if we replace [a, b] in both places on the
right side of (1) by (a, b), or by (a, b], or by [a, b)?


