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The asymptotic distribution of the likelihood ratio statistic, the Wald statistic and the score
statistic under a sequence of contiguous alternatives of the form 6, = 6y + hn~1/2 helps us
approximate the power of these tests at fixed alternatives close to the null.

Consider a p—dimensional regular parametric model from which we have i.i.d. observations
X1,X5,...,X,. Suppose that we wish to test the null hypothesis Hy : § = 6. Consider a sequence
of local alternatives of the form 6y + h/y/n; under this sequence, the likelihood ratio statistic
converges in distribution to x2(h” I(6p) h). Thus, for large n, the probability that the likelihood
ratio test rejects Hy at level « is approximately the probability that a Xf,(hT I(6p) h) random
variable is greater than gi_n; where g1_q;p is the 1 — o’th quantile of the X12) distribution.

Now, let 8; be close to 8y € Hy and suppose we have n observations. Then we can write
01 = 0y + h/\/n, where h = /n (61 — 6p). Note here that h does indeed depend on n, but
pretending that this is a fixed quantity, we can get an approximation to the power of the likelihood
ratio test provided n is big and A is not too large. The approximate power 8 under the alternative
91 iS,

B(61) = Prob (xi(n (61 — 80)T 1(6p) (01 — 60)) > Gi—ap) -

We can use the above equation to find the sample size needed to achieve a desired power (which is
stipulated before). Similar approximations to the power at fixed alternatives can be made when
we test a sub-parameter, rather than the full parameter. We will elaborate on these issues in a
more general context. We now look at a simple example.

Example 1: Normal distributions. TLet Xi,Xs,...,X,, be a sample from N(u,oc?).
Consider testing Hy : 4 = 0,0 = 1. Using standard asymptotic theory for regular parametric
models, we conclude that the likelihood ratio statistic for this problem converges in distribution
to x3. The limit distribution under a more general hypothesis of the form Hy : u = pg,0 = oy is
also x2. It is an instructive exercise to derive this from first principles without using the general
asymptotic machinery developed.

We will derive the limit distribution of the likelihood ratio statistic for testing Hyg : p = 0
from first principles.( By standard asymptotic theory, we know that this has to be x?2.)



The joint likelihood of the observations Xy, Xo,..., X, is,

1 1
L(X1,..., Xp, p,0°) = mexp (—ﬁ (Xi — M0)2> :

The unrestricted MLEs of (u,02) are (X,,52) where 62 = n=! 37  (X; — X)?2 = n~' S%. The
MLEs of (u,0?) under Hy : =0 are (0,n™' Y7 | X?) = (0,53. D1rect computation now yields,
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where 632 is a (random) point that lies between 63 and 62. Now,
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Thus the likelihood ratio statistic reduces to,
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Now, 6(2) and &2 are both consistent for 62 under Hy; furthermore, under Hy,

VX N(0,1)

so it follows that,
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Consequently, the quantity,
1 =22 1
nX) = —0,(1) = 0,(1
s ( - 0,(1) = 0,(1)

It follows that 2 log A, is asymptotically distributed as X%- This finishes the derivation.

We will now consider the behavior of the likelihood ratio statistic under local alternatives
of the form (up,o,) where p, = po + h1/+4/n and o, = o¢ + ha/y/n. Under local alternatives of
this type, the likelihood ratio statistic for testing Hy : u = po,0 = oo converges in distribution



to x2(hT I(uo,00) h). Here h = (hy,ha)T and I(pg,00) is the information matrix based on one
observation, say X at parameter values (ug,00). (Note that we use the mean and the standard
deviation as parameters, rather than the mean and the variance.) Check that the information
matrix I(ug,00) based on one observation from a normal density with mean pg and variance o3 is,
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I(IJ‘O;UO):( OO % ) .
99

This shows that the information bound for estimating the mean does not change in the presence
of knowledge of the variance. This makes sense for the normal distribution for which the MLE’s
of the mean and the variance are independent of one another and the variance has no functional
relationship to the mean. The non-centrality parameter can now be explicitly computed as
A = hl/ag + 2h%/o§. More concretely, let ugp = 0 and o9 = 1. We seek to compute an
approximation to the power of the likelihood ratio test at the point #; = (u41,01) = (0.2,1.2) when
we have a sample of size 100. Now (.2,1.2) = (0,1) + v/n (.2,.2)/+/n = (0,1) + (h1, ha)/+/n with
hy = 4/n(0.2) = he. The approximate distribution of the likelihood ratio statistic under (0.2,1.2)
based on n = 100 observations is therefore a non-central x3 distribution with non-centrality
parameterA = (0.2 x 10)? + 2(0.2 x 10)? = 12, based on which the approximate power can be
computed. If g2 95 denotes the 95’th percentile of the distribution of the (central) X2 distribution,

then ,Bn:wo (2, 12) =appx PI‘Ob(X%(l?) Z QQ,_95).

If we consider the likelihood ratio statistic for testing u4 = 0, this converges to X7 under
the null hypothesis. To approximate the power of this test at (.2,1.2) based on 100 observations,
once again write (.2,1.2) = (0 = po,1 = o9) + (h1, h2)/10, with Ay = hy = 2 as in the previous
paragraph. By the theory we have developed previously, the limit distribution at (0.2,1.2) is
approximately x?(A = h?/o% = 4) (recall that the non-centrality parameter is h¥ 1.9 hy, where
I11 2 is the efficient information for the estimation of y; this is just 1/02 in the current case).

Example 2: Efficient estimation of a Poisson probability. Let Xi,X5,...,X, be
ii.d. Poi(#). The common underlying density is,

e 96
!

f(z,0) =
Thus,
l(z,0) = —0+ 2z log 6 —log z!.
Also, the joint likelihood is,

-né Hz;rl: X;
L0, X1,..., Xn) = - 2

I, X;!
Clearly )" ; X; is complete sufficient for . We have,
. T
(z,0)=—-—1
(‘T7 ) 0 bl



and

I(z,0) = —5
Hence,

160) = 5y (i(x1,6)) = %

Check that in this model 6, = X,,. By standard asymptotic theory,
N 1 < .
Vn (0n —0) = 7n ; 1(0)~" (X, 0) + 0p(1) .

In this model, this is actually a trivial identity, since
I(0) 71 i(X;,0) = X; — 0.

Now consider, ¢(f) = e=? = Py(X; = 0). Then, the information bound for estimating ¢(#) is,

IB,(6) = q;((Z))Q =209,
Also,
x, o 1 L _ _
V(e Xn —e 9)_% 2_; (—e H(X,-_a))+op(1)—>N(o,9e 20y
Here,

l~(x, 0,q) = —e~f (z —0),

is the efficient influence function for estimating ¢(#). Any estimator 7,, for which,

V(T = q(0)) = N(0,1B4(0))

~

is said to be asymptotically efficient for estimating q. We know that ¢(#), the MLE is indeed
asymptotically efficient. What about the UMVUE of ¢(0)? First let us compute the UMVUE of
q(0). Note that 1 (X; = 0) is an unbiased estimate of (). The UMVUE is then given by E(1 (X; =
0 | Xr,X;) =P(X1 =0 | X7, X;). Now, given > | X;, the vector (X1, Xo,...,Xp)
follows a Multinomial(}_"; X;,n~',n~! ..., n7!). Thus, conditional on Y., X;, X; follows
Bin(32" , X;,n~'). Thus,

n 1 2?:1)(1'
P(Xlzo\ZXi):<1——> =T*.

N n
=1

Now, for each n,
Varg v/n (Ty — q(0)) > IB,(9),



since T} is not linear in the score function. What can we say about the asymptotic variance of 7,}7
Now,

n

VRT3 =(0)) = Vi (Ti=g(0)+Vi (d(0)-a(0) = VAL (Ti—q@)+= 3 (=7 (X; = 0) ) +op(1).

But,
V(T —q@) = VA ((1 - %)”X_ef>
= & -et¥,

where ¢, = (1 — n~!)". But then,

Vi (TE —q(0) = XET V(e —e) 20 () Vo =0,

where &, lies between &, and e~! and therefore converges to e, X converges in probability to 6
and /n(&, —e ') converges to 0. It follows that,

(T = q0) = —= 3 (= (Xi = 0)) + 0p(1)
Vi =

thus the UMVUE is asymptotically linear in the efficient influence function and hence, attains the
information bound asymptotically.

Examples 3: Testing a general null hypothesis ¢g(f) = c. Consider a p—dimensional
regular parametric submodel {Py : § € O} with 0 varying in ©, an open subset of RP. The
density of Py with respect to an appropriate underlying dominating measure is written as f(z, ).
Consider testing a null hypothesis Hy of the form g(0) = ¢ where g(0) = (g1(0), g2(0), ..., gx(0)) is
a continuously differentiable transformation from © to R* and ¢ = (c1, g, ..., cx) with 7 g(8)kxp,
the gradient matrix having full row rank. Now let 6y be a point in the null hypothesis; so g(6p) = c.
We will show that the likelihood ratio statistic for testing Hj is asymptotically distributed as X%-

Since 7 g(6p) is of full row rank k, we can find p — k (column) vectors, vgi1,Vg42,---,Vp
(in RP) such that the k rows of 37 g(6y) along with these p — k vectors form a basis of RP. Hence,
the matrix

M = (V 9(90)T, Vk4+1, V42 -+ -5 Up)T)

is invertible. Now, define transformations gx41, gk+2,--.,gp on © where gy 1;(0) = 'u,a_i (0 —6y), for
1=1,2,...,p — k and consider the transformation frm © to RP given by,

Gext(0) = (91(0),92(0),---,9,(9)) -
Now, gest is a continuously differentiable transformation and <7 geyt(fo) = M is invertible by

construction. Consequently, by the inverse function theorem, there exists an open ball B(6;)



around 6 and an open ball Bs(&y) around &y = gest(0p) such that g, is a continously differentiable
bijection from B¢(y) to Bs(&o) with inverse function h being a continuously differentiable bijection
from Bj(&o) to Be(fo). Now, {Q¢ = Ppe) : € € Bs(€o)} is a regular parametric model with density
f(z,€) = f(z,h(€)). Consider, testing the null hypothesis Hy : & = ¢j,5 = 1,2,...,k. This is
equivalent to the null hypothesis H rest : 0 € Be(6o) , g(0) = c. Also, note that

SUPge . (9o) =1 f(Xi,0) SUPge B (60) i1 f(Xi, h(£))

SUDgeB. (o) , g(0)=c I, f(X;,0) SUD¢eBs (o) , (gj:cj,izl,z,...,k) H?:l f(Xi, h(£))

An -

An,rest =

From previous derivations in class, we know that under parameter value £ (which in the 6
parametrization corresponds to parameter value 6p), 2 log An converges in distribution to a X%
random variable. Thus, 2 log A, ;est converges to a X%- Now the actual likelihood ratio statistic
2 log A, is given by,

supgece i, f(Xi,0)
SUPgeo , g(9)=c iy f(Xi, 0)
But by consistency of the MLE’s ,, (the unrestricted MLE) and 63 (the MLE under Hp) for the

true parameter, it follows that when 6y is the true value, with probability increasing to 1, 8, and
69 both lie in B(fp) eventually. Hence,

2 log A, =2 log

2log A\p —21og Aprest —p 0.

Hence 2 log Ay —4 X%-

How do we find the Wald statistic for testing g(f) = ¢ ? Denote the first £ components of
€ by &1y and let I¢(§o) denote the information matrix at the point . Now, the Wald statistic for
testing Hy : & = ¢j,5 = 1,2,...,k (which is at least locally the same as testing g(0) = c) is simply

given by ,
n (5(1) - C) E2\,§ (5(1) - C)

where I11 .2 ¢ is an estimate of 119 ¢ = I1 ¢ —T10¢ Igzlg I ¢. Here Iy ¢ is the dispersion matrix of the
score for {;) under parameter value §p, I12¢ is the covariance matrix between the score for §(;) and
the score for () under £y and so on. We need to translate the statistic in the above display in terms

of the #’s. Note that 5(1) = g(é) Also, Iﬁg,g is the information bound for estimating £,y = g(6)

at &. The information bound for estimating g(0) at 6y is given by v g(6o) I(6o)~' v g(60)*. By
the invariance of the information bound under reparametrization,

I e = v 9(00) I(60) " v g(6o)"

so that 1
Lioge = (vg(60) I(6) ' v g(6)") .

So,
-1

—

Tiae = (v 9(6.) 10,) " v 9(0,)")

6



Thus, the Wald statistic, W, for testing Hy is simply,

-1

Wa=n (90n) <) (Vo) 6™ v 9@)") " (9000 —c) -



