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Chapter 4

Efficient Likelihood Estimation and
Related Tests

1 Maximum likelihood and efficient likelihood estimation
We begin with a brief discussion of Kullback - Leibler information.
Definition 1.1 Let P be a probability measure, and let @@ be a sub-probability measure on (X, .A)

with densities p and ¢ with respect to a sigma-finite measure p (1 = P + @ always works). Thus
P(X) =1 and Q(X) < 1. Then the Kullback - Leibler information K (P, Q) is

0 )

Lemma 1.1 For a probability measure @ and a (sub-)probability measure @, the Kullback-Leibler
information K (P, Q) is always well-defined, and

(1) K(P,Q)=Ep {log

€ [0,00] always
K(P,Q){:O jfandODlYifQ:P.
Proof. Now

_Jlogl=0 ifP=Q,
K(P’Q){ logM >0 ifP=MQ, M>1.

If P # MQ), then Jensen’s inequality is strict and yields

s o ()
> —logEp <%) = —logEQl[p(X)>0}

O

Now we need some assumptions and notation. Suppose that the model P is given by

PZ{PQZ 96@}
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We will impose the following hypotheses about P:

Assumptions:

AO0. 0 +# 0" implies Py # Ppy-~.

Al. A={z: pp(x) > 0} does not depend on 6.

A2. Py has density pp with respect to the o —finite measure p and Xy,..., X, are i.i.d. Py, = Fp.

Notation:

~
—~

>
~—

Il

Ln(e H‘X Hpé’

10) = l(emzzn(e)zlogLn<9>=ZIogpe<Xz

I(B|X) =1,(B) = Slelgl(ﬁli) :

o~
—~
~—

Here is a preliminary result which motivates our definition of the maximum likelihood estimator.

Theorem 1.1 If A0 - A2 hold, then for 6 # 6

n

1 Ln(90)> 1 P, (Xi)
~lo == log =2 —a.s. K(Py,,Py) >0,
2os (0 n 2180, X) Foo, F0)

and hence

PGO(Ln(HO’K) > Ln(9’X>) — 1 as n — 00.

Proof. The first assertion is just the strong law of large numbers; note that

Do, (X)
po(X)

E90 log = K(Pgo, Pg) >0

by lemma 1.1 and AO. The second assertion is an immediate consequence of the first. O

Theorem 1.1 motivates the following definition.

Definition 1.2 The value 0 =0, of 6 which maximizes the likelihood L(0].X), if it exists and is
unique, is the maximum likelihood estimator (MLE) of §. Thus L(G) L(©) or 1(6,) =1(O).

Cautions:
° gn may not exist.
° @\n may exist, but may not be unique.

e Note that the definition depends on the version of the density pg which is selected; since this
is not unique, different versions of py lead to different MLE’s
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When © C RY, the usual approach to finding gn is to solve the likelihood (or score) equations
(2)  101X)=1,(0)=0;

ie. 1, (A|X)=0,i=1,...,d. The solution 6, say, may not be the MLE, but may yield simply a
local maximum of [(6).
The likelihood ratio statistic for testing H : § = 0y versus K : 0 # 0y is

N L(©®) _ SUDpeo L(0|X) L(6y)
! L(6o) L(0o|X) L(6o)’

Y _ L(gn)

An = L(60)

Write Py, Eq for Py,, Fg,. Here are some more assumptions about the model P which we will use
to treat these estimators and test statistics.

Assumptions, continued:
A3. O contains an open neighborhood ©¢ C R? of 6 for which:
(i) For p a.e. z, I(0|x) = log pp(x) is twice continuously differentiable in 6.

(ii) For a.e. x, the third order derivatives exist and 'i'jkl (0|x) satisty | .i'jkl (Olz)| < Mjp(x)
for § € ©g for all 1 < j,k,l < d with EOMjkl(X) < 00.

A4. (i) Eo{l;j(6o|X)} =0forj=1,...,d.
(ii) Eo{12(60|X)} < oo for j=1,....d.
(iii) I(6o) = (— Eo{l;1(00|X)}) is positive definite.

Let

n

7, = \LF S Oi(6olX)  and  1(60]X) = 71 (6)i(60]X),
n i=1

so that
1 o~
I Y0)Z, = — Y 1(60|X;).
(6o) \/ﬁ;( |Xi)

Theorem 1.2 Suppose that Xi,..., X, are i.i.d. Py, € P with density py, where P satisfies A0 -
A4. Then:

(i) With probability converging to 1 there exist solutions gn of the likelihood equations such that
0n, —p 0o when Py = Py, is true.

(ii) 6, is asymptotically linear with influence function 1(dp|z). That is,

Vi, — b)) = I—1<0o>zn+op<1>=%Ziwmxiwop(l)
=1

—q I7Y60)Z = D ~ N4(0,171(6y)).
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(iii)

2log Ay —a ZTT 1 (00)Z = DT1(0)D ~ x>.
(iv)

Wi = /10y, — 00)T1(0,) V(0 — o) —a DTI(00)D = ZT171(00)Z ~ X3,

where
N 1(6,), o or
In(On) = ¢ 07" 300 10| X)1(0,|X3)T, or
—n~ T 101 X)

(v)

Ry =ZX17Y00)Zy — ZTT7(00)Z ~ 2.

Here we could replace I(fy) by any of the possibilities for I,,(6,) given in (iv) and the con-
clusion continues to hold.

(vi) The model P satisfies the LAN condition at 6p:

1
10 +n"2t) —1(6y) = t'Z,— §tTI(60)t +op,(1)

—q t1Z — %tTI(GO)t ~ N(—(1/2)03,03)

where o2 = t11(6))t.

Remark 1.1 Note that the asymptotic form of the log-likelihood given in part (vi) of theorem 1.2
is exactly the log-likelihood ratio for a normal mean model Ny(I(60)t,I(6p)). Also note that

1 1 1
tr'z — 5tTI(eo)ze = §ZTI—l(eo)Z -5t - I7Y00)2)T1(60)(t — I71(60)2),
which is maximized as a function of t by t = I~1(6p)Z with maximum value Z71-'(69)Z/2.

Corollary 1 Suppose that A0-A4 hold and that v = v(FP) = ¢(0) is differentiable at 0y € ©.
Then v,, = q(0,,) satisfies

Vi(im — ) = in Zi”(QO‘X” + 0p(1) —q N(0, ¢" (80) I (60) d(60)) -

where 1L,(60|X:) = ¢7 (60) I (8)1(60|X;) and vy = q(6).
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If the likelihood equations (2) are difficult to solve or have multiple roots, then it is possible to
use a one-step approximation. Suppose that 6,, is a preliminary estimator of 6 and set

(3) O =0, + I, (0n)(n 104 X)) .
The estimator 6,, is sometimes called a one-step estimator.

Theorem 1.3 Suppose that A0-A4 hold, and that 0, satisfies n'/4(0,, — 6y) = 0,(1); note that the
latter holds if /n (6, — 6y) = O,(1). Then

V0, —00) = I"H(00) Zn + 0p(1) —4 Na(0,17(69))

where Z, = n~ /237" 1(60| X;).

Proof.  Theorem 1.2. (i) Existence and consistency. For a > 0, let
Qa={0€0O: |00 =a}.

We will show that

(a) Po{l(0) < 1(6p) forall 0 €Q,} —1 as n — 0.

This implies that L has a local maximum inside (J,. Since the likelihood equations must be satisfied
at a local maximum, it will follow that for any a > 0 with probability converging to 1 that the
likelihood equations have a solution gn(a) within @),; taking the root closest to #y completes the
proof.

To prove (a), write

LU0~ 100)) = (6 60)"1(60) — 50— )" <—%I(90)> (6 — 60)
d d d
% DD (85— 60)(6 — 60) (6 — bio) Z'}’gkl i) M (Xi)
j=1 k=1 I=1 o1
(b) = S1+ 55+ 53

where, by A3(ii), 0 < |yju(x)| < 1. Furthermore, by A3(ii) and A4,

© S0
(@) 82—y —5(0— 00)T(00)(6 — 60).

where
(e) (0 — 00)TI(0)(6 — 00) > Mgl6 — Oo|* = Aga®

and )y is the smallest eigenvalue of 1(6p) (recall that sup, (27 Az)/(z7x) = Ay, inf, (27 Az) /(2T 2) =
Ag where A1 > ... > \g > 0 are the eigenvalues of A symmetric and positive definite), and

) S3—p —ZZZ 0; — 650)(0k — Oko) (01 — 610) Evjr (X1) Mjra(X1) .
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Thus for any given €, a > 0, for n sufficiently large with probability larger than 1 —e¢, for all 6 € Q,,

(g) |Sl| < da3 5

(h) SQ < _)\da’2/47

and

. 1

(i) |S3] < g(da)?’ > mjy = Bd®
7.kl

where mji = EMjj,(X). Hence, combining (g), (h), and (i) yields
() sup (S1 4 S2+S53) < sup |S1+ 53|+ sup So

0€Q.a 0€Qa 0€Qa
< da®+ Ba® — %(IQ
A A
< (B+d)a® - zdaZ = {(B—i—d)a—zd}aZ.
The right side of (j) is < 0 if a < A\g/{4(B + d)}, and hence (a) holds.
On the set

(k) Gy = {0, solves 1,(6,) =0 and |6, — 8| < €}
with Py(G,) — 1 as n — oo, we have

H 0= %in@n) = %i(@o) — (="M, (62))v/n (0, — o)

where [0 — 8| < |0, — 6o|. Now from A4(i), (ii)

Furthermore

)~ 00 = —1a(00) + 0p(1)

by using 571 —p 0 and A3(ii) together with Taylor’s theorem. Since matrix inversion is continuous
(at nonsingular matrices), it follows that the inverse

(0) <—%’1’<0;;>)_1

exists with high probability, and satisfies

1o, -1 B
o) (-xien) = e,
Hence we can use (1) to write, on Gy,

(@  Vnln—0) = I '00)Zn+o0p(1)
—q T7Y00)Z ~ Ny(0,171(60)).
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This proves (ii).
It also follows from (n) that

~ 1o~ -
(r)  Vn(0, —6)" <_El(9n)> V(O — 00) —a ZTT 1 (00)Z ~ X3,
and that, since I(6) is continuous at 6y,
(s) \/ﬁ(gn - 90)T1(5n>\/ﬁ(§n — 00) —d ZTI_1<90)Z ~ X?l-

To prove (iii), we write, on the set Gy,

©) 160) = 18 + 7@ 0 — ) — (e~ 8,)7 (—%1(9:3)) Vit(bo — 8,)

where [0 — 6| < |0, — 6o|. Thus
2log A\, = 2{l(6,) — 1(60)}
— 02500, - 0" (-1 ) VD, o
— DII(00)D, +o0y(1),  with D, =/n(6, — b))
—q DTI(6)D where D ~ N4(0,17*(6p))
~ X3

Finally, (v) is trivial since everything is evaluated at the fixed point 6p. O

Proof. Theorem 1.3. First note that

W) = Z1a60) + 1 1 (68— b0)

S|

1.. _
= Eln(HO) + Op(1)|9n - 90|

so that
-1 -1
@ (—3h@)) = (-h@) 0,0 - b
and
b)) iu@) = ——in(B) + i (80, — 60)
n Vn n

Therefore it follows that

~1
Vil =00 = Vi~ 00+ (~1@)) =10
= \/ﬁ(gn_‘go)
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. {zn F o)V B — 00) + 5B — 00)" (% T (9;;)) (@, - 90)}
- (—%h(%)) 4 Oy (1) — 0l 7
+ 0p(1)- T (60) 1l — P
+ 0,05Vl ~ )" (71ul67) ) @t

I‘l(GO)Zn + Op(l) + Op(l)\/ﬁ@n - 90|2
= TY600)Zn +0,(1).

Here we used

= T (02) 0 = 00) @ — 00)

d d
= S0 VB ) Bt ) T (051)

k=11=1
_ 1
d*/n|0, —90|2ZEZ\ Ljk (0]X5)]
j=1"i=1
= Oy()Vn0, — 6o

since |0 — ok < [0n, — Oo] for k=1,...,d and |z| < dmaxj<p<q|zi| < dzzzl |zg|. O

IN
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2 The Wald, Likelihood ratio, and Score (or Rao) Tests
Let 89 € © be fixed. For testing

(1) H: 0=0 versus K: 0+#6,
recall the three test statistics
(2) 210g Xn = 2{ln(§n) - ln(eﬂ)} )

(3)  Wa=vnl(0n — 00) Tn(00) V(0 — 6o),

(4) R,=ZII"Y60y)Zy

1 . 1 .
= —1,(00) = —=1,(60|X).
Theorem 1.2 described the null hypothesis behavior of these statistics; all three converge in distri-
bution to X?l when Py = Py, is true. We now examine their behavior under alternatives, i.e. for
Xq,..., X, 1i.d. Py with 0 # 6.

®)  Zn

Theorem 2.1 (Fixed alternatives). Suppose that 6 # 6y and A0 - A4 hold at #. Then:

1 ~
(6) 52 log )\n —p 2K(P0, PGO) = QK(Ptru57 Phypothesized) > 0’

(1) SWo oy (0~ 60)"1(B)(0 — ) > 0.

If, furthermore,
A5, Ep|li(6p|X)| < 0o for i =1,...,d, holds, then

(9) =B —p Bpfi(00]3))7 T (60) By i(00] )} > 0
if Ea{l(60|X)} # 0.
Proof.  When 6 # 0 is really true,
() Zloghe = (i) - 160))
= 26) - 100} + - {1(F) ~ UO))
.

= 2 e+ 2 (16~ 106))

n
i=1 %

—p 2By {1og %(X)} +0 X3 = 2K(Py, Py,)
0
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by the WLLN and Theorem 1.2. Also, by the Mann-Wald (or continuous mapping) theorem,

() W= (B~ 60) () B — B0) — (8 — 60) T(6)(6 ),

and, since
1 1. 1 <. .
(c) %Zn = Eln(QO) = 21(90|Xi) —p Ep{1(60[X)},
i=1

it follows that
1 . .
(d) i Eo{1(60]X)} T (60) Eo{1(60]X)} -

|

Corollary 1 (Consistency of the likelihood ratio, Wald, and score tests). If Assumptions A0-A5
hold, then the tests are consistent: i.e. if 8 # 6y, then

(9) Py(LR test rejects H) = Pp(2log A, > Xia) -1,
(10)  Pp(Wald test rejects H) = Py(W,, > X?l,oc) — 1,
(11)  Py(score test rejects H) = Py(Ry, > X¢2i,a) —1,
assuming that Eg{1(6o|X)} # 0.

It remains to examine the behavior these three tests under local alternatives, 6, = 6y + tn~1/2

with ¢ # 0. We first examine Z,, and 6,, under 6y using Le Cam’s third lemma 3.3.4.
Theorem 2.2 Suppose that A0-A4 hold. Then, if 8,, = 6y + tn~Y2 is true, then under Py,
(12)  Vn(fn —00) —q D+t ~ Ny(t, I71(0)) ;

furthermore,

(13)  Z,(60) = —=A00X) =0 Z+ T00) ~ Na(T(00)1.7(00).

Hence we also have under P, ,

(14) \/ﬁ(gn - en) = \/ﬁ(an - 90) - \/ﬁ(en - 90)
—q D+t—t=D~ Ng(0, 17 (6));

i.e. gn is locally regular. Furthermore,

15)  Zu()) = Zu(00) - (—%Inw;;)) V(0 — 00)
—d  Z+1(00)t — I(6o)t = Z ~ N4(0,1(6o)) -
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Proof. From the proof of theorem 1.2 we know that gn is asymptotically linear under Py = Py,:

VB, — o) = lee 00l Xi) + 0p(1)

=1

where 1y(x) = I (0y)lg(x). Furthermore, it follows from theorem 1.2 part (vi) that the log likeli-
hood ratio is asymptotically linear:

n

dpé)n T L7
log iPy =1(0,) — (b)) =t Z, — 5! I(6p)t + 0p(1) .

Let a € R%. Then with T, = a”\/n(6, — 6,) it follows from the multivariate CLT that

T, Tf(g _00)
ary =
(vt ) ( wl )
_ a 1 0 \X 0

(5 ()

Thus the hypothesis of Le Cam’s third lemma 3.3.4 is satisfied with ¢ = a’'t, and we deduce that,
under P, ,

( a” n(gzzj(?— 0o) ) N (( a:gt > 7 ( aTI_;(Oo)a aT2t )) .
logﬁ +02/2 alt o
In particular, under Py, ,
a6y — 60) —q N(at,a" T~ (6p)a),
and by the Cramér = Wold device this implies that under Py,
V(0 — 00) —a Na(t, 17 (6y)) .
This, in turn, implies that
V(O — 0n) —a Na(0, 17 (09)) .
under Py . The proof of the second part is similar, but easier, by taking T;, = a’ Z,,(6y) which is

already a linear statistic. O

Corollary 1 If A0-A4 hold, then if 6,, = 6y + tn~ /2, under Py, :

(16) 210g Ay —a (D + )T I(00)(D + ) ~ x3(6) ,
(17) Wy, —a (D + )T I(00)(D +t) ~ X3(5),
(18) Ry —a (Z 4+ 1(00)) T (00)(Z + I(0o)t) = (D + t)"I(6p)(D +t) ~ x3(6)

where § = tT1(6p)t.
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Proof. This follows from theorem 2.2, the Mann - Wald theorem, and the fact that
X ~ Ny(p, )  implies  XTE71X ~ x3(6)
with 6 = p'S . O

Corollary 2 If A0 - A4 hold, then with T}, = 2log Xn, W, or Ry,
(19)  Pp, (T > x30) — P(X3(0) > X3 0) -

Three Statistics for Testing a Composite Null Hypothesis
Now consider testing § € ©g = {0 € O : 0; = 010}; i.c.
H: 61 =6, §2 = anything versus K :0=(01,02) # (610, 062)
where 0 = (01,02) € R™ x R™™ = R?. Recall the corresponding partitioning of I(6) and I~1(6)

and the matrices I1;.9, I29.1 introduced in section 3.2.
The likelihood ratio, Wald, and Rao (or score) statistics for testing H versus K are

suppeo L(O|X) _ L(B:X)

20 2log A\, with An = —=
(20) suppeor LOX)  L@|X)

(or

(21)  2logh,  with X, = %

where 5,“ 52 are consistent solutions of the likelihood equations under K and H respectively);
(22)  Wa = V(01 — 010) " Tir2v/n(0n1 — 010)

and

(23)  Rn=ZL(00)I71(02)Z, (D)

where 82 (60) is an MLE (ELE) of 6 € ©.
Now under H : 0 € Oy we have

(24) \/ﬁ(gm — 010) —q D1 ~ Ny (0,157%)

where
p=(5)=roe= (B g )
and
air = (5B
_ < Zn1 (80) — 112<e;>¢§<522 — G02) + 0p(1) )
_ ( Zn (o) — Iuwo)gg;zmwo) +op(1) )
(25) . ( Z1(00) —112%90)122122(90) > N < Nm(O(,)IH.g) ) '
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The natural consequences of (24) and (25) for the likelihood ratio, Wald, and Rao statistics are
summarized in the following theorem.

Theorem 2.3 (Likelihood ratio, Wald, Rao statistics for composite null under null). If A0 - A4
hold and 6y € Oy is true, then

QIOan
Wa —a Di Ti2aD1 ~ Xp, = X3 (4-m)
R,
Proof. That W,, —4 DT I11.0D; follows from (24) and consistency of ./7\11.2. Similarly,

R,, —4 DI I11.2D; follows from (25) and fn_l(é?l) —p, I71(0p). To prove the claimed convergence of
2log A, write

2loghn = 2{ln(6n)

= 2{l,(0,)

1, (69)

n

In(00) — (1n(09) — 1 (60))}

where

() 2{ln(Bn) ~ 1n(60)} —a D"1(60)D = Z"T""(60)Z
by our proof of theorem 1.2, and

(B)  2{a(0) —1n(00)} —a 25 15, (60) 22

again by the proof of theorem 1.2. In fact, by the asymptotic linearity of 0, (and 52) proved there,
the convergences in (a) and (b) imply that

2log A, —a ZTTY00)Z — Z3 I3, Zs
= (Z1— Laly Zo) ' I15(Z0 — 1215, Z5)
= D?-’11.2D1

where we have used the block inverse form of I71(6y) given in (3.2.x) and the matrix identity
(3.2.15) with the roles of “1” and “2” interchanged. O

Now under local alternatives the situation is as follows:

Theorem 2.4 If A0 - A4 hold, and 6,, = 6y + tn~ /2 with 6, € Oy, then under Py,

2log Xn
Wy, —a (D14 t1) " Iia(D1 + 1) ~ X (6) = Xzf(dfm)<5)
R,

whre § = t{]ugtl.



16 CHAPTER 4. EFFICIENT LIKELIHOOD ESTIMATION AND RELATED TESTS

3 Selected Examples

Now we consider several example to illustrate the theory of the preceding two sections and its
limitations.

Example 3.1 Let X1,..., X, beiid. N(u,0?); 0= (u,0?) € ©® =R x RT. Consider
(i) Estimation of 6.

(ii) Testing Hy : u = 0 versus K : pu # 0.

(iii) Testing Hy : 6 = (0,03) = 6y versus Ko : 0 # .

(i) Now the likelihood function is:

L(0) = (2m0®) ™ exp (—% S - M) .

i=1

Thus the MLE of 0 is

0, = (Xn,S?) where 52 = 1 Z(Xz - Xn)?,

n <
=1
and
1
- 0
o-(% )
20
since
1 2 1 2
(01X1) = —55 (X1 — p)” = S logo
so that
. 1 . 1
lu(Xl): ;(Xl—ﬂ)a luu(Xl):_§7
: (Xi—p)? 1 @ (Xi—p)? 1
IUQ(Xl):T—T‘Q, IUQUQ(Xl)Z—T—Fﬂ.
Now

(1) /a\n = (Ymsg) —a.s. (:u” 02) =0,

(2) V(B —6) —a Na(0,17'(6))

@ o= ).

The almost sure consistency stated in (1) and the limiting distribution in (2) follow from direct
application of the strong law of large numbers (proposition 2.2.2) and the central limit theorem
(proposition 2.2.3 ) respectively, after easy manipulations and Slutsky’s theorem. Alternatively, the
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in probability version of (1) and the limiting distribution in (2) follow from theorem 1.2 assuming
that the normal model for the X;’s holds.

(ii). The likelihood ratio statistic for testing H; is
oLl LS { oty xz "M
n )2 ’

L) LOnTIYTXY) e (X - X
and hence
-2
X
2log A\, = —nlog (1 — m) ;

note that —log(l — x) ~ = for z — 0. The Wald statistic is

2 < 2
Wo = (VX ~ OM (VX - o) = " = {55}

Finally, the Rao or score statistic is

Ry = Zny(05)"1(00)Za(67)

— T — T
(P ) (o, o (o
0 0 2(n~! 307 XP)? 0
o 2
VnXy,
NERT
If = 6y = (0,02) so Hy holds, then
210g >\TL5 an Rn —d X% .

If u#0,s0 0 ¢ Oy, then

1 u? o?
Z9log Ay —p —log (1= =)= —10g (=2} >0,
no 8T og< ag—i-u?) o8 <02+,u2

1 2
“W, —p 250, and
n ag

1 w2
ERn P o2 + p?

(iii) The likelihood ratio statistic A, for testing Ho is

\ _L(X,8%) (2152)~"/2 exp(—n/2)
"OL003)  (2mof) 2 exp(— Xy X7 /207)

g2 —n/2 1 & )
= (7)) ew (oo
so that

2log\, = — E X2 _n—nl
og 0_(2) i n n 10g ( )

> 0.
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The Wald statistic is

W, < \/5(7—0)> >T<1/82 0 >< V(X —0) >

Vi($? - of 0 1/25) )\ va(s? - af)
nX"  {Vn(s? - ap)}?
I T R

The Rao or score statistic is given by

J— T J—
R — \/—51);{10)(82 ( Jg 0 > \/_ﬁlééi(gz
n %U_g{"%_l} 0 2061 %_"{"%_1}

If H5 holds, then

210g An, W, R, —a4 X3.

Exercise 3.1 What are the limits in probability of n=12log A\,,, n ™' W,,, and n~'R,, under % 07

Example 3.2 (One parameter exponential family). Suppose that pg(z) = exp(0T' (z) — A(f)) with
respect to p. Then

lg(z) = T(z) - A'(6),  1(8) = Varg(T(X)),

and the likelihood equation may be written as
1o )
- D T(X)=A0).
i=1

Now A'(0) = Ep{T(X)}, and A"(0) = Vary(T(X)) > 0, so the right side in (4) is strictly increasing
in 6. Thus (4) has at most one root 6,,, and

() V(B —6) —a N(0,1/1(8)) = N(0,1/Vary(T(X))).

Example 3.3 (Multi-parameter exponential family; Lehmann and Cassella, TPE, pages 23 - 32).
Suppose that

d
po(x) =exp > n;(0)T;(x) — B(0) p h(z)
j=1

with respect to some dominating measure y. Here B : © — Rand n; : © — R, T; : X — R for
j=1,...,d. Here © C R* for some k. It is frequently convenient to use the n;’s as the parameters
and write the density in the canonical form

d
py(z) = plain) = exp{ Y n;Ti(z) — A(n) p h() .
j=1
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The natural parameter space = of the family is

=={necR: / exp{n"T () h(z)du(z) < oo} .

We will assume that the T}’s are affinely independent: i.e. there do not exist constants a1,...,aq
and b € R such that 2?21 a;Tj(x) = b with probability 1.

By Lehmann and Casella, TPE, theorem 5.8, page 27, we can differentiate under the expecta-
tions to find that the score vector for 7 is given by

177](‘/17):1}(33)7%14(77)’ lev"'vda
J

and since this has expectation 0 under p;),

0 .
0= By(Ty(X)) = - Al),  j=1,...d.
mj
If the likelihood equations have a solution, it is unique (and is the MLE) since (7)) is a strictly
concave function of 7 in view of the fact that [(n) has Hessian (times minus one)

. 2 2
i) = = (52510)) = (G A0 ) = (Coun[T3(X).THX))

which is positive definite by the assumption of affine independence of the T}’s.

Example 3.4 (Cauchy location family). Suppose that pg(x) = g(z —0) with g(x) = 7~ 1(14+2%)71,
x € R. Then

. g 2(X —0)

(X)) =—=(X-0)=———F——
I1(0) = 1/2, and the likelihood equation becomes

0 _
—9)2_0

p(01X) = lg(X;) =2 T+ (X =
i—1 . (2

i i

n
X, —
=1

if and only if

n

0= - o) {1+ (x; - 0%},

i=1 j#i
where the right side is a polynomial in 6 of degree 2(n —1) + 1 = 2n — 1 which could have as many
as 2n — 1 roots. Let 6, = median(X;) = F,1(1/2). Then

V0, —0) —q N(0,72/4),

and the one-step adjustment or “method of scoring”) estimator is

. _ ~— 1 <. _
0, = O0,+10,) "= 1,(X;:0,
e (13 b |
S X;—6,
= O, +—-) — "
n,:11+(Xi—9n)2

)
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Remark: Let 7, denote the (random) number of roots of the likelihood equation. Then with
probability one the roots are simple, and they alternately correspond to local minima and local
maxima of the likelihood. Thus 7, is odd, there are (r, + 1)/2 local maxima, (r, — 1)/2 local
minima, and one global maximum. Thus the number of roots corresponding to “false” maxima is
(rn, —1)/2. Reeds (1985) shows that (r, —1)/2 —4 Poisson(1/7), so that as n — co we can expect
to see relatively few roots corresponding to local maxima which are not global maxima. In fact,

P((rn, —1)/2 > 1) — P(Poisson(1/7) > 1) =1 — e /™ = 272623....
Example 3.5 (Normal mixture models; see TPE, page 442, example 5.6). Suppose that

po(x) = pN(u,0®)+(1—p)N(v, %)

with 0 = (p, u,0,v,7). The simpler case of 8 = (1/2, u,0,0,1) will illustrate the phenomena we

want to illustrate here. When 6 = 6y we may reparametrize by 0 = (u,0) € R x R = O, and the
density can be written as

) mlo) = o)+ 50 ().

(2

Then, if X1,..., X, are i.i.d. py,
sup L(0|X) = o0 almost surely.
fco

To see this, take p = any X;, and then let ¢ — 0. Thus MLE’s do not exist.

However, A0 - A4 hold for this model, and hence there exists a consistent, asymptotically
efficient sequence of roots of the likelihood equations. Alternatively, one-step estimators starting
with moment estimators are also asymptotically efficient.

Example 3.6 (An inconsistent MLE). Suppose that

pta) =311+ 50 (1= o) Lo

where § € © = [—1,1], § = 0(0) is decreasing and continuous with 6(0) =1 and 0 < §(0) <1 -6
for 0 <0 < 1,and A(0) =0 —45(6),0+ 56(9)).

Note that po(z) = (1—|z|)1|_1 3)(x) = triangular density, while p;(z) = 2_11[_1,1] (z) = uniform
density.

Note that A0-A2 hold, and, in addition, pg(z) is continuous in @ for all z. Thus a MLE exists
for all n > 1 since a continuous function on a compact set [0, 1] achieves its maximum on that set.

Proposition 3.1 (Ferguson). Let 0, = an MLE of 0 for sample size n. If 6(f) — 0 rapidly
enough as § — 1, then é\n — 1 as. Py asn — oo for every § € [0,1]. In fact, the function
5(0) = (1—6) exp(—(1—8)~*+1) works; for this choice of §(6) it follows that n'/*(1 — M, ) —4. 0
where M,, = max{Xi,...,X,}.

The details of this example are written out in Ferguson’s A Course in Large Sample Theory,
pages 116 - 117. The hypothesis that is violated in this example is that the family of log-likelihoods
fails to have an integrable envelope.
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Other examples of inconsistent MLE’s are given by Le Cam (1990) and by Boyles, Marshall, and
Proschan (1985). Here is another situation in which the MLE fails, though for somewhat different
reasons.

Example 3.7 (Neyman-Scott). Suppose that (X;,Y;) ~ No((p;, i), 0%I) for i = 1,...,n. Con-
sider estimation of 0. Now Z; = X; — Y; ~ N(0,20?), and therefore

1 & X2
337~
2n — n

is an unbiased and consistent estimator of o2. However
LOIX.Y) = (2m0?) " exp [ =10 S (K0 — ) + (Vi — )}
29 = 20_2 1:1 A T KA T

and therefore the MLE of u; is 1i; = (X; + Y2)/2 and it follows that the MLE of o2 is

n

1 1 n n
=2 _ § 2 _ § 172 § 1.2
1=

i=1 =1

Thus 5’% —as 02/2 as n — co. What went wrong? note that the dimensionality of the parameter
space for this model is n+ 1 which increases with n, so the theory we have developed so far does not
apply. One way out of this difficulty was proposed by Kiefer and Wolfowitz (1956) in their paper
on “Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance
parameters”, Ann. Math. Statist. 27, 887 - 906. For results on asymptotic normality of the
MLE’s in the semiparametric mixture models proposed by Kiefer and Wolfowitz (1956), see Van
der Vaart (1996), “Efficient maximum likelihood estimation in semiparametric mixture models”,
Ann. Statist. 24, 862-878.

Example 3.8 (Bivariate Poisson model). Suppose that U ~ Poisson(u), V' ~ Poisson(A), and
W ~ Poisson(v) are all independent, and let

X=U+W, Y =V+W.
Then X ~ Poisson(u + 1), Y ~ Poisson(A + 1), and jointly
(X,Y) ~ bivariate Poisson(u, A, 1) :

for positive integers x and y

TNy
PG(X:%Y:%M,)\,?M:Z

w=0

N )
wl(z — w)(y — w)!

where 6 = (u, A,1). Thus under ¢ = 0, X and Y are independent (1) = 0 implies W = 0 a.s. and
then X =U and Y =V as.).

Consider testing H : ¢ = 0 (independence) versus K : ¢ > 0 based on a sample of n i.i.d.
pairs from FPy. Note that maximum likelihood estimation of 8 = (u, A, 1) for general 6 is not
at all simple, so both the Wald and LR statistics must be calculated numerically. However, for
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0e©y={0€0O: ¢» =0}, X and Y are just independent Poisson rv’s and some calculation shows
that the scores, for any point 6y = (X, 1, 0) € Og are given by

X
l,u(Xaya 90) =-1+ '
i

. Y
1L,(X,Y;600) = -1+ 3

. XY
L,(X,Y:0p)) = -1+ —.
1/1( s Loy 0) + /_j,)\

Hence, under H the MLE of 6 is 92 = (Xn, Y, 0), and the Rao or score statistic for testing H is

R, = n{%—l} X,V

XY,
(S XY - KT
= N ———
XnYy,
since
/p 0 1/p
I6)=| 0 1/x 1/ ,
Vp /A 1/p+1/A4+1/(pA)
so that
Ippq = Inpg— InI;' 1o
0 1
= wura1fen - amam (40 ) ()
= ).

Note that R, is a close relative of the classical correlation coefficient, and in fact, under H it follows
fairly easily that R,, = nr2 + o,(1).

Note that the parameter space for this model is © = {(u, A,¢) : p >0, A > 0, ¥ > 0}, which is
not closed. Moreover, the points in the null hypothesis ©» = 0 are on a boundary of the parameter
space. Thus the theory we have developed does not quite apply. Nevertheless, unde H we have
Rn —a X3

Example 3.9 (The Multinomial Distribution). Suppose that X,,..., X, are ii.d. Multy(1,p).
Then

n

N, =Y X;~ Multy(n,p).
=1

Then the log likelihood is

n
1! X X
I(plX) = IOg{HXﬂ!u-Xik!pl Lep k}
i=1

k n 1!
= ;leogpj—i-;log (7)(“!.”)(%!) ,
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and the constrained log likelihood is

n k
1! ,
l(p, A X) = log {H m?l : P?k} + )\(ij -1)
=1

=1

k k
= ZNj log p; + )\(ij — 1) + constant in  p.
j=1 j=1

Thus the likelihood equations are

N;
0=iy,(pAX)=—L+X,  j=1,... .k
b

and

k
O:ij—l.
j=1

The solution of the first set of k equations yields

But to satisfy the constraint we must have

k
j=1

or A = —n, and thus the MLE of p is p = IV,,/n. The score vector (for n = 1) becomes

. X1, X1 —pi
way= (B 1) (Bom)
pj b j=1,...k

Thus the information matrix is
I(p) = E{i(p|X)i(p|X,)"} = diag(1/p;)(diag(p;) — pp" )diag(1/p;)
— diag(1/p;) — 117

Since I(p)p = 1 — 1 = 0, this matrix is singular. But note that it has a generalized inverse given

by I~ (p) = diag(p;) — pp":
I(p)I~ (p)I(p) = I(p)-
In fact, we know by direct calculations and the multivariate CLT that
Vi@, —p) —a Ni(0,17(p)) .
Note that the natural Rao statistic is in fact the usual chi-square statistic:
k np
T _ — JO
Zy ()T () Z(p,) = Z

n
j=1 P50
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where

1 (N1 —npio Ni —npro T
NG e,

Zn (90) =
Pb1o Pko

and

I~ (p,) = diag(pjo) — p,p; -
The Wald statistic is given by

For more on problems involving singular information matrices, see Rotnitzky, Cox, Bottai, and
Robins (2000).
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4 Consistency of Maximum Likelihood Estimators
Some Uniform Strong Laws of Large Numbers

Suppose that:
A. X, Xy,...,X, are i.i.d. P on the measurable space (X,.A).
B. For each 0 € ©, f(z,0) is a measurable, real-valued function of z, f(-,0) € L1(P).

Let F = {f(-,0) : 6 € ©}. Since f(-,6) € Li(P) for each 6,
9(6) = Bf(X.0) = [ f(.0)iP() = P1(0
exists and is finite. Moreover, by the strong law of large numbers,
Pof(-, /f:):&dIP foz,e

(1) —a.s. X,0)=Pf(-,0) = 9(9)-

It is often useful and important to strengthen (1) to hold uniformly in 0 € O:
(2)  sup[Pnf(,0) = Pf(-0)] —as 0.

e
Note that the left side in (2) is equal to

P, — P||z = sup |P,f — Pf].
feF

Here is how (2) can be used: suppose that we have a sequence §n of estimators, possibly dependent
on Xi,...,Xy, such that 6,, —,s 0. Suppose that g(f) is continuous at 6y. We would like to
conclude that

() PafCB) = S F(Xi) —as 9(600).
=1

The convergence (3) does not follow from (1); but (3) does follow from (2):

Pof(.00) = 960)| < [PufC.80) — 9@0)| + [9(8) — 9(00)]
< sup|Puf(-0) — 9(0)] + |9(@) — 9(60)
0co
= |Pu— Pl + [9(6.) — 9(60)
—as. 04+0=0.

The following theorems, due to Le Cam, give conditions on f and P under which (2) holds. The first
theorem is a prototype for what are now known in empirical process theory as “Glivenko-Cantelli
theorems”.
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Theorem 4.1 Suppose that:
(a) © is compact.
(b) f(z,-) is continuous in # for all x.
(c) There exists a function F'(z) such that EF(X) < oo and |f(z,0)| < F(x) forallz € X, 0 € ©.
Then (2) holds; i.e.
sup ‘Pnf(7 9) - Pf(7 9)‘ —a.s. 0.
0coO

The second theorem is a “one-sided” version of theorem 4.1 which is useful for the theory of
maximum likelihood estimation.

Theorem 4.2 Suppose that:

(a) © is compact.

(b) f(x,-) is upper semicontinuous in @ for all x; i.e. limsup,,_, . f(z,0,) < f(z,0) for all 6, — 6
and all 6 € ©.

(¢) There exists a function F(z) such that EF(X) < oo and f(z,0) < F(x) forallz € X, 6 € ©.
(d) For all # and all sufficiently small p > 0

sup  f(x,0)
|0’—0]|<p

is measurable in x.
Then

limsup,, o, supPp f(+,0) <4 sup Pf(-,0) = sup g(0).
0cO 0cO 0cO

We proceed by first proving Theorem 4.2. Then Theorem 4.1 will follow as a consequence of
Theorem 4.2.

Proof. Theorem 4.2. Let

Y(x,0,p) = sup f(z,0).
10/—6]<p

Then v is measurable (for p sufficiently small), bounded by an integrable function F', and

Y(x,0,p) \ f(z,0) as  p\.0 by (b).
Thus by the monotone convergence theorem
[ vtw.0.0aP@) N [ fa.0)aPa) = g(0)
Let € > 0. For each 6, find pp so that
[ 6(a.0.00dP(@) < 9(6) + <.

The spheres
S(0,pe) = {0+ 10" = 0] < po}
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cover ©, so by (a) there exists a finite sub cover: © C UT,5(0;, pg,). for each § € © there is some
J» 1 < j <m, such that 6 € S(0j, py,); hence from the definition of ¢ it follows that

f(:z,g) < /llb(l"aj’pej)

for all . Therefore

]P)nf(u ) < in( J:p@ )

and hence
Suanf('79> < sup ]P)nw( jaPG )
e 1<j<m
—a.s. sup P¢( ]’IO@ )
1<j<m
< sup g(0;) +e€
1<j<m
< supg(f) +e.
6co

We conclude that

limsup,,_, o, sup P, f (-, 0) <q.s. supg(f) + €
I=E) €O

Letting € | 0 completes the proof. O

Proof. Theorem 4.1. Since f is continuous in #, condition (d) of Theorem 2 is satisfied: for

any countable set D dense in {6’ : |6/ — 6| < p},

sup  f(x,0') = sup f(z,0)
|6"—0|<p 0'eD

where the right side is measurable since it is a countable supremum of measurable functions.
Furthermore, g(#) is continuous in 6:

lim g(6 —hm/fa?HdP /fx@dP

0'—0

by the dominated convergence theorem. Now Theorem 4.1 follows from Theorem 4.2 applied to
the functions h(z,0) = f(z,0) — g(0) and —h(z,0): by Theorem 4.2 applied to {h(z,0) : 0 € O},

hmsupn%oo Sup(]P)nf(" 9) - 9(9)) <0 a.8.
0cO

By Theorem 4.2 applied to {—h(x,0) : § € O},

limsup,, o sup(g(0)) — Pnf(-,0)) <0 as.
e

The conclusion of Theorem 4.1 follows since
0 <sup [P, f(-,0) — g(0)]
6co
= sup(Pnf(,0) —g(0)) V sup(g(0) — Pnf(,0)).

0cO [ISC)

For our application of Theorem 4.2 to consistency of maximum likelihood, the following Lemma
will be useful.
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Lemma 4.1 If the conditions of Theorem 4.2 hold, then g(#) is upper-semicontinuous: i.e.
limsupg _g(0') < g(0).

Proof. Since f(x,0) is upper semicontinuous,
limsupgr_of(z,0") < f(z,0) for all x;
ie.
liminfy_g { f(z,0) — f(z,0")} >0 for all x .
Hence it follows by Fatou’s lemma that

0 FEliminfy_g {f(X, 9) - f(X7 9/)}
liminfy o E { f(X,0) — f(X,0')}

= Ef(X,0) — limsupy_,Ef(X,0);

<
<

ie.
limsupy_¢Ef(X,0") < Ef(X,0) = g(0).

Now we are prepared to tackle consistency of maximum likelihood estimates.

Theorem 4.3 (Wald, 1949). Suppose that X, X;,..., X, are i.id. Py, 6p € © with density
p(x,0) with respect to the dominating measure v, and that:

(a) © is compact.

(b) p(z,-) is upper semi-continuous in 6 for all x.

(c) There exists a function F'(z) such that EF(X) < oo and

f(z,0) =logp(x,0) — logp(x, o) < F(x)

forallz € X, 0 € O.
(d) For all # and all sufficiently small p > 0

sup p(z,0)
|0"—0|<p

is measurable in x.
(e) p(z,0) = p(x,6p) a.e. v implies that § = 6.
Then for any sequence of maximum likelihood estimates gn of 0,

~

On —a.s. 00 .

Proof. Let p > 0. The functions {f(z,0) : 0 € O} satisfy the conditions of theorem 4.2. But
we will apply Theorem 4.2 with © replaced by the subset

S={0:10—00>p} CO.
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Then S is compact, and by Theorem 4.2

P, (1sup, o s0p Pl 0) < supg(6)) =1

0es 0esS
where
X,0
9(0) = Eg, f(X,0) = Eg, {log P(X. ) } = —K(Py,,Py) <0 for f€S6.
p(X7 90)

Furthermore by the Lemma, g(#) is upper semicontinuous and hence achieves its supremum on the
compact set S. Let § = supgpeg g(f). Then by Lemma 4.1.2 it follows that 6 < 0 and we have

Py, (hmsupn_>OO supP, f(+,0) < 5) =1.
fesS

Thus with probability 1 there exists an N such that for all n > N

supP,f(-,0) <46/2<0.
0eS

But

By f (. 8) = SupPof (- 6) = sup — {1 (6) — 1 (60)} > 0.
#cO pco N

Hence 6, ¢ S for n > N; that is, |§n — 6y| < p with probability 1. Since p was arbitrary, b, is a.s.
consistent. O

Remark 4.1 Theorem 4.3 is due to Wald (1949). The present version is an adaptation of Chapters
16 and 17 of Ferguson (1996). For further Glivenko - Cantelli theorems, see chapter 2.4 of Van der
Vaart and Wellner (1996).
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5 The EM algorithm

Our goal in this section is to introduce one quite general scheme for maximizing likelihoods, the
EM - algorithm. The following examples will be helpful before we formalize the method.

Example 5.1 (Multinomial). Suppose that ¥ ~ Mult,(n = 197, p) where

_(1,81-61-69
P=\eT 1 "1 1

R o<e<n,

Therefore
n! 1T O\ [1-0\" [1-0\" /(0"
pe(g)—yl!yz!yg!y4! (5—'—1) ( 4 > < 4 ) <Z> ’
10lY) =Yilog(1/2+4 6/4) 4+ (Yo + Y3)log(1 — 0) + Y, log 6 + constant,
. 1/4 1 1
LY =Y1——"—F+ - Y2+ Ys)—— + Yy
o(¥) "1/2+6/4 (Yo +¥5)3—5 + Vi
) (1/4)2 1 1
1Y) =Y —F— - (YV2o+Y3)—5 —Yi—>
(¥) Y(1/2+6/4)? (Y + 3)(1—9)2 to2°
and

o (1/4)2 1/2  1/4
I<9)_1/2+9/4 1—-6) 0

If 6,, is a preliminary estimator of @, then a one-step estimator of @ is given by
1. —
—1(6,) .

n
Thus, if Y = (125, 18, 20, 34) is observed, and we take 0,, = 4Yy/n = (4 -34)/197 = .6904, then the
one-step estimator is

0 =0, +1(6,)"

1 1
0, = .6904 + — —(—27.03) = .6904 — . = .6241.
690 +2.07197( 7.03) = .690 0663 = .6

Note that solving the likelihood equation 1y (Y') = 0 involves solving a cubic equation.
Another approach to maximizing [(f]Y’) is via the E-M algorithm: suppose the “complete data”
is

(1) X~ Mults(n,p)  with p:<1797ﬂ7ﬂ9)‘

so that

o w2 () (D) ()

and the “incomplete data” Y is given in terms of the “complete data” X by
(3) Y =(X1+ X9, X3,X4,X5).
Then the “E - step” of the algorithm is to estimate X given Y (and 0):

1/2 0/4
1/2+6/4 '1/2+6/4

(1) BXY) = (Y1 Y, Y, n) ,
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S0 we set

1/2

9P /4

5 X = (Y

Y
Y124 00 /4124 00) /4

aY2>Y37 Y;;)

where () is the estimator of 6 at the p—th step of the algorithm.

The “M - step” of the algorithm is to maxmimize the complete data likelihood with X replaced

by our estimate of F(X|Y): it is easily seen that

. o Xo+ X5 X3+ Xy _
yields
~ Xo + X5

0. =
" Xo+ X5+ X3+ Xy

as an estimator of € based on the full data. Since we can only observe Y, we take

j%ép)%-}(5

(6) plotl) —

and alternative between (5) and (6) with a “reasonable” guess @ of 0; say 6 =1 /2. This yields

the following table:

Table 4.1: Iterates of E and M steps in the Multinomial example

)?ép)+X5+X3+X4’

p|ow o) — 9, %
0 | .500000000 | .126821498 | .1465

1| .608247423 | .018574075 | .1346

2 | 624321051 | .002500447 | .1330

3 | 626488879 | .000332619 | .1328

41 .626777323 | .000044176 | .1328

5 | .626815632 | .000005866 | .1328

6 | .626820719 | .000000779

7| .626821395 | .000000104

8 | .626821484 | .000000014

The exact root of the likelihood equation which maximizes the likelihood is é\n = .62682149....

Example 5.2 (Exponential mixture model). Suppose that Y ~ Py on Rt where Py has density

po(y) = {pre™ + (1 — p)ue ™} (g.00)(y) ,

and 0 = (p,\, ) € (0,1) x RT2. Consider estimation of  based on Y1, ..

scores for 6 based on Y are

ip(Y) =

)\e—)\Y o /LB_“Y

po(Y)

)

Y, 1id. pe(y).
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. _pe(1-XY) an
M=
e )
h(Y) = po(Y) '

It is easily seen that Egi%(Y) < 00, Bgl3(Y) < o0, and Egii(Y) < 00, and, moreover, that that the
information matrix is nonsingular if A # p. However, the likelihood equations are complicated and
do not have “closed form” solutions.

Thus we will take an approach based on the EM algorithm. The natural “complete data” for
this problem is X = (Y, A) ~ py(x) where

po(x) =pa(y,6) = (pPAe ™) (1 —pue ™)' =°,  y >0, §€{0,1}.

Thus the “incomplete data” Y is just the first coordinate of X. Furthermore, maximum likelihood
estimation of 6 in the complete data problem is easy, as can be seen by the following calculations.
The log of the density py(x) is

[(0]1X) = dlogp+ (1 —0)log(l—p)+d(logh—\Y)
+ (1 —6)(log p — pY')

so that

) A 1-A O
LX) = ————, szZAi,

1 ) 1S (- A

1,(X) = (1-A4) <;—Y oY (=4

This gives the “M-step” of the E-M algorithm. To find the E-step, we compute

p)\ef)\Y

e (e = M) =p(r:0)

E(AlY) =

since (A|Y)) ~ Bernoulli(p(Y;6)). Thus the E-M algorithm becomes: §(m+1) = (p(m+1) \(m+1) p(m+1)
where

1 2 A
)\(m—l—l) Z?:l Agm)
1 Y v - A
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6 Nonparametric Maximum Likelihood Estimation

The maximum likelihood method has also been used successfully in a variety of nonparametric
problems. As in section 5 we will begin with several examples.

Example 6.1 Let X,...,X, be i.i.d. X— valued random variables with common probability
distribution (measure) P on (X, A). For an arbitrary probability distribution (measure) () on
(X, A). For an arbitrary probability distribution (measure) @ on (X, .A), let Q({X;}) = ¢;. If there
are no ties in the X;’s, then

n

1) LX) =]]u=LgX).

i=1

Consider maximizing this likelihood as a function of q. By Jensen’s inequality and concavity of
log x,

1 n
= "logg; <1log(q),
n

i=1
or
n 1/n
{H qi} <7
i=1
with equality if and only if ¢y = -+ = ¢, =¢q. Since > ¢ < 1,7 < 1/n. Thus
n 1 n
LglX)=]]a <7 < (ﬁ>
i=1
with equality if and only if > ¢; = 1 and ¢; = -+ = ¢, = 1/n. Thus the MLE of P is P,, with

P,({X;}) =1/n, or
P, (A) = %#{z’ <n: X, €A} = %dei(A).
i=1

This extends easily to the case of ties (homework!). Thus we have proved:

Theorem 6.1 The nonparametric maximum likelihood estimator of a completely arbitrary distri-
bution P on any measurable space based on i.i.d. data is the empirical measure P,, = n~! > ox,.

In particular, if X = R, the empirical distribution function F,,(z) =n=1 Y7 lix,<q] is the MLE
of F'. Recall from Chapter 2 that Donsker’s theorem yields

Vi(F, — F) £ U, (F) = U(F)

where U,, is the empirical process of i.i.d. UJ0, 1] random variables and U is a Brownian bridge
process.
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Example 6.2 (Censored data). Suppose that Xi,...,X,, are i.i.d. F and Y7,...,Y,, are i.i.d. G.
Think of the X’s as survival times and the Y’s as censoring times. Suppose that we can observe
only the i.i.d. pairs (Z1,A1),...,(Zp, Ayp) where Z; = X; AY; and A; = 1{X; < Y;}. Thus the
joint distribution of (Z, A) is given by

H“(z)=P(Z<z,A=1)= / (1 - G(x—))dF(x)

[0,2]

where G(z—) = limyt, G(y), and

HY2) = PZ<58=0)= | (1= F)iG().

[0,2]

Furthermore, the survival function 1 — H(z) = P(Z > z) is given by

1-H(z)=P(Z>z)=P(X >zY >z =(1-F(2)(1-G(2)).

Now suppose for simplicity that Z,1 < --- < Z,., are all distinct. Let A,.q,...,Ann be the
corresponding A’s. If we let p; = F{Z,..} = F(Zn.i) — F(Zn.i—) = AF(Zy.), and ¢; = G{Z,,.;} =
G(Zni) — G(Zpi—) = AG(Zny),i=1,....0n, ppy1 =1 — F(Zpn) =1— Z?:l pj, then a nonpara-
metric likelihood for the censored data problem is

JAN 1-An 1-An

n n n:i n+1 n:i n n+1 n:i
Ani § : 1-An 2 : Api 2 :
i=1 j=i j=i+1 i=1 j=i+1

where B depends only on G. Thus we can find the nonparametric maximum likelihood estimator
of F' by maximizing the first term over the p;’s. See problem yyy.

Here we will take a different approach by using example 6.1 as follows: if F' has density f, then
the hazard function A is given by A(t) = f(t)/(1 — F(t)), and the cumulative hazard function A is

_ t - t f(S) - t 1
A(t)—/o )\(s)ds—/o mds—/o 1_7F(S)dF(s).

3

For an arbitrary distribution function F, it turns out that the “right” way to define A, the cumu-

lative hazard function corresponding to F', is:

@) Al) = /M %dF(s) .

Note that we can write A as

_ (1 B G(S_) s) = 1 uc( g
Al = /[] a0 - FyFe) /H a0 )

Moreover, we can estimate both H"¢ and H by their natural nonparametric estimators (from
Example 6.1):

1 1
H7¢(2) = - Z liz,<z0,=1]5 H,(z) = - Z lizi<y -
=1 =1
Thus a natural “nonparametric maximum likelihood” estimator of A is Kn given by

® K= [ o).
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It remains only to invert the relationship (2) to obtain an estimator of F'. To do this we need one
more piece of notation: for nondecreasing, right-continuous function A, we define the continuous
part A. of A by

A(t) = A(t) = D> AA(s),  AA(s) = A(s) — A(s—).

s<t

Proposition 6.1 Suppose that A is the cumulative hazard function corresponding to an arbitrary
distribution function F' as defined by (2). Then

(4)  1-F(t) = exp(~Au(t) J(1 - AA(s) = [] (1 - dA(s)).

s<t s<t

Proof. In the case of a continuous distribution function F', A is also continuous, A = A,
AA = 0 identically, and we calculate A(t) = —log(1 — F(¢)) so that (4) holds.

In the case of a purely discrete distribution function F' the cumulative hazard function A is also
discrete so that A, = 0 and

AF(s)  1—F(s)

1—AA(s)=1-— = .
() 1-F(s—) 1-F(s-)
Thus
1 — F(s1) 1 — F(s2) 1— F(sg)
1—AA = B el 7
qu( () 1= F(s12) 1= Flsa—) T Flsp—)
_ 1— F(s1) " 1 — F(s2) ‘o 1—-F(t)
1 1—F(s1) 1 — F(sg-1)
= 1—-F()
where sq, ..., s, are the points of jump of F' which are less than or equal to ¢. Hence (4) also holds

in this case. For a complete proof of the general case, which relies on rewriting (2) as

(a) -ﬂw=AG—F@ﬁMM$

or equivalently

) 1-F)=1- /0 (1= F(s—))dA(s),

see e.g. Liptser and Shiryayev (1978), lemma 18.8, page 255. For a still more general (Doleans-
Dade) formula which is valid for martingales, see Shorack and Wellner (1986), page 897. O

The right side of (4) is called the product integral; see Gill and Johansen (1990) for a survey. It
follows from proposition 6.1 that the nonparametric maximum likelihood estimator of in the case
of censored is the the product limit estimator F,, given by

(5) 1- ﬁn(it) = H(l - AKn(s))

An:i

= H (1 - 7> if there are no ties .
) n—1t+1
1: 0 <t
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This estimator was found by Kaplan and Meier (1958). Breslow and Crowley (1974) proved, using
empirical process theory, that

6) VA, —A)=B(C) in D[0,7], T<Tu;

and hence that
(M VaE, -~ F) = (1 - FBC) L 1TZZU(K) i Do,

for 7 < 77 where B denotes standard Brownian motion, U denotes standard Brownian bridge, and

C(t):/o TR K0 = i

Note that when there is no censoring and F' is continuous K = F' and the limit process in (7)
becomes just U(F’), the limit process of the usual empirical process. Martingale methods for proving
the convergences (6) are due to Gill (1980), (1983); see Shorack and Wellner (1986), chapter 7.

Example 6.3 (Cox’s proportional hazards model and profile likelihood). Suppose that T is a
survival time and Z is a covariate vector with values in R¥. Further, suppose that (T|Z) has
conditional hazard function

Atlz) = e? ZA(t) .
Here # € R* and ) is an (unknown) baseline hazard function. Thus
A(t]z) = exp(672)A (1),
and, assuming that F' is continuous,
Fltlz) = F()=>@"2)
or,
F(tl2) = exp(07 2)F ()™ D \(1),
If we assume that Z has density h, then
p(t, 20,0, h) = p(t, z) = exp(02)F ()P D \(t)h(z).
Hence
log p(T, Z;0,\, h) = 67 Z — exp(8T Z)A(T) + log \(T) + log h(Z) .

Suppose that (11, Z1), ..., (Tn, Zn) are i.id. with density p. Assume that 0 < T(;) < - < T(y)
are the ordered T;’s, and Z(y),...,Z(,) are the corresponding Z;’s. Then, letting A\; = AA(T(;) =
>_j<iAj» and by = H({Z(;}), a natural nonparametric log-likelihood is given by

10, )\, h|X) = Z{QTZ( —exp(67 Z(;)) Y A +log Ai + log i }

=1 7<i

= Zn:GTZ(i)—l-zn: log A — A; Y exp(67 Z; —i—Zlogh}
=1 i=1

j>i
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Maximizing this with respect to A; and h; (subject to the constraint y . ; h; = 1 and assuming
that all the Z;’s are distinct) yields
1

S (072 /

Thus the profile log-likelihood for 6 is given by

(8) prof 0|X log{ﬁzexp 9 Z ) 1 } '

i exp(07Z;)) (ne)n
The first factor here is (the log of) Cox’s partial likelihood for #; Cox (1972) derived this by other
means. Maximizing it over 6 yields Cox’s partial likelihood estimator of 6, which is in fact the
maximum (nonparametric or semiparametric) profile likelihood estimator. Let

0, = argmax, [""/ (0] X) .

it turns out that this estimator is (asymptotically) efficient; this was proved by Efron (1977) and
Begun, Hall, Huang, and Wellner (1983). Furthermore the natural cumulative hazard function
estimator is just

~ 1 |
Anlt) = Z sziexp(gTZ(j)) _/0 Yn(s,g)dHn(S)

where
E Z 1[T <t]» Yn(t, 6) = n_ll[TiZt] eXp(GZZ) .

This estimator was derived by Breslow (1972), (1974), and is now commonly called the Breslow
estimator of A. It is also asymptotically efficient; see Begun, Hall, Huang, and Wellner (1983) and
Bickel, Klaassen, Ritov, and Wellner (1993). Although our treatment here has not included right
censoring, this can easily be incorporated in this model, and this was one of the key contributions
of Cox (1972).

Example 6.4 (Estimation of a concave distribution function and monotone decreasing density).
Suppose that the model P is all probability distributions P on RT = [0,00) with corresponding
distribution functions F' which are concave. It follows that the distribution function F' correspond-
ing to P € P has a density f and that f is nonincreasing. It was shown by Grenander (1956) that
if Xq,...,X, areiid. P € P with distribution function F', then the MLE of F' over P is the least
concave majorant I@n of F,; and thus the MLE fn of f is given by the slope of Fn See Barlow,
Bartholomew, Bremner, and Brunk (1972) for this and related results. It was shown by Kiefer and
Wolfowitz (1976) that

Va(EF, — F) = U(F),

and this phenomena of no improvement or reduction in asymptotic variance even though the model
P is a proper subset of M = {all P on R*} is explained by Millar ((179). Prakasa Rao (1969)
showed that if f(¢) > 0, then

nY3(Fa(t) — F(£)) —a |F () F(2)/2Y2(22)
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where Z is the location of the maximum of the process {B(t) — > : t € R} where B is standard
Brownian motion starting from 0; his proof has been greatly simplified and the limit distribution
examined in detail by Groeneboom (1984), (1989). These results have been extended to estimation
of a monotone density with right-censored data by Huang and Zhang (1994) and Huang and Wellner
(1995).

Example 6.5 (Interval censored or “current status” data). Suppose, as in example 6.2, that
X1,...,X, are iid. F and Y7,...,Y, are i.i.d. G, but now suppose that we only observe (Y;, A;)
where A; = 1x,<y;). Again the goal is to estimate F', even though we never observe an X directly,
but only the indicators A. If G has density g, then the density p(y,d) of the i.i.d. pairs (Y,0) is

p(y.6) =F(y)’ (1 — F(y))' g(y).

if we suppose that there are no ties in the Z’s and write P; = F(Z,.), ¢i = G({Zn.}), then a
nonparametric likelihood for the data is given by

or
n
i=1
and we want to maximize this subject to the order restrictions 0 < P; < ... < P, < 1. This was

solved by Ayer, Brunk, Ewing, Reid, and Silverman (1955) and also by van Eeden (195x), (195y).
The following description of the solution is from Groeneboom and Wellner (1992).

(i) Plot the points (4, Ejgi Ayj), 1 =1,...,n. This is called the cumulative sum diagram.
(ii) Form H*(t), the greatest convex minorant of the cumulative sum diagram in (i).
(iii) Let P, = the left derivative of H* at i,i=1,...,n

Then P = (ﬁl, ce ﬁn) is the unique vector maximizing I(P, q).
We define @n to be the piecewise constant function which equals f’l on the interval [Z,.;, Zp.it1)-
Groeneboom and Wellner (1992) show that if f(¢), g(t) > 0, then

F((1 - F@)f)\"?
29(0) ) (22)

where 7Z is the location of the maximum of the process {B(t) —t?: t € R} as in example 6.4.

W B3Eo(t) — F(t) —a (

For further discussion of the definition of nonparametric maximum likelihood estimators see
Kiefer and Wolfowitz (1956) and Scholz (1980). For applications to a mixture model, see Jewell
(1982). Other applications of nonparametric maximum likelihod include the work of Vardi (1985)
and Gill, Vardi, and Wellner (1988) on biased sampling models. Nonparametric maximum likelihood
estimators may be inconsistent; see e.g. Boyles, Marshall, and Proschan (1985), and Barlow,
Bartholomew, Bremner, and Brunk (1972), pages 257 - 258. Some progress on the general theory
of nonparametric maximum likelihood estimators has been made by Gill (1989), Gill and van der
Vaart (1993), and van der Vaart (1995).
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7 Limit theory for the statistical agnostic

In the preceding sections we studied the limit behavior of the MLE 8, (or ELE 6,,) under the
assumption that the model P is true; i.e. assuming that the data Xi,..., X, were governed by
a probability distribution Py € P. Frequently however we are in the position of not being at all
sure that the true P is an element of the model P, and it is natural to ask about the aysymptotic
behavior of é\n (or gn when, in fact, P ¢ P. This point of view is implicit in the robustness literature,
and especially in the work of Huber (1964), (1967), and White (1982).

We begin here with a heuristic and rather informal treatment which will then be made rigorous
using additional (convexity) hypotheses. For related results, see Pollard (1985), Pakes and Pollard
(1989), and Bickel, Klaassen, Ritov and Wellner (1993) appendix A.10 and sections 7.2 - 7.4.

Heuristics for Maximum Likelihood
Suppose (temporarily) that Xy,..., X, are i.i.d. P on (X, .4), and that
p(z;0) =logp(x;0), reX, 0excCR?

is twice continuously differentiable in 6 for P— a.e. z. We do not assume that P € P = {Py :
dPy/du = pg, 0 € ©}. Let
Y(z;0) = Vop(z;0),

and suppose that Ep(X1;6) < oo and E|y(X1,0)|? < oo for all § € ©.
Suppose that P has density p with respect to a measure p which also dominates all Py, 6 € ©.
Then the maximum likelihood estimator maximizes

1 n
- > p(Xi;0) —as Epp(X1;60) = Eplogp(X1;6)

=1

p(X1)
p(X1;0)
=  Eplogp(X1) — K(P, F).

=  FEplogp(X1)— Eplog

Since K (P, Py) > 0, the last quantity is maximized by choosing 6 to make K (P, Py) as small as
possible:

sgp{Epp(Xl) — K(P,FPy)} = Eplogp(X1)— iréfK(P, Py)
= Eplogp(X1) — K(P, Py,)

if we suppose that the infimum is achieved at 6y = 0y(P). Thus it is natural to expect that (under
reasonable additional conditions)

1 n
_ z .
O, argmax{n ZEZI p(Xi;0)}
—p argmax{Eplogp(Xi) — K(P, Py,)} = 6o(P).

What about a central limt theorem? First note that since

0o(P) maximizes FEpp(Xi;0) = Pp(X1;6)
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and

~

R N
0, maximizes - Zl p(X;;0) = Pup(x;0),
1=

we expect that
0= VyEpp(X1,0)|p=9, = Eptp(X1;60)
and
0 = VoPrp(X1,0)|y_g = Putb(:6,) .
Therefore, by Taylor expansion of P, (x;6) about 6y, it follows that

0 = \Pn(é\n) = in(xQ é\n)
= ‘I/n(eo) + \I’n(e;:)(é\n — 6o)

where

(1) \/ﬁ‘l’n(eo) = \/ﬁpﬂﬁ(';@o)

®) - %;wxﬁew i T~ Na(0, K)
with

K = Epyp(Xu:60)0" (X33 60)
We also have
U, (60) = Pt (w;60) —a.s. Epth(X1;60)
and hence we also expect to be able to show that
U(0) =, Eptp(Xy1;600) = J dxd.
Therefore if J is nonsingular we conclude from (1) that
VO, — 00) =g —JVZ ~ Ng(0, J 'K (J7YY).

Note that if, in fact P € P, then K = —J = Iy, and the asymptotic variance - covariance matrix
JIK(J71) reduces to just the classical and familiar inverse information matrix.



