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Chapter 2

Some Basic Large Sample Theory

1 Modes of Convergence

Consider a probability space (Ω,A, P ). For our first three definitions we suppose that X, Xn, n ≥ 1
are all random variables defined on this one probability space.

Definition 1.1 We say that Xn converges a.s. to X, denoted by Xn →a.s. X, if

Xn(ω) → X(ω) for all ω ∈ A where P (Ac) = 0 ,(1)

or, equivalently, if, for every ε > 0

P ( sup
m≥n

|Xm − X| > ε) → 0 as n → ∞ .(2)

Definition 1.2 We say that Xn converges in probability to X and write Xn →p X if for every
ε > 0

P (|Xn − X| > ε) → 0 as n → ∞ .(3)

Definition 1.3 Let 0 < r < ∞. We say that Xn converges in r−th mean to X, denoted by
Xn →r X, if

E|Xn − X|r → 0 as n → ∞ for functions Xn, X ∈ Lr(P ) .(4)

Definition 1.4 We say that Xn converges in distribution to X, denoted by Xn →d X, or Fn → F ,
or L(Xn) → L(X) with L referring to the the “law” or “distribution”, if the distribution functions
Fn and F of Xn and X satisfy

Fn(x) → F (x) as n → ∞ for each continuity point x of F .(5)

Note that Fn ≡ 1[1/n,∞) →d 1[0,∞) ≡ F even though Fn(0) = 0 does not converge to 1 = F (0).
The statement →d will carry with it the implication that F corresponds to a (proper) probability
measure P .

Definition 1.5 A sequence of random variables {Xn} is uniformly integrable if

lim
λ→∞

lim sup
n→∞

E
{
|Xn|1[|Xn|≥λ]

}
= 0 .(6)
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4 CHAPTER 2. SOME BASIC LARGE SAMPLE THEORY

Theorem 1.1 (Convergence implications).
A. If Xn →a.s. X, then Xn →p X.
B. If Xn →p X, then Xn′ →a.s. X for some subsequence {n′}.
C. If Xn →r X, then Xn →p X.
D. If Xn →p X and |Xn|r is uniformly integrable, then Xn →r X.

If Xn →p X and lim supn→ E|Xn|r ≤ E|X|r, then Xn →r X.
E. If Xn →r X then Xn →r′ X for all 0 < r′ ≤ r.
F. If Xn →p X, then Xn →d X.
G. Xn →p X if and only if every subsequence {n′} contains a further subsequence {n′′} for which

Xn′′ →a.s. X.

Theorem 1.2 (Vitali’s theorem). Suppose that Xn ∈ Lr(P ) where 0 < r < ∞ and Xn →p X.
Then the following are equivalent:
A. {|Xn|r} are uniformly integrable.
B. Xn →r X.
C. E|Xn|r → E|X|r.

Before proving the theorems we need a short review of some facts about convex functions and
some inequalities. We first briefly review convexity. A real valued function f is convex if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)(7)

for all x, y and all 0 ≤ α ≤ 1. This holds if and only if

f

(
1
2
(x + y)

)
≤ 1

2
[f(x) + f(y)](8)

for all x, y provided f is continuous and bounded. Note that (8) holds if and only if

f(s) ≤ 1
2
[f(s − r) + f(s + r)] for all r, s .(9)

Also

f ′′(x) ≥ 0 for all x implies f is convex .(10)

We call f strictly convex if strict inequality inequality holds in any of the above. If f is convex,
then there exists a linear function l such that f(x) ≥ l(x) with equality at a prespecified x0 in the
interior of the domain of f ; this is called the supporting hyperplane theorem.

Definition 1.6 Assuming the following expectations (integrals) exist,

µ ≡ E(X) = the mean of X .(11)
σ2 ≡ V ar[X] ≡ E(X − µ)2 = the variance of X .(12)
E(Xk) = k-th moment of X for k ≥ 1 an integer .(13)
E|X|r = r-th absolute moment of X for r ≥ 0 .(14)
E(X − µ)k = k- th central moment of X .(15)
Cov[X, Y ] ≡ E[(X − µX)(Y − µY )] = the covariance of X and Y .(16)
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Proposition 1.1 If E|X|r < ∞, then E|X|r′ and E(Xk) are finite for all r′ ≤ r and integers
k ≤ r.

Proof. Now |x|r′ ≤ 1 + |x|r; and integrability is equivalent to absolute integrability. �

Proposition 1.2 V ar(X) ≡ σ2 < ∞ if and only if E(X2) < ∞. In this case σ2 = E(X2) − µ2.

Proof. Suppose that σ2 < ∞. Then σ2 + µ2 = E(X − µ)2 + E(2µX − µ2) = E(X2). Suppose
that E(X2) < ∞. Then E(X2) − µ2 = E(X2) − E(2µX − µ2) = E(X − µ)2 = V ar[X]. �

Proposition 1.3 (cr−inequality). E|X + Y |r ≤ crE|X|r + crE|Y |r where cr = 1 for 0 < r ≤ 1
and cr = 2r−1 for r ≥ 1.

Proof. Case 1: r ≥ 1. Then |x|r is a convex function of x; take second derivatives. Thus
|(x + y)/2|r ≤ [|x|r + |y|r]/2; and now take expectations.
Case 2: 0 < r ≤ 1: Now |x|r is concave and ↑ for x ≥ 0; examine derivatives. Thus

|x + y|r − |x|r =
∫ x+y

x
rtr−1dt =

∫ y

0
r(x + s)r−1ds

≤
∫ y

0
rsr−1ds = |y|r ,

and now take expectations. �

Proposition 1.4 (Hölder inequality). E|XY | ≤ E1/r|X|rE1/s|Y |s ≡ ‖X‖r‖Y ‖s for r > 1 where
1/r + 1/s = 1 defines s. When the expectations are finite we have equality if and only if there
exists A and B not both 0 such that A|X|r = B|Y |s a.e.

Proof. The result is trivial if E|X|r = 0 or ∞. Likewise for E|Y |s. So suppose that E|X|r > 0.
Now

|ab| ≤ |a|r
r

+
|b|s
s

, as in the figure .

Now let a = |X|/‖X‖r and b = |Y |/‖Y ‖s; and take expectations. Equality holds if and only if
|Y |/‖Y ‖s = (|X|/‖X‖r)1/(1−s) a.e.; if and only if

|Y |s
E|Y |s =

( |X|
‖X‖r

) s
s−1

=
|X|r

E|X|r a.e.

if and only if there exist A, B 	= 0 such that A|X|r = B|Y |s. This also gives the next inequality as
an immediate consequence. �

Proposition 1.5 (Cauchy-Schwarz inequality). (E|XY |)2 ≤ E(X2)E(Y 2) with equality if and
only if there exists A, B not both 0 such that A|X| = B|Y | a.e.
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Remark 1.1 Thus for non-degenerate random variables (i.e. non-zero variance) with finite vari-
ance we have

−1 ≤ ρ ≤ 1(17)

where

ρ ≡ Corr[X, Y ] ≡ Cov[X, Y ]√
V ar[X]V ar[Y ]

(18)

is called the correlation of X and Y . Note that ρ = 1 if and only if X − µX = A(Y − µY ) for some
A > 0 and ρ = −1 if and only if X − µX = A(Y − µY ) for some A < 0. Thus ρ measures linear
dependence, not dependence.

Proposition 1.6 log E|X|r is convex in r for r ≥ 0. It is linear if and only if |X| = c a.e. for some
c.

Proof. Let 0 ≤ r ≤ s. Apply the Cauchy-Schwarz inequality to |X|(s−r)/2 and |X|(s+r)/2 and
take logs to get

log E|X|s ≤ 1
2

{
log E|X|s−r + log E|X|s+r

}
.

�

Proposition 1.7 (Liapunov inequality). Let X be a random variable. Then E1/r|X|r is ↑ in r for
r ≥ 0.

Proof. The slope of the chord of y = log E|X|r is ↑ in r by proposition 1.6. That is,
(1/r) log E|X|r is ↑ in r. We used P (Ω) = 1 < ∞ to show that E|X|r′ < ∞ if E|X|r < ∞ for
r′ ≤ r in proposition 1.1. �

Exercise 1.1 Let µr ≡ E|X|r. For r ≥ s ≥ t ≥ 0 we have µs−t
r µr−s

t ≥ µr−t
s .

Proposition 1.8 (Minkowski’s inequality). For r ≥ 1 we have E1/r|X+Y |r ≤ E1/r|X|r+E1/r|Y |r.

Proof. It is trivial for r = 1. Suppose that r > 1. Then for any measure

E|X + Y |r ≤ E|X||X + Y |r−1 + E|Y ||X + Y |r−1(a)
≤ {‖X‖r + ‖Y ‖r} ‖|X + Y |r−1‖s by Hölder’s inequality
= {‖X‖r + ‖Y ‖r}E1/s|X + Y |(r−1)s

= {‖X‖r + ‖Y ‖r}E1/s|X + Y |r .

If E|X + Y |r = 0, it is trivial. If not, we divide to get the result. �

Proposition 1.9 (Basic inequality). Let g ≥ 0 be an even function which is ↑ on [0,∞). Then for
all random variables X and for all ε > 0

P (|X| ≥ ε) ≤ Eg(X)
g(ε)

.(19)
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Proof. Now

Eg(X) = E{g(X)1[|X|≥ε]} + E{g(X)1[|X|<ε]}(a)
≥ E{g(X)1[|X|≥ε]} ≥ g(ε)E{1[|X|≥ε]}
= g(ε)P (|X| ≥ ε)

as claimed. �

The next two inequalities are immediate corollaries of the basic inequality.

Proposition 1.10 (Markov’s inequality).

P (|X| ≥ ε) ≤ E|X|r
εr

for all ε > 0 .(20)

Proposition 1.11 (Chebychev’s inequality).

P (|X − µ| ≥ ε) ≤ V ar[X]
ε2

for all ε > 0 .(21)

Proposition 1.12 (Jensen’s inequality). If g is convex on (a, b) where −∞ ≤ a < b ≤ ∞ and if
P (X ∈ (a, b)) = 1 and E(X) is finite (and hence a < E(X) < b), then

g(EX) ≤ Eg(X) .(22)

If g is strictly convex, then equality holds in (22) if and only if X = E(X) with probability 1.

Proof. Let l be a supporting hyperplane to g at EX. Then

Eg(X) ≥ El(X)
= l(EX) since l is linear and P (Ω) = 1
= g(EX) .

Now g(X)− l(X) ≥ 0. Thus Eg(X) = El(X) if and only if g(X) = l(X) almost surely, if and only
if X = EX almost surely. �

Exercise 1.2 For any function h ∈ L2(0, 1), define a new function Th on (0, 1) by Th(u) =
u−1

∫ u
0 h(s)ds for 0 < u ≤ 1. Note that T is an averaging operator. use the Cauchy-Schwarz

inequality to show that ∫ 1

0
{Th(u)}2du ≤ 4

∫ 1

0
h2(u)du .

Thus T : L2(0, 1) → L2(0, 1) is a bounded linear operator with ‖T‖ ≤ 2. [Hint: write Th(u) =
u−1

∫ u
0 h(s)sαs−αds for some α.]

Exercise 1.3 Suppose that X ∼ Binomial(n, p). Use the basic inequality proposition 1.9 with
g(x) = exp(rx), r > 0, to show that for ε ≥ 1

P

(
X/n

p
≥ ε

)
≤ exp(−nph(ε))(23)
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where h(ε) = ε(log(ε) − 1) + 1. From this, show that for λ > 0 we have

P

(√
n

(
X

n
− p

)
≥ λ

)
≤ exp

(
−λ2

2p
ψ

(
λ

p
√

n

))
,(24)

where ψ(x) ≡ 2h(1 + x)/x2 is monotone decreasing on [0,∞) with ψ(0) = 0 and ψ(x) ∼ 2 log(x)/x
as x → ∞.

Proof. (Proof of theorem 1.1). A follows easily since, for any fixed ε > 0

P (|Xn − X| ≥ ε) ≤ P (∪m≥n[|Xm − X| ≥ ε]) → 0 .

To prove B, first note that Xn → X implies that for every k ≥ 1 there exists an interger nk such
that P (|Xnk

− X| > 1/2k) < 2−k; we can assume nk ↑ in k; if not, take n′
k ≡ nk + k. Let Am ≡

∪k≥m[|Xnk
−X| > 2−k] so that P (Am) ≤

∑∞
k=m 2−k = 2−m+1. On Ac

m = ∩k≥m[|Xnk
−X| ≤ 2−k|],

|Xnk
− X| ≤ 2−k for all k ≥ m; i.e. on Ac

m, Xnk
(ω) → X(ω). Thus Xnk

→ X on A ≡ ∪∞
m=1A

c
m,

and P (Ac) = P (∩∞
m=1Am) = limm P (Am) ≤ limm 2−m+1 = 0.

Markov’s inequality gives C via P (|Xn − X| ≥ ε) ≤ E|Xn − X|r/εr → 0. Hölder’s inequality
with 1/(r/r′) + 1/q = 1 gives E via

E|Xn − X|r′ ≤ {E|Xn − X|r′(r/r′)}r′/r{E1q}1/q

= {E|Xn − X|r}r′/r → 0 ;(a)

or, alternatively, use Liapunov’s inequality.
Vitali’s theorem 1.2 gives D.
Consider F. Let Xn ∼ Fn and X ∼ F . Now

Fn(t) = P (Xn ≤ t) ≤ P (X ≤ t + ε) + P (|Xn − X| ≥ ε)
≤ F (t + ε) + ε for all n ≥ some Nε .

Also

Fn(t) = P (Xn ≤ t) ≥ P (X ≤ t − ε and |Xn − X| ≤ ε) ≡ P (AB)
≥ P (A) − P (Bc) = F (t − ε) − P (|Xn − X| > ε)
≥ F (t − ε) − ε for n ≥ some N ′

ε .

Thus

F (t − ε) − ε ≤ lim inf Fn(t) ≤ lim supFn(t) ≤ F (t + ε) + ε .(b)

If t is a continuity point of F , then letting ε → 0 in (b) gives Fn(t) → F (t). Thus Xn →d X.
Half of G follows from B since any Xn′ →p X. We turn to the other half. Assume that Xn →p X

fails. Then there exists ε0 > 0 for which δ0 ≡ lim supP (|Xn − X| ≥ ε0) > 0. Thus there exists
a subsequence {n′} for which P (|Xn′ − X| ≥ ε0) → δ0 > 0. Thus neither Xn′ nor any further
subsequence Xn′′ can →a.s. X. This is a contradiction. Thus Xn →p X. �

Proof of Vitali’s theorem, theorem 1.2: postponed.

Some Metrics on Probability Distributions

Suppose that P and Q are two probability measures on some measurable space (or sample
space) (X,A). Let P denote the collection of all probability distributions on (X,A).
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Definition 1.7 The total variation metric dTV on P is defined by

dTV (P, Q) = sup
A∈A

|P (A) − Q(A)| .(25)

Definition 1.8 The Hellinger metric H on P is defined by

H2(P, Q) =
1
2

∫
|√p −√

q|2dµ(26)

where p, q are densities with respect to any common dominating measure µ of P and Q (the choice
µ = P + Q always works).

Proposition 1.13 For P, Q ∈ P, let p and q denote densities with respect to any common domi-
nating measure µ (µ = P + Q always works). Then

sup
A∈A

|P (A) − Q(A)| =
1
2

∫
|p − q|dµ .(27)

In other words,

dTV (P, Q) =
1
2

∫
|p − q|dµ .(28)

Proof. Let r ≡ p − q. Note that 0 =
∫

rdµ =
∫

r+dµ −
∫

r−dµ, so that
∫

r+dµ =
∫

r−dµ, and∫
|p − q|dµ =

∫
r+dµ +

∫
r−dµ = 2

∫
r+dµ .

Let B ≡ [p − q ≥ 0] = [r ≥ 0]. Then for any set A,

|P (A) − Q(A)| = |
∫

A
pdµ −

∫
A

qdµ| = |
∫

A
(p − q)dµ|

= |
∫

A∩B
(p − q)dµ +

∫
A∩Bc

(p − q)dµ|

≤
∫

A
r+dµ ≤

∫
r+dµ =

1
2

∫
|p − q|dµ .(a)

On the other hand

|P (B) − Q(B)| = |
∫

B
(p − q)dµ| =

∫
r+dµ =

1
2

∫
|p − q|dµ .(b)

The claimed equality follows immediately from (a) and (b). �

Proposition 1.14 (Scheffé’s theorem). Suppose that {Pn}n≥1, and P are probability distribu-
tions on a measurable space (X,A) with corresponding densities {pn}n≥1, and p with respect to a
dominating measure µ, and suppose that pn → p almost everywhere with respect to µ. Then

dTV (Pn, P ) → 0 .(29)
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Proof. From the proof of proposition 1.13 it follows that

dTV (Pn, P ) = dTV (P, Pn) =
∫

r+
n dµ(a)

where r+
n = (p−pn)+ satisfies r+

n →a.e. 0 and r+
n ≤ p for all n with

∫
pdµ = 1 < ∞. The conclusion

follows from (a) and the dominated convergence theorem. �

Exercise 1.4 Show that the Hellinger distance H(P, Q) does not depend on the choice of a dom-
inating measure µ.

Exercise 1.5 Show that

H2(P, Q) = 1 −
∫ √

pq dµ ≡ 1 − ρ(P, Q)(30)

where the Hellinger affinity ρ(P, Q) satisfies ρ(P, Q) ≤ 1 with equality if and only if P = Q.

Exercise 1.6 Show that

dTV (P, Q) = 1 −
∫

p ∧ qdµ ≡ 1 − η(P, Q)(31)

where the total variation affinity η(P, Q) satisfies η(P, Q) ≤ 1 with equality if and only if P = Q.

The Hellinger and total variation metrics are different, but they metrize the same topoplgy on
P, as follows from the inequalities in the following proposition.

Proposition 1.15 (Inequalities relating Hellinger and total variation metrics).

H2(P, Q) ≤ dTV (P, Q) ≤ H2(P, Q){1 + ρ(P, Q)}1/2 ≤
√

2H(P, Q) .(32)

Exercise 1.7 Show that (32) holds.
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2 Classical Limit Theorems

We now state some of the classical limit theorems of probability theory which are of frequent use
in statistics.

Proposition 2.1 (WLLN). If X, X1, . . . , Xn, . . . are i.i.d. with mean µ (so E|X| < ∞ and µ =
E(X), then Xn →p µ.

Proposition 2.2 (SLLN). If X1, . . . , Xn, . . . are i.i.d with mean µ (so E|X| < ∞ and µ = E(X)),
then Xn →a.s. µ.

Proposition 2.3 (CLT). If X1, . . . , Xn are i.i.d. with mean µ and variance σ2 (so E|X|2 < ∞),
then

√
n(Xn − µ) →d N(0, σ2).

Proposition 2.4 (Multivariate CLT). If X1, . . . , Xn are i.i.d. random vectors in Rd with mean
µ = E(X) and covariance matrix Σ = E(X − µ)(X − µ)′ (so E(X ′X) = E‖X‖2 < ∞), then√

n(X − µ) →d Nd(0,Σ).

Proposition 2.5 (Liapunov CLT). Let Xn1, . . . , Xnn be row independent random variables with
µni = E(Xni), σ2

ni ≡ V ar(Xni), and γni ≡ E|Xni − µni|3 < ∞. Let µn ≡
∑n

1 µni, σ2
n =

∑n
i=1 σ2

ni,
γn ≡

∑n
1 γni. If γn/σ3

n → 0, then
∑n

i=1(Xni − µni)/σn →d N(0, 1).

Proposition 2.6 (Lindeberg-Feller CLT). Let Xni be row independent with 0 means and finite
variances σ2

ni ≡ V ar(Xni). Let Sn ≡
∑n

i=1 Xni and σ2
n =

∑n
i=1 σ2

ni. Then both Sn/σn →d N(0, 1)
and max{σ2

ni/σ2
n : 1 ≤ i ≤ n} → 0 if and only if the Lindeberg condition

1
σ2

n

n∑
i=1

E{|Xni|21[|Xni|≥εσn]} → 0 for all ε > 0(1)

holds.

Proposition 2.7 (The Cramér-Wold device). Random vectors Xn in Rd satisfy Xn →d X if and
only if a′Xn →d a′X in R for all a ∈ Rd.,

Proposition 2.8 (Continuous mapping or Mann - Wald theorem). Suppose that g : Rd → R is
continuous a.s. PX . Then:
A. If Xn →a.s. X then g(Xn) →a.s. g(X).
B. If Xn →p X then g(Xn) →p g(X).
C. If Xn →d X then g(Xn) →d g(X).

Proposition 2.9 (Slutsky’s theorem). Suppose that An →p a, Bn →p b, where a, b are constants,
and Xn →d X. Then AnXn + Bn →d aX + b.

Proposition 2.10 (g′-theorem or the delta-method). Suppose that Zn ≡ an(Xn − b) →d Z in Rm

where an → ∞, and suppose that g : Rm → Rk has a derivative g′ at b; here g′ is a k × m matrix.
Then

an(g(Xn) − g(b)) →d g′(b)Z .(2)



12 CHAPTER 2. SOME BASIC LARGE SAMPLE THEORY

Definition 2.1 A sequence of random variable is said to be bounded in probability, and we write
Xn = Op(1), if

lim
M→∞

lim sup
n→∞

P (|Xn| ≥ M) = 0 .(3)

If Yn →p 0, then we write Yn = op(1). For any sequence of non-negative real numbers an we write
Xn = Op(an) if Xn/an = Op(1), and we write Yn = op(an) if Yn/an = op(1).

Proposition 2.11 If Xn →d X, then Xn = Op(1).

Exercise 2.1 Prove proposition 2.11.

Exercise 2.2 (a) Show that if Xn = Op(1) and Yn = op(1), then XnYn = op(1).
(b) Show that if Xn = Op(an) and Yn = Op(bn) then Xn + Yn = Op(cn) where cn = max{an, bn}.
(c) Show that if Xn = Op(an) and Yn = Op(bn), then XnYn = Op(anbn).

Proposition 2.12 (Polya - Cantelli lemma). If Fn →d F and F is continuous, then ‖Fn −F‖∞ ≡
sup−∞<x<∞ |Fn(x) − F (x)| → 0.

Exercise 2.3 Suppose that ξ1, . . . , ξn are i.i.d. Uniform(0, 1).
(a) Show that nξn:1 = nξ(1) →d Exponential(1).
(b) What is the joint limiting distribution of (nξn:1, nξn:2)?
(c) Can you extend the result of (b) to (ξn:1, . . . , ξn:k) for a fixed k ≥ 1?
(d) How would you extend (c) to the situation with kn → ∞ as n → ∞?

Exercise 2.4 Suppose that X1, . . . , Xn are independent Exponential(λ) random variables with
distribution function Fλ(x) = 1 − exp(−λx) for x ≥ 0.
(a) We expect Xn:n to be on the order of bn ≡ F−1

λ (1 − 1/n). Compute this explicitly.
(b) Find a sequence of constants an so that an(Xn:n − bn) →d “something” and find “something”.
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3 Skorokhod’s Theorem: Replacing →d by →a.s.

Our goal in this section is to show how we can convert convergence in distribution into the stronger
mode of almost sure convergence. This often simplifies proofs and makes them more intuitive.

Definition 3.1 For any distribution function F define F−1 by F−1(t) ≡ inf{x : F (x) ≥ t} for
0 < t < 1.

Proposition 3.1 F−1 is left - continuous.

Proof. To show that F−1 is left - continuous, let 0 < t < 1, and set z ≡ F−1(t). Then F (z) ≥ t
by the right continuity of F . If F is discontinuous at z, F−1(t − ε) = z for all small ε > 0, and
hence left continuity holds. If F is continuous at z, then assume F−1 is discontinuous from the left
at t. Then for all ε > 0, F−1(t− ε) < z − δ for some δ > 0, and hence F (z − δ) ≥ t− ε for all ε > 0.
hence F (z − δ) ≥ t, which implies F−1(t) ≤ z − δ, a contradiction. �

Proposition 3.2 If X has continuous distribution function F , then F (X) ∼ Uniform(0, 1). For
any distribution function F and any t ∈ (0, 1),

P (F (X) ≤ t) ≤ t

with equality if and only if t is in the range of F . Equivalently, F (F−1(t)) ≡ F ◦ F−1(t) ≥ t
for all 0 < t < 1 with equality if and only if t is in the range of F . Also, F−1 ◦ F (x) ≤ x for
all −∞ < x < ∞ with strict inequality if and only if F (x − ε) = F (x) for some ε > 0. Thus
P (F−1 ◦ F (X) 	= X) = 0 where X ∼ F .

Exercise 3.1 Prove proposition 3.2.

Theorem 3.1 (The inverse transformation). Let ξ ∼ Uniform(0, 1) and let X = F−1(ξ). Then for
all real x,

[X ≤ x] = [ξ ≤ F (x)] .(1)

Thus X has distribution function F .

Proof. Now ξ ≤ F (x) implies X = F−1(ξ) ≤ x by the definition 3.1 of F−1. If X = F−1(ξ) ≤ x,
then F (x + ε) ≥ ξ for all ε > 0, so that right continuity of F implies F (x) ≥ ξ. Thus the claimed
event identity holds. �

Proposition 3.3 (Elementary Skorokhod theorem). Suppose that Xn →d X0. Then there exist
random variables X∗

n, n ≥ 0, all defined on the common probability space ([0, 1],B[0, 1], λ) for which
X∗

n
d= Xn for every n ≥ 0 and X∗

n →a.s. X∗
0 .

Proof. Let Fn denote the distribution function of Xn and let

X∗
n ≡ F−1

n (ξ) for all n ≥ 0(a)
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where ξ ∼ Uniform(0, 1). Then X∗
n

d= Xn for all n ≥ 0 by theorem 3.1. It remains only to show
that X∗

n →a.s. X∗
0 .

Let t ∈ (0, 1) be such that there is at most one value z having F (z) = t. (Thus t corresponds to
a continuity point of F−1.) Let z = F−1(t). Then F (x) < t for z < z. Thus Fn(x) < t for n ≥ Nx

provided x < z is a continuity point of F . Thus F−1
n (t) ≥ x provided x < z is a continuity point

of F . Thus lim inf F−1
n (t) ≥ x provided x < z is a continuity point of F . Thus lim inf F−1

n (t) ≥ z
since there are continuity points x that ↑ z.

We also have F (x) > t for z < x. Thus Fn(x) > t, and hence F−1
n (t) ≤ x for n ≥ some Nx

provided x > z is a continuity point of F . Thus lim supn F−1
n (t) ≤ x provided x > z is a continuity

point of F . Thus lim supn F−1
n (t) ≤ z since there are continuity points x that ↓ z.

Thus F−1
n (t) → F−1(t) for all but a countable number of t’s. Since any such set has Lebesgue

measure zero, it follows that X∗
n = F−1

n (ξ) →a.s. F−1(ξ) = X∗
0 . �

Proposition 3.4 (Continuous mapping or Mann-Wald theorem). Suppose that g : R → R is
continuous a.s. PX . Then:
A. If Xn →a.s. X0, then g(Xn) →a.s. g(X0).
B. If Xn →p X0, then g(Xn) →p g(X0).
C. If Xn →d X0, then g(Xn) →d g(X0).

Proof. A. Let N1 be the null set such that Xn(ω) → X0(ω) for all ω ∈ N c
1 , and let N2 be

the null set such that g is continuous at X0(ω) for all ω ∈ N c
2 . Then for ω ∈ N c

1 ∩ N c
2 we have

g(Xn(ω)) → g(X0(ω)). But P (N1 ∪ N2) ≤ P (N1) + P (N2) = 0 + 0 = 0, and the convergence
asserted in A holds.

B. By theorem 1.1 part G, Xn →p X0 if and only if for every subsequence {Xn′} there is a further
subsequence {Xn′′} ⊂ {Xn′} such that Xn′′ →a.s. X0. We will apply this to Yn = g(Xn). Let Yn′ =
g(Xn′) be an arbitrary subsequence of {Yn}. By part G of theorem 1.1 there exists a subsequence
{Xn′′} of {Xn′} such that Xn′′ →a.s. X0. By A we conclude that Yn′′ = g(Xn′′) →a.s. g(X0) = Y0.
But by part G of theorem 1.1 (in the converse direction) it follows that Yn = g(Xn) →p g(X0) = Y0.

C. Replace Xn, X0 by X∗
n, X∗

0 of the Skorokhod theorem, proposition 3.3. Thus

g(Xn) d= g(X∗
n) →a.s. g(X∗

0 ) d= g(X0) .(a)

Since →a.s. implies →p which in turn implies →d, (a) implies that g(Xn) →d g(X0). �

Remark 3.1 Proposition 3.4 remains true for random vectors in Rk and, still more generally,
for convergence in law (weak convergence) of random elements in a separable metric space. See
Billingsley (1986), Probability and Measure, page 399, for the first, and Billingsley (1971), Weak
Convergence of Measures: Applications in Probability, theorem 3.3, page 7, for the second. The
original paper is Skorokhod (1956) where the separable metric space case was treated immediately.

Proposition 3.5 (Helly Bray theorem). If Xn →d X0 and g is bounded and continuous (a.s. PX),
then Eg(Xn) → Eg(X0).

Proof. For the random variables X∗
n of proposition 3.3, it follows from A of proposition 3.4

that g(X∗
n) →a.s. g(X∗

0 ). Thus by equality in distribution guaranteed by the construction of propo-
sition 3.3 and the dominated convergence theorem,

Eg(Xn) = Eg(X∗
n) → Eg(X∗

0 ) = Eg(X0) .
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�

Remark 3.2 If Eg(Xn) → Eg(X) for all bounded continuous functions g, then Xn →d X0.
(Proof: box in the indicator function 1(−∞,x] by the bounded continuous functions g+, g− defined
by connecting (x, 1) to (x + ε, 0) linearly and (x− ε, 1) to (x, 0) linearly, respectively.) This gives a
way of defining →d more generally:

Definition 3.2 Suppose that Xn, n ≥ 0 take values in the complete separable metric space (M, d).
Then we say that Xn converges in law or distribution to X0, and we write Xn →d X0 or Xn ⇒ X0,
if

Eg(Xn) → Eg(X0) for all g ∈ Cb(M);

here Cb(B) denotes the collection of all bounded continuous functions from M to R.

Proposition 3.6 If Xn →d X0, then E|X0| ≤ lim infn→∞ E|Xn|.

Proof. For the random variables X∗
n of proposition 3.3, X∗

n →a.s. X∗
0 . It follows from the the

equality in distribution of proposition 3.3 and Fatou’s lemma

E|X0| = E|X∗
0 | = E(lim inf

n
|X∗

n|) ≤ lim inf
n

E|X∗
n| = lim inf

n
E|Xn| .

�

Corollary 1 If Xn →d X0, then V ar(X0) ≤ lim infn V ar(Xn).

Exercise 3.2 Prove corollary 1. Hint: Note that with X ′
n

d= Xn for all n ≥ 0 with X ′
n independent

of Xn, we have V ar(Xn) = (1/2)E(Xn − X ′
n)2.

Proposition 3.7 (Slutsky’s theorem). If An →p a, Bn →p b, and Zn →d Z, then AnZn + Bn →d

aZ + b.

Proof. Now An →p a, Bn →p b, and Zn →d Z where a, b are constants, implies that
(Zn, An, Bn) →d (Z, a, b) in R3. Hence by the R3 version of Skorokhod’s theorem, there exists a
sequence (Z∗

n, A∗
n, B∗

n) d= (Zn, An, Bn) such that (Z∗
n, A∗

n, B∗
n) → (Z∗, a, b) d= (Z, a, b). Hence

AnZn + Bn
d= A∗

nZ∗
n + B∗

n →a.s. aZ∗ + b
d= aZ + b .(a)

Since →a.s. implies →p which in turn implies →d, (a) yields the desired conclusion. �
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4 Empirical Measures and Empirical Processes

We first introduce the empirical distribution function Gn and empirical process Un of i.i.d. Uniform(0, 1)
random variables. Suppose that ξ1, . . . , ξn, . . . are i.i.d. Uniform(0, 1). Their empirical distribution
function is

Gn(t) =
1
n

n∑
i=1

1[0,t](ξi) for 0 ≤ t ≤ 1(1)

=
#{ξi ≤ t, i = 1, . . . , n}

n

=
k

n
for ξn:k ≤ t < ξn:k+1, k = 0, . . . , n

where 0 ≡ ξn:0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ ξn:n+1 ≡ 1 are the order statistics. The uniform empirical
process is defined by

Un(t) ≡
√

n(Gn(t) − t) for 0 ≤ t ≤ 1 .(2)

The inverse function G
−1
n of Gn is the uniform quantile function. Thus

G
−1
n (t) = ξn:i for (i − 1)/n < t ≤ i/n, i = 1, . . . , n .(3)

The uniform quantile process Vn is defined by

Vn(t) ≡
√

n(G−1
n (t) − t) for 0 ≤ t ≤ 1 .(4)

Note that

nGn(t) ∼ Binomial(n, t) for 0 ≤ t ≤ 1 ,(5)

so that

Un(t) has mean 0 and variance t(1 − t) for 0 ≤ t ≤ 1 .(6)

In fact

Cov[1[0,s](ξi), 1[0,t](ξi)] = s ∧ t − st for 0 ≤ s, t ≤ 1 .(7)

Moreover, applying the multivariate CLT to (1[0,s](ξi), 1[0,t](ξi)), it is clear that

(Un(s), Un(t)) →d N2

((
0
0

)
,

(
s(1 − s) s ∧ t − st
s ∧ t − st t(1 − t)

))
as n → ∞ ,(8)

for 0 ≤ s, t ≤ 1.
We define {U(t) : 0 ≤ t ≤ 1} to be a Brownian bridge process if it is a Gaussian process on

indexed by t ∈ [0, 1] having

EU(t) = 0 and Cov[U(s), U(t)] = s ∧ t − st(9)

for all 0 ≤ s, t ≤ 1. The process U exists and has sample functions U(·, ω) which are continuous
for a.e. ω as we will show below. Of course the bivariate result (8) immediately extends to all the
finite-dimensional marginal distributions of Un: for any k ≥ 1 and any t1, . . . , tk ∈ [0, 1],

(Un(t1), . . . , Un(tk)) →d (U(t1), . . . , U(tk)) ∼ Nk(0, (tj ∧ tj′ − tjtj′)) .(10)
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Thus we have convergence of all the finite-dimensional distributions of Un to those of a Brownian
bridge process U, and we write

Un →f.d. U as n → ∞ .(11)

We would like to be able to conclude from (11) that g(Un) → g(U) as n → ∞ for various continuous
functionals such as g(x) = sup0≤t≤1 |x(t)| for x ∈ D[0, 1], the space of all right-continuous functions
on [0, 1] with left-limits. The conclusion (11) is not strong enough to imply this, but (10) can be
strengthened to a result that does. The Mann-Wald theorem suggests g(Un) →d g(U) should be
true for “continuous” functionals g, and this raises the question of what metric should be used to
define continuous.

The Empirical Process on R

Let X1, . . . , Xn, . . . be i.i.d. F with order statistics Xn:1 ≤ · · · ≤ Xn:n. Their empirical distri-
bution function Fn is defined by

Fn(x) =
1
n

n∑
i=1

1(−∞,x](Xi) for −∞ < x < ∞ .(12)

The empirical process is defined to be
√

n(Fn − F ). It will be very useful to suppose that random
variables X∗

i , i = 1, . . . , n, are defined by

X∗
i = F−1(ξi) i = 1, . . . , n for the ξi’s of (1) .(13)

theorem 3.1 shows that these X∗
i ’s are indeed i.i.d. F . Recall from theorem 3.1 that also

1[X∗
i ≤x] = 1[ξi≤F (x)] on (−∞,∞) a.s.(14)

for these particular X∗
i ’s. Thus for these X∗

i ’s we have

F
∗
n = Gn(F ) on (−∞,∞) a.s.(15)

and
√

n(F∗
n − F ) = Un(F ) on (−∞,∞) a.s..(16)

Note from (10) and (16) that
√

n(Fn − F ) →f.d. U(F ) as n → ∞ .(17)

Theorem 4.1 (Glivenko - Cantelli). Let I denote the identity function on [0, 1], I(t) = t, for
0 ≤ t ≤ 1. Then

‖Gn − I‖∞ ≡ sup
0≤t≤1

|Gn(t) − t| →a.s. 0(18)

and

‖Fn − F‖∞ ≡ sup
−∞<x<∞

|Fn(x) − F (x)| →a.s. 0(19)

as n → ∞.
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Proof. Since

‖Fn − F‖ d= ‖F
∗
n − F‖∞ = ‖Gn(F ) − F‖∞ ≤ ‖Gn − I‖∞ ,(a)

where the equality in distribution holds jointly in n and with equality if F is continuous, it suffices
to prove the first part.

Fix a large integer M . Then

‖Gn − I‖∞ = max
1≤j≤M

sup
(j−1)/M≤t≤j/M

|Gn(t) − t|

= max
1≤j≤M

{ sup
(j−1)/M≤t≤j/M

(Gn(t) − t) ∨ sup
(j−1)/M≤t≤j/M

(t − Gn(t))}

≤ max
1≤j≤M

{(Gn(j/M) − (j − 1)/M) ∨ (j/M − Gn((j − 1)/M))}

≤ max
1≤j≤M

{Gn(j/M) − j/M) ∨ ((j − 1)/M − Gn((j − 1)/M))} + 1/M

→a.s. 0 + 1/M

since Gn(j/M) →a.s. j/M , j = 1, . . . , M . But M was arbitrary; hence ‖Gn − I‖∞ →a.s. 0. �

The next natural step is to show that

Un ⇒ U as n → ∞ in (D[0, 1], ‖ · ‖∞)(20)

and
√

n(Fn − F ) d=
√

n(F∗
n − F ) = Un(F ) ⇒ U(F ) as n → ∞ in (D(−∞,∞), ‖ · ‖∞) .(21)

This is essentially what was proved by Donsker (1952). However, it turned out later that
there are measurability difficulties here: (D[0, 1], ‖ · ‖∞) is an inseparable Banach space, and even
though U takes values in the separable Banach space (C[0, 1], ‖ · ‖∞), in this case the unfortunate
consequence is that Un is not a measurable element of (D[0, 1], ‖·‖∞); see Billingsley (1968), Chapter
xx. Roughly, the Borel sigma-field is too big. Hence an attractive alternative formulation is one
that works around this difficulty essentially by carrying out an explicit Skorokhod construction
of uniform empirical processes U

∗
n

d= Un defined on a common probability space with a Brownian
bridge process U

∗ and satisfying

‖U
∗
n − U

∗‖∞ = sup
0≤t≤1

|U∗
n(t) − U

∗(t)| →a.s. 0 .(22)

This is the content of the following theorem:

Theorem 4.2 There exists a (sequence of) Brownian bridge processes U
∗
n corresponding to a

triangular array of row independent Uniform(0, 1) random variables ξn1, . . . , ξnn, n ≥ 1, and a
Brownian bridge process U

∗ all defined on a common probability space (Ω,A, P ), such (22) holds.
Thus it follows that

‖
√

n(F∗
n − F ) − U

∗(F )‖∞ →a.s. 0 as n → ∞.(23)

The convergence in (22) was strengthened in the papers of Komlós, Major, and Tusnády (1975),
(1978) as follows: the construction can be carried out so that the convergence in (22) holds with
the rate n−1/2 log n: there is a construction of U

∗
n and U

∗ so that

‖U
∗
n − U

∗‖∞ ≤ C
log n√

n
a.s. ,(24)
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for some absolute constant C. Moreover, there is a construction of the sequence(s) {U
∗
n}n≥1 and

U
∗ = U

∗n on a common probability space so that the joint in n distributions are correct and

‖U
∗
n − U

∗‖∞ ≤ C
(log n)2√

n
a.s. .(25)

In any case, these results have the following corollary:

Corollary 1 (Donsker’s theorem). If g : D[0, 1] → R is ‖ · ‖∞−continuous, then g(Un) → g(U).

Here are some examples of this:

Example 4.1 (Kolmogorov’s (two-sided) statistic). If F is continuous, then

‖
√

n(Fn − F )‖∞ d= ‖Un(F )‖∞ = ‖Un‖∞ →d ‖U‖∞ .(26)

It is known, via reflection methods (see Shorack and Wellner (1986), pages 33-42) that

P (‖U‖∞ > λ) = 2
∞∑

k=1

(−1)k+1 exp(−2k2λ2) for λ > 0 .(27)

Example 4.2 (Kolmogorov’s one-sided statistic). If F is continuous, then

‖
√

n(Fn − F )+‖∞ ≡ sup
−∞<x<∞

√
n(Fn(x) − F (x)) d= ‖U

+
n (F )‖∞ = ‖U

+
n ‖∞ →d ‖U+‖∞ .(28)

It is known (see Shorack and Wellner (1986), pages 37 and 142) that

P (‖U
+‖∞ > λ) = exp(−2λ2) for λ > 0 .(29)

Example 4.3 (Birnbaum’s statistic). If F is continuous,

∫ ∞

−∞

√
n(Fn(x) − F (x))dF (x) d=

∫ ∞

−∞
Un(F )dF =

∫ 1

0
Un(t)dt →d

∫ 1

0
U(t)dt .(30)

Now
∫ 1
0 U(t)dt is a linear combination of normal random variables, and hence it has a normal distri-

bution. It has expectation 0 by Fubini’s theorem since E(U(t)) = 0 for each fixed t. Furthermore,
again by Fubini’s theorem,

E

(∫ 1

0
U(t)dt

)2

= E

(∫ 1

0
U(s)ds

∫ 1

0
U(t)dt

)

=
∫ 1

0

∫ 1

0
E{U(s)U(t)}dsdt

=
∫ 1

0

∫ 1

0
(s ∧ t − st) dsdt =

1
12

.

Hence
∫ 1
0 U(t)dt ∼ N(0, 1/12).
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Example 4.4 (Cramér - von Mises statistic). If F is continuous,∫ ∞

−∞
{
√

n(Fn(x) − F (x))2dF (x) d=
∫ ∞

−∞
{Un(F )}2dF =

∫ 1

0
{Un(t)}2dt →d

∫ 1

0
{U(t)}2dt .

In this case it is known that∫ 1

0
{U(t)}2dt

d=
∞∑

j=1

1
j2π2

Z2
j ,(31)

where the Zj ’s are i.i.d. N(0, 1), and this distribution has been tabled; see Shorack and Wellner
(1986), page 148.

Example 4.5 (Anderson - Darling statistic). If F is continuous,∫ ∞

−∞

{√n(Fn − F )}2

F (1 − F )
dF

d=
∫ ∞

∞

{Un(F )}2

F (1 − F )
dF =

∫ 1

0

{Un(t)}2

t(1 − t)
dt →d

∫ 1

0

{U(t)}2

t(1 − t)
dt .

It is known in this case that∫ 1

0

{U(t)}2

t(1 − t)
dt

d=
∞∑

j=1

1
j(j + 1)

Z2
j(32)

where the Zj ’s are i.i.d. N(0, 1). This distribution has also been tabled; see Shorack and Wellner
(1986), page 148.

General Empirical Measures and Processes

Now suppose that X1, X2, . . . , Xn, . . . are i.i.d. P on the measurable space (S,S). We let Pn

denote the empirical measure of the first n of the Xi’s:

Pn ≡ 1
n

n∑
i=1

δXi ;(33)

here δx denotes the measure with mass 1 at x ∈ S: δx(B) = 1B(x) for B ∈ S. Thus for a set B ∈ S,

Pn(B) =
1
n

n∑
i=1

1B(Xi) =
1
n

#{i ≤ n : Xi ∈ B} .(34)

Note that when S = R so that the Xi’s are real-valued, and B = (−∞, x] for x ∈ R, then

Pn(B) = Pn((−∞, x]) = Fn(x) ,(35)

the empirical distribution function of the Xi’s at x.
The empirical process Gn is defined by

Gn ≡
√

n(Pn − P ) .(36)

The question is how to “index” Pn and Gn as stochastic processes.
Some history: For the case S = Rd, the empirical distribution function {Fn(x), x ∈ Rd}, is the

case obtained by choosing the class of sets to be the lower-left orthants

C = Od ≡ {(−∞, x] : x ∈ Rd} ,
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and this direction was pursued in some detail through the 1950’s and early 1960’s. However, with a
little thought it becomes clear that many other classes of sets will be of interest in Rd. For example
why not consider the empirical process indexed by the class of all rectangles

Rd ≡ {A = [a1, b1] × · · · × [ad, bd] : aj , bj ∈ R, j = 1, . . . , d}

or the class of all closed balls

Bd ≡ {B(x, r) : x ∈ Rd, r > 0}

where B(x, r) = {y ∈ Rd : |y − x| ≤ r}; or the class of all half-spaces

Hd ≡ {H(u, t) : u ∈ Sd−1, t ∈ R}

where H(u, t) ≡ {y ∈ Rd : 〈y, u〉 ≤ t} and Sd−1 ≡ {u ∈ Rd : |u| = 1} denotes the unit sphere in
Rd; or the class of all convex sets in Rd

Cd ≡ {C ⊂ Rd : C is convex} ?

All of these cases correspond to the empirical process indexed by some class of indicator functions

{1C : C ∈ C}

for the appropriate choice of C. Thus we can consider the empirical measure and the empirical
process as functions on a class of sets C which map sets C ∈ C to the real-valued random variables

Pn(C) and Gn(C) =
√

n(Pn(C) − P (C)) .

Note that for any class of sets C we have

sup
C∈C

Pn(C) ≤ 1 < ∞ and sup
C∈C

|
√

n(Pn(C) − P (C))| ≤
√

n < ∞ ,

so we can regard both Pn and Gn as elements of the space l∞(C) ≡ {x : C → R| supC∈C |x(C)| < ∞}.
More generally still, we can think of indexing the empirical process by a class F of functions

f : S → R. For example, when S = Rd a natural class which might easily arise in applications is
the class of functions

F = {ft(x) : t ∈ Rd}
where ft(x) = |x − t|. This is already an interesting class of functions when d = 1.

For any fixed measureable function f : S → we will use the notation

P (f) =
∫

fdP, Pn(f) =
∫

fdPn =
1
n

n∑
i=1

f(Xi) .

From the strong law of large numbers it follows that for any fixed function f with E|f(X)| < ∞

Pn(f) →a.s. P (f) = Ef(X1) .(37)

By the central limit theorem (CLT) it follows that for any fixed function f with E|f(X)|2 < ∞

Gn(f) =
√

n(Pn(f) − P (f)) →d G(f) ;∼ N(0, V ar(f(X1))(38)
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here G denotes a P−Brownian bridge process: i.e. a mean zero Gaussian process with covariance
function

Cov[G(f), G(g)] = P (fg) − P (f)P (g) .(39)

The question of interest is: for what classes C of subsets of S, C ⊂ A or classes of functions F , can
we make these convergences hold uniformly in C ∈ C, or uniformly in f ∈ F? These are the kinds
of questions with which modern empirical process theory is concerned and can answer.

To state some typical results from this theory, we first need several definitions. If d is a metric
on a set F , then we define the covering numbers of F with respect to d as follows:

N(ε,F , d) ≡ inf{k : there exist f1, . . . , fk ∈ F such that F ⊂ ∪k
j=1B(fj , ε)} ;(40)

here B(f, ε) ≡ {g ∈ F : d(g, f) ≤ ε}. Another useful notion is that of a bracket: if l ≤ u are two
real-valued functions defined on S, then the bracket [u, l] is defined by

[u, l] ≡ {f : l(s) ≤ f(s) ≤ u(s) for all s ∈ S} .(41)

We say that a bracket [u, l] is an ε−bracket for the metric d if d(u, l) ≤ ε. Then the bracketing
covering number N[](ε,F , d) for a set of functions F is

N[](ε,F , d) ≡ inf{k : there exist ε−brackets [l1, u1], . . . , [lk, uk] such that F ⊂ ∪k
j=1[lj , uj ]} .(42)

One more bit of notation is needed before stating our theorems: an envelope function F for a
class of functions F is any function satisfying

|f(x)| ≤ F (x) for all x ∈ S, and all f ∈ F .(43)

Usually we will take F to be the minimal measurable majorant

F (x) ≡
(

sup
f∈F

|f(x)|
)∗

,(44)

where here the ∗ stands for “smallest measurable function above” the quantity in parentheses
(which need not be measurable since it is, in general, a supremum over an uncountable collection).
[Note that this F is not a distribution function!]

Now we can state two generalizations of the Glivenko-Cantelli theorems.

Theorem 4.3 Suppose that F is a class of functions with finite L1(P )−bracketing numbers:
N[](ε,F , L1(P )) < ∞ for every ε > 0. Then

‖Pn − P‖F ≡ sup
f∈F

|Pn(f) − P (f)| →a.s. 0 .(45)

Theorem 4.4 Suppose that F is a class of functions with:
A. An integrable envelope function F : P (F ) < ∞.
B. The truncated classes FM ≡ {f1[F≤M ] : f ∈ F} satisfy

n−1 log N(ε,FM , L1(Pn)) →a.s. 0(46)

for every ε > 0 and 0 < M < ∞. Then, if F is also “suitably measurable”,

‖Pn − P‖F ≡ sup
f∈F

|Pn(f) − P (f)| →a.s. 0 .(47)
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Note that the key hypothesis (46) of Theorem 4.4 is clearly satisfied if

sup
Q

N(ε,FM , L1(Q)) < ∞(48)

for every ε > 0 and M > 0; here the supremum is over finitely discrete measures Q.
Finally, here are two generalizations of the Donsker theorem.

Theorem 4.5 (Ossiander’s uniform CLT). Suppose that F is a class of functions with L2(P )
bracketing numbers N[](ε,F , L2(P )) satisfying∫ ∞

0

√
log N[](ε,F , L2(P )) dε < ∞ .(49)

Then

Gn =
√

n(Pn − P ) ⇒ G in l∞(F) as n → ∞ .(50)

Theorem 4.6 (Pollard’s uniform CLT). Suppose that F is a class of functions satisfying:
A. The envelope function F of F is square integrable: P (F 2) < ∞.
B. The uniform covering numbers supQ log N(ε‖F‖Q,2,F , L2(Q)) satisfy∫ ∞

0

√
sup
Q

log N(ε‖F‖Q,2,F , L2(Q)) dε < ∞ .(51)

Then

Gn =
√

n(Pn − P ) ⇒ G in l∞(F) as n → ∞ .(52)

For proofs of Theorems 45 - 4.6, see van der Vaart and Wellner (1996). Treatments of empirical
process theory are also given by Dudley (1999) and Van de Geer (1999).
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5 The Partial Sum Process and Brownian Motion

We define {S(t) : 0 ≤ t ≤ 1} to be Brownian motion if S is a Gaussian process indexed by t ∈ [0, 1]
having

E(S(t)) = 0 and Cov[S(s), S(t)] = s ∧ t(1)

for all 0 ≤ s, t ≤ 1. These finite-dimensional distributions are “consistent”, and hence a theorem
of Kolmogorov shows that the process S exists. Note that (1) and normality imply that

S has stationary independent increments .(2)

Exercise 5.1 Suppose that U is a Brownian bridge and Z ∼ N(0, 1) is is independent of U. Let

S(t) ≡ U(t) + tZ for 0 ≤ t ≤ 1(3)

is a Brownian motion.

Exercise 5.2 Suppose that S is a Brownian motion. Show that

U(t) ≡ S(t) − tS(1) for 0 ≤ t ≤ 1(4)

is a Brownian bridge.

Now suppose that X1, . . . , Xn are i.i.d. random variables with mean 0 and and variance 1, and
set X0 ≡ 0. We define the partial sum process Sn by

Sn(t) ≡ Sn(k/n) =
1√
n

k∑
i=1

Xi for
k

n
≤ t <

k + 1
n

,(5)

for 0 ≤ k < ∞. Note that

Cov[Sn(j/n), Sn(k/n)] =
1
n

j∑
i=1

k∑
i′=1

Cov[Xi, Xi′ ]

=
1
n

j∧k∑
i=1

V ar[Xi] =
j ∧ k

n

→ s ∧ t if j/n → s and k/n → t .

Also,

Sn(t) =
1√
n

[nt]∑
i=1

Xi =

√
[nt]
n

1√
[nt]

[nt]∑
i=1

Xi →d

√
tN(0, 1) ∼ N(0, t) .(6)

for 0 ≤ t ≤ 1 by the CLT and Slutsky’s theorem. This suggests that

Sn →f.d. S as n → ∞ .(7)

This will be verified in exercise 5.3. Much more is true: Sn ⇒ S as processes in D[0, 1], and hence
g(Sn) →d g(S) for continuous functionals g.
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Exercise 5.3 Show that (7) holds: i.e. for any fixed t1, . . . , tk ∈ [0, 1]k,

(Sn(t1), . . . , Sn(tk)) →d (S(t1), . . . , S(tk)) .

Existence of Brownian motion and Brownian bridge as continuous processes on C[0, 1]

The aim of this subsection to convince you that both Brownian motion and Brownian bridge
exist as continuous Gaussian processes on [0, 1], and that we can then extend the definition of
Brownian motion to [0,∞).

Definition 5.1 Brownian motion (or standard Brownian motion, or a Wiener process) S is a
Gaussian process with continuous sample functions and:
(i) S(0) = 0;
(ii) E(S(t)) = 0, 0 ≤ t ≤ 1;
(iii) E{S(s)S(t)} = s ∧ t, 0 ≤ s, t ≤ 1.

Definition 5.2 A Brownian bridge process U is a Gaussian process with continuous sample func-
tions and:
(i) U(0) = U(1) = 0;
(ii) E(U(t)) = 0, 0 ≤ t ≤ 1;
(iii) E{U(s)U(t)} = s ∧ t − st, 0 ≤ s, t ≤ 1.

Theorem 5.1 Brownian motion S and Brownian bridge U exist.

Proof. We first construct a Brownian bridge process U. Let

h00(t) ≡ h(t) ≡




t 0 ≤ t ≤ 1/2 ,
1 − t 1/2 ≤ t ≤ 1 ,
0 elsewhere .

(a)

For n ≥ 1 let

hnj(t) ≡ 2−n/2h(2nt − j), j = 0, . . . , 2n − 1 .(b)

For example, h10(t) = 2−1/2h(2t), h11(t) = 2−1/2h(2t − 1), while

h20(t) = 2−1h(4t), h21(t) = 2−1h(4t − 1) ,

h22(t) = 2−1h(4t − 2), h23(t) = 2−1h(4t − 3) .

Note that |hnj(t)| ≤ 2−n/22−1.
The functions {hnj : j = 0, . . . , 2n − 1, n ≥ 0} are called the Schauder functions; they

are integrals of the orthonormal (with respect to Lebesgue measure on [0, 1]) family of functions
{gnj : j = 0, . . . , 2n − 1, n ≥ 0} called the Haar functions defined by

g00(t) ≡ g(t) ≡ 21[0,1/2](t) − 1,

gnj(t) ≡ 2n/2g00(2nt − j) , j = 0, . . . , 2n − 1, n ≥ 1 .

Thus ∫ 1

0
g2
nj(t)dt = 1,

∫ 1

0
gnj(t)gn′j′(t)dt = 0 if n 	= n′, or j 	= j′ ,(c)
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and

hnj(t) =
∫ t

0
gnj(s)ds, 0 ≤ t ≤ 1 .(d)

Furthermore, the family {gnj}2n−1
j=0, n≥0 ∪ {g(·/2)} is complete: any f ∈ L2(0, 1) has an expansion in

terms of the g’s. In fact the Haar basis is the simplest wavelet basis of L2(0, 1), and is the starting
point for further developments in the area of wavelets.

Now let {Znj}2n−1
j=0, n≥0 be independent identically distributed N(0, 1) random variables; if we

wanted, we could construct all these random variables on the probability space ([0, 1],B[0,1], λ).
Define

Vn(t, ω) =
2n−1∑
j=0

Znj(ω)hnj(t) ,

Um(t, ω) =
m∑

n=0

Vn(t, ω) .

For m > k

|Um(t, ω) − Uk(t, ω)| = |
m∑

n=k+1

Vn(t, ω)| ≤
m∑

n=k+1

|Vn(t, ω)|(e)

where

|Vn(t, ω)| ≤
2n−1∑
j=0

|Znj(ω)||hnj(t)| ≤ 2−(n/2+1) max
0≤j≤2n−1

|Znj(ω)|(f)

since the hnj , j = 0, . . . , 2n − 1 are 	= 0 on disjoint t intervals.
Now P (Znj > z) = 1 − Φ(z) ≤ z−1φ(z) for z > 0 (by “Mill’s ratio”) so that

P (|Znj | ≥ 2
√

n) = 2P ((Znj ≥ 2
√

n) ≤ 2√
2π

(2
√

n)−1e−2n .(g)

Hence

P

(
max

0≤j≤2n−1
|Znj | ≥ 2

√
n

)
≤ 2nP (|Z00| ≥ 2

√
n) ≤ 2n

√
2π

n−1/2e−2n ;(h)

since this is a term of a convergent series, by the Borel-Cantelli lemma max0≤j≤2n−1 |Znj | ≥ 2
√

n
occurs infinitely often with probability zero; i.e. except on a null set, for all ω there is an N = N(ω)
such that max0≤j≤2n−1 |Xnj(ω)| < 2

√
n for all n > N(ω). Hence

sup
0≤t≤1

|Um(t) − Uk(t)| ≤
m∑

n=k+1

2−n/2n1/2 ↓ 0(i)

for all k, m ≥ N ′ ≥ N(ω). Thus Um(t, ω) converges uniformly as m → ∞ with probability one to
the (necessarily continuous) function

U(t, ω) ≡
∞∑

n=0

Vn(t, ω) .(j)
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Define U ≡ 0 on the exceptional set. Then U is continuous for all ω.
Now {U(t) : 0 ≤ t ≤ 1} is clearly a Gaussian process since it is the sum of Gaussian processes.

We now show that U is in fact a Brownian bridge: by formal calculation (it remains only to justify
the interchange of summation and expectation),

E{U(s)U(t)} = E

{ ∞∑
n=0

Vn(s)
∞∑

m=0

Vm(t)

}

=
∞∑

n=0

E{Vn(s)Vn(t)}

=
∞∑

n=0

E




2n−1∑
j=0

Znj

∫ s

0
gnjdλ

2n−1∑
k=0

Znk

∫ t

0
gnkdλ




=
∞∑

n=0

2n−1∑
j=0

∫ s

0
gnjdλ

∫ t

0
gnkdλ

=
∞∑

n=0

2n−1∑
j=0

∫ 1

0
1[0,s]gnjdλ

∫ 1

0
1[0,t]gnkdλ + st − st

=
∫ 1

0
1[0,s](u)1[0,t](u)du − st

= s ∧ t − st

where the next to last equality follows from Parseval’s identity. Thus U is Brownian bridge.
Now let Z be one additional N(0, 1) random variable independent of all the others used in the

construction, and define

S(t) ≡ U(t) + tZ =
∞∑

n=0

Vn(t) + tZ .(k)

Then S is also Gaussian with 0 mean and

Cov[S(s), S(t)] = Cov[U(s) + sZ, U(t) + tZ]
= Cov[U(s), U(t)] + stV ar(Z)
= s ∧ t − st + st = s ∧ t .

Thus S is Brownian motion. Since U has continuous sample paths, so does S. �

Exercise 5.4 Graph the first few gnj ’s and hnj ’s.

Exercise 5.5 Justify the interchange of expectation and summation used in the proof. [Hint: use
the Tonelli part of Fubini’s theorem.]

Exercise 5.6 Let U be a Brownian bridge process. For 0 ≤ t < ∞ define a process B by

B(t) ≡ (1 + t)U
(

t

1 + t

)
.(8)

Show that B is a Brownian motion process on [0,∞).
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6 Quantiles and Quantile Processes

Let X1, . . . , Xn be i.i.d. real-valued random variables with distribution function F , and let X(1) ≤
X(2) ≤ . . . ≤ X(n) denote the order statistics. For t ∈ (0, 1), let

F
−1
n (t) ≡ inf{Fn(x) ≥ t}(1)

so that

F
−1
n (t) = X(i) for

i − 1
n

< t ≤ i

n
, i = 1, . . . , n .(2)

Let ξ1, . . . , ξn be i.i.d. Uniform(0, 1) random variables, and let 0 ≤ ξ(1) ≤ . . . ≤ ξ(n) ≤ 1 denote
their order statistics. Thus, with G

−1
n (t) ≡ inf{x : Gn(x) ≥ t},

G
−1
n (t) = ξ(i) for

i − 1
n

< t ≤ i

n
, i = 1, . . . , n .(3)

Now

(X∗
1 , . . . , X∗

n) ≡ (F−1(ξ1), . . . , F−1(ξn)) d= (X1, . . . , Xn),(4)

so

(X∗
(1), . . . , X

∗
(n)) ≡ (F−1(ξ(1)), . . . , F

−1(ξ(n)))
d= (X(1), . . . , X(n)),(5)

Hence it follows that

F
−1
n ( · ) d= F−1(G−1

n ( · )) ,(6)

and to study F
−1
n it suffices to study G

−1
n .

Proposition 6.1 The sequence of uniform quantile functions G
−1
n satisfy

‖G
−1
n − I‖∞ ≡ sup

0≤t≤1
|G−1

n (t) − t| = ‖Gn − I‖∞ →a.s. 0 ,(7)

and hence, if F−1 is continuous on [a, b] ⊂ [0, 1], then

‖F
−1
n − F−1‖b

a ≡ sup
a≤t≤b

|F−1
n (t) − F−1(t)| →a.s. 0 .(8)

Proof. Note that ‖Gn−1 − I‖∞ = ‖Gn − I‖∞ by inspection of the graphs. Thus

‖F
−1
n − F−1‖b

a
d= ‖F−1(G−1

n ) − F−1(I)‖b
a →a.s. 0(a)

since F−1 is uniformly continuous on [a, b] and ‖G
−1
n − I‖∞ →a.s. 0. �

Definition 6.1 The uniform quantile process Vn is defined by

Vn ≡
√

n(G−1
n − I) .(9)

The general quantile process is defined by
√

n(F−1
n − F−1) d=

√
n(F−1(G−1

n ) − F−1) .(10)
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Theorem 6.1 The uniform quantile process can be written as

Vn = −Un(G−1
n ) +

√
n(Gn ◦ G

−1
n − I) ,(11)

and hence for the specially constructed Un of theorem 4.2 it follows that, with V ≡ −U
d= U,

‖Vn − V‖∞ →a.s. 0 as n → ∞ .(12)

Proof. First we prove the identity (11):

Vn =
√

n(G−1
n − I)

=
√

n(G−1
n − Gn(G−1

n )) +
√

n(Gn(G−1
n ) − I)

= −Un(G−1
n ) +

√
n(Gn ◦ G

−1
n − I) .

Now ‖G
−1
n − I‖∞ →a.s. 0 by proposition 6.1, and

‖Gn ◦ G
−1
n − I‖∞ = sup

0≤t≤1
|Gn(G−1

n (t)) − t| =
1
n

.(a)

Hence

‖Vn − V‖∞ ≤ ‖Un(G−1
n ) − U‖∞

≤ ‖Un(G−1
n ) − U(G−1

n )‖∞ + ‖U(G−1
n ) − U‖∞ +

1√
n

≤ ‖Un − U‖∞ + ‖U(G−1
n ) − U‖∞ +

1√
n

→a.s. 0 + 0 + 0 = 0 .

since U is a continuous (and hence uniformly continuous) function on [0, 1]. �

Theorem 6.2 Let Q = F−1, and suppose that Q is differentiable at 0 < t1 < · · · < tk < 1. Then


√
n(F−1

n (t1) − F−1(tk))
·
·
·√

n(F−1
n (tk) − F−1(tk))


 →d




Q′(t1)V(t1)
·
·
·

Q′(tk)V(tk)


 ∼ Nk(0,Σ)(13)

where

Σ ≡ (σij) =
(
Q′(ti)Q′(tj)(ti ∧ tj − titj)

)
.(14)

Moreover, if Q′ is nonzero and continuous on [a, b] ⊂ [0, 1], then for any [c, d] ⊂ [a, b]

‖
√

n(F−1(G−1
n ) − F−1) − Q′

V‖d
c →a.s. 0 as n → ∞ .(15)

Note that Q′(t) = 1/f(F−1(t)).
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Proof. Suppose that k = 1 and let t1 = t. Then
√

n(F−1
n (t) − F−1(t)) =

√
n(Q(G−1

n (t)) − Q(t))

=
Q(G−1

n (t)) − Q(t)
G

−1
n (t) − t

√
n(G−1

n (t) − t)

d=
Q(G−1

n (t)) − Q(t)
G

−1
n (t) − t

Vn(t) for the special Vn process

→a.s. Q′(t)V(t) ∼ N(0, (Q′(t))2t(1 − t)) .

Similarly


√
n(F−1

n (t1) − F−1(tk))
·
·
·√

n(F−1
n (tk) − F−1(tk))




d=
√

n




Q(G−1
n (t1)) − Q(t1)

·
·
·

Q(G−1
n (t1)) − Q(t1)


 →a.s.




Q′(t1)V(t1)
·
·
·

Q′(tk)V(tk)


 .(a)

�

Theorem 6.3 (Bahadur representation of quantile processes). The uniform quantile process can
be written as

Vn = −Un + op(1)(16)

where the o(1) term is uniform in 0 ≤ t ≤ 1; i.e.

‖Vn + Un‖∞ →p 0 .(17)

In fact

lim sup
n→∞

n1/4‖Vn + Un‖∞√
bn(log n)

=
1√
2

a.s.(18)

where bn ≡
√

2 log log n. Moreover, if Q′(t) exists, then
√

n(F−1
n (t) − F−1(t)) = −Q′(t)

√
n(Fn(F−1(t)) − t) + op(1) .(19)

Corollary 1 (Asymptotic normality of the t−th quantile). Suppose that Q = F−1 is differentiable
at t ∈ (0, 1). Then

√
n(F−1

n (t) − F−1(t)) →d Q′(t)N(0, t(1 − t)) = N

(
0,

t(1 − t)
f2(F−1(t))

)
.(20)

Corollary 2 (Asymptotic normality of a linear combination of order statistics). Suppose that J
is bounded and continuous a.e. F−1, and suppose that E(X2) < ∞. Let

Tn ≡ 1
n

n∑
i=1

J

(
i

n + 1

)
X(i) , µ =

∫ 1

0
J(u)F−1(u)du .(21)

Then
√

n(Tn − µ) →d

∫ 1

0
JVdF−1 ∼ N(0, σ2(J, F ))(22)

where

σ2(J, F ) =
∫ 1

0

∫ 1

0
J(s)J(t)(s ∧ t − st)dF−1(s)dF−1(t) .(23)


