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Classical empirical process theory deals with the empirical distribution function based on n
i.i.d. random variables. If X1, X2, . . . , Xn are i.i.d. real–valued random variables with distribution
function F (and corresponding probability measure P on R), then the empirical distribution
function is given by:

Fn(x) =
1
n

n∑
i=1

1(Xi ≤ x) =
1
n

n∑
i=1

1(−∞,x](Xi) .

The corresponding empirical process is:

Gn(x) =
√
n(Fn(x)− F (x)) .

The two basic results concerning Fn and Gn are the celebrated Glivenko–Cantelli and Donsker
theorems.
Glivenko–Cantelli theorem: We have:

‖Fn − F‖∞ = sup−∞<x<∞ | Fn(x)− F (x) |→a.s 0 .

See, for example, Billingsley (Prob. & Measure) for a proof. Donsker’s theorem deals with the
convergence, in distribution, of the empirical process. In what follows I will assume the basic
concepts of convergence in distribution for stochastic processes assuming values in a metric space.
Billingsley’s book on weak convergence (especially the 2nd edition) is an excellent reference (in
particular, Chapter 1 for the general theory).

Donsker’s Theorem Version 1: Suppose that the common distribution of the Xi’s is
Uniform(0,1). Then (we can restrict the domain of x in the definition of the process Fn(x) and
Gn(x) to [0, 1] and) Gn ⇒ G as a process in the space D[0, 1] where D[0, 1] is the space of cadlag
functions on [0, 1] equipped with the Borel σ-field generated by the Skorohod topology, and G is
a (tight) Brownian bridge process on [0, 1] i.e. G is a mean 0 Gaussian process indexed by [0, 1]
with covariance structure K(s, t) = Cov(G(s),G(t)) = s ∧ t− st.

Note that the process G has (uniformly) continuous sample paths (almost surely) with respect to
the Euclidean metric and therefore lives, with probability 1, in the (complete separable) subspace
C[0, 1]. This is not true of the converging processes Gn.
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A natural question that rears its head in this context is the choice of the function space in
which we study distributional convergence of the processes Gn. We can certainly think about each
Gn as an element of the space l∞[0, 1]: the class of bounded functions from [0, 1] to R. A natural
topology to impose on this space is that corresponding to the uniform metric. More precisely, for
f, g ∈ l∞[0, 1], d(f, g) = ‖f − g‖∞. This is certainly a much nicer metric to deal with (than the
Skorohod, at least in my view). The problem arises from the fact that the processes Gn are not
measurable with respect to the σ-field generated by the uniform metric and therefore the standard
theory of weak convergence does not apply. In fact, l∞[0, 1] under the uniform metric is not even
separable, so probability measures defined on this space are not automatically tight.

However, it turns out that the lack of measurability of the processes Gn does not impede
the development of a fruitful theory of weak convergence. The extended theory of weak
convergence developed by Dudley and Hoffman-Jorgensen comes to our rescue (see Section 1.3
of Van der Vaart and Wellner for the main results). In the setting of this discussion, weak
convergence of the sequence of processes Gn to a limit process G (where G is a measurable
random element living in l∞[0, 1] whose induced probability distribution is tight) amounts to
E?(h(Gn)) → E(h(G)) for all bounded continuous real–valued functions defined on l∞[0, 1]. Here
E? denotes outer expectation (see Section 1.2 of VW) and is the same as the ordinary expectation,
provided one has measurability. We will say more about the lack of measurability of Gn later.
The continous mapping theorem holds as before and the power of weak convergence is therefore
preserved.

Donsker’s Theorem Version 2: Suppose now that the Xi’s have a continuous distribution
F supported on the entire real line. Consider the processes {Gn fx : x ∈ R} where
F ≡ {fx = 1(−∞, x](·) : x ∈ R} as elements of the space l∞(R) Consider the process
G ◦ F : this is a tight Borel–measurable random element from some underlying probability space
into l∞(R) with continous sample paths with respect to the Euclidean metric. Then Gn ⇒ G◦F as
a process in l∞(R), with the limit process concentrating on a complete separable subspace of l∞(R).

Empirical Processes on General Sample Spaces: The modern theory of empirical
processes aims to generalize the classical results to empirical measures defined on general sample
spaces (Rd, Riemannian manifolds, spaces of functions..). In other words, the goal is to investigate
under what conditions uniform consistency results and distributional convergence results hold
for empirical processes that are no longer indexed by simple subsets of the real line, but, say,
by general classes of functions. Another goal is to develop efficient methods of verifying that
conditions for consistency and possibly distributional convergence are met. This leads to the study
of the “complexity” or “largeness” of function classes as measured by what are called “entropy
numbers” of different types and VC dimensions. But first, let us lay down a concrete framework.

Let (X ,A, P ) denote the sample space of interest and consider a sequence of random variables
X1, X2, . . . that are i.i.d. P . While this is not necessary at this stage, it will be eventually required
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to assume that the Xi’s are defined as co-ordinate projections on a product space (this guarantees
that certain techniques can be employed but more on this later). Thus, we can think of the
underlying probability space as (Ω = X∞,A∞, P∞), the generic sample point ω = (x1, x2, x3, . . .)
and Xi(ω) = xi. Consider now a class of (bounded) functions F with domain X and range R and
envelopem function F . We will define the empirical process indexed by the class of functions F .
Let

Pn =
1
n

n∑
i=1

δXi

denote the empirical measure for the observed data. Note that we have tacitly assumed points to
be measurable. For a measure Q and a real-valued (measurable) function f on X we write Qf for∫
f dQ. Thus by Pnf we denote

∫
f dPn = n−1

∑n
i=1 f(Xi). The empirical process Gn(·) is viewed

as a map from Ω to l∞(F) and is defined as:

Gω
n(f) =

√
n(Pω

n − P )f =
1√
n

n∑
i=1

(f(Xi(ω))− Pf) .

Thus, for each fixed ω, Gω
n(·) is a bounded function from F to R. Typically (as in all probability)

the dependence on ω is suppressed and the empirical process is just denoted by Gn. Notice that
for fixed f , Gn(f) is a bona–fide random variable. But as we will see in a second, Gn is not a
measurable tranformation from (X∞,A∞, P∞) to l∞(F). Also note that the classical empirical
distribution function for real valued random variables can be viewed as a special case of this more
general set–up with X = R and F = {1(−∞,x] : x ∈ R}.

Lack of measurability: Consider the case where X = [0, 1], A is the Borel σ-field and P
is Lebesgue measure (the uniform distribution). Then X1, X2, . . . are i.i.d. U(0, 1) random
variables. Consider the empirical process for n = 1 given by

G1(t) ≡ G1(1(0,t]) = 1(0,t](X1)− t ≡ G̃1(t)− t .

Take A to be a non–measurable subset of [0, 1] (such a set exists). Consider the subset of l∞[0, 1]
given by FA = {1(0,·](s) : s ∈ A}. The uniform distance between any two functions in this set
is 1; hence this set is closed in l∞[0, 1] and therefore measurable. We will show that the map
ω 7→ 1(0,·](X1(ω)) ≡ G̃ω

1 (·) is not measurable. But 1(0,·](X1(ω)) ∈ FA ⇔ X1(ω) ∈ A. So the inverse
image of G1(·) is A× [0, 1]× [0, 1]× . . . which is certainly not measurable.

For general empirical processes, the natural questions are the following: (a) For what classes of
functions F do we have a natural generalization of the Glivenko–Cantelli theorem? (b) For what
classes of functions F do we have a natural generalization of Donsker’s theorem?

If F is a class of functions for which

‖Pn − P‖?F =

(
sup
f∈F

| Pn(f)− P (f) |

)?
→a.s. 0
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then we say that F is a P -Glivenko-Cantelli class of functions. On the other hand, if F is a class
of functions for which

Gn =
√
n (Pn − P )⇒ G in l∞(F)

where G is a tight Borel measurable random element, then F is called a Donsker class
of functions. Tight Borel measures on l∞(F) are completely characterized by their finite
dimensional distributions. It follows from the CLT that the finite dimensional distributions
(G(f1),G(f2), . . . ,G(fk)) are multivariate normal with mean 0 and Cov(G(fi),G(fj)) =
P (fifj)− Pfi Pfj . Thus G is a tight Gaussian process.

Define the metric ρP as follows:

ρP (f, g) ≡ (E(G(f)−G(g))2)1/2

= (Var(f(X1)) + Var(g(X1))− 2 Cov(f(X1), g(X1)))1/2

= s.d(f(X1)− g(X1)) .

From the theory of Gaussian processes it follows (see Page 41 of VW) it follows that the
pseudometric space (F , ρP ) must be totally bounded and that the process G must have uniformly
continuous sample paths (almost surely) with respect to this metric. Since Gn converges to a
tight limit, the sequence {Gn} must itself be asymptotically tight (see, for example, Section 1.3 of
VW) which, under the circumstances, is equivalent to the uniform asymptotic equicontinuity of the
sequence Gn with respect to the metric ρP , which is defined as the following property. For any
ε > 0,

limδ→0 lim sup
n→∞

Pr?
(

supρP (f,g)≤δ | Gn(f)−Gn(g) |> ε
)

= 0 .

A motivating example from statistics: A commonly recurring theme in statistics is that
we seek to establish consistency or asymptotic normality of some statistic which is not a sum
of independent random variables but can be related to some natural sum of random functions
indexed by a parameter in a suitable (metric) space. The following example illustrates this idea
and was one of the key motivating examples used by Pollard (1989) in his review paper.

Let X1, X2, . . . , Xn be i.i.d. P where P is a probability distribution on the real line. Set
µ = EX1. Consider the mean absolute sample deviation; i.e. let

Mn =
1
n

N∑
i=1

|Xi −Xn| .

What can we say about the asymptotic distribution of Mn? A natural guess for the in-probability
limit of Mn is M ≡ E |X −µ|. The next question is: Can we show that

√
n (Mn−M) converges to

a normal distribution? This may still not be unreasonable to expect. After all if Xn were replaced
by µ in the definition of Mn this would be an outcome of the CLT (assuming a finite variance for
the Xis) and Xn is the natural estimate of µ. Write Mn = Pn |X − Xn|. For this problem, we
need to consider the following class of functions: F := {|x − t| ≡ ft(x) : t ∈ [µ − δ0, µ + δ0]} for
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some δ0 > 0. Note that Mn as Pn fXn
≡ Pn fXn

(X). The crux of the following arguments is that
Xn concentrates with arbitrarily high probability in [µ − δ0, µ + δ0] as n goes to ∞ and therefore
stochastic properties of the empirical process indexed by F that hold uniformly can be exploited to
get a handle on Pn fXn}.

First, consistency. Consider,

Pn |X −Xn| − P |X − µ| = {Pn |X −Xn| − Pn |X − µ|}+ {Pn |X − µ| − P |X − µ|} (0.1)
≡ In + IIn ,

where IIn converges to 0 almost surely by SLLN. That In converges to 0 almost surely is an outcome
of the fact that

In ≤ Pn| |X −Xn| − |X − µ| | ≤ Pn |Xn − µ| = |Xn − µ| →a.s 0 .

Next consider,

√
n(Mn −M) =

√
n

[
1
n

n∑
i=1

|Xi −Xn| − E |X − µ|

]
=
√
n [Pn fXn

− P fµ]

=
√
n (Pn − P ) fµ +

√
n [Pn fXn

− Pn fµ]

=
√
n (Pn − P ) fµ +

√
n (Pn − P )(fXn

− fµ) +
√
n (ψ(Xn)− ψ(µ))

≡ An +Bn + Cn ,

where ψ(t) = P ft = EP |X − t|. We will argue later that Bn is asymptotically negligible using an
equi-continuity argument. For the moment concentrate on An+Cn. Assume that P has a Lebesgue
density. Then,

ψ(t) = µ− 2
∫ t

−∞
xf(x)dx− t+ 2 t FP (t)

with derivative (2 FP (t)− 1). The delta method gives:

An + Cn = Gn fµ +
√
n(Xn − µ)ψ′(µ) + op(1) = Gn(fµ(x) + xψ′(µ)) .

The usual CLT now gives the limit distribution of
√
n (Mn − M) which is left for you to work

out. The only step that remains to be justified is that Bn is op(1) and it is in this step that the
empirical process techniques kick-in.

Proposition A: Let F be a Donsker class of functions. Let f0 be a fixed function and let
f̂n be a random function (depending on X1, X2, . . . , Xn) such that ρP (f̂n, f0)→P 0. Then,

|Gn f̂n −Gn f0| →P 0 .
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Proof: Let η, ε > 0 be given. Since F is Donsker, we have uniform asymptotic equicontinuity : i.e.

lim
δ→0

lim sup
n→∞

P ( sup
ρP (f,g)<δ

|Gn f −Gn g| > η) = 0 .

Thus, we can find δ0 > 0 such that,

lim sup
n→∞

P ( sup
ρP (f,g)<δ0

|Gn f −Gn g| > η) < ε ,

showing that for all sufficiently large n,

P ( sup
ρP (f,g)<δ0

|Gn f −Gn g| > η) < 2 ε .

Let Ωn := {ρP (f̂n, f0) < δ0}. By hypothesis P (Ωn) ≥ 1 − ε eventually. Let
Ω̃n := {supρP (f,g)<δ0 |Gn f − Gn g| ≤ η}. Then, P (Ω̃n) ≥ 1 − 2 ε eventually. Thus
P (Ωn ∩ Ω̃n) ≥ 1 − 3 ε eventually. But Ωn ∩ Ω̃n ⊂ {|Gn f̂n − Gn f0| ≤ η}, showing that
P (|Gn f̂n −Gn f0| > η) is eventually less than 3 ε. 2

Lemma: Let ρ be a ‘natural’ metric on the class of functions F with the property that if
ρ(fn, f0) → 0, then ρP (fn, f0) goes to 0 as well. If ρ(f̂n, f0) →P 0 for a random function f̂n, then
|Gn f̂n −Gn f0| →P 0 as well.
This lemma follows directly from the proposition above.

Proposition B: Suppose that F is a Donsker class of functions indexed by a parameter
θ ∈ Θ. Thus, F = {fθ : θ ∈ Θ}. Then l∞(F) can be identified with l∞(Θ). Let d be the induced
metric on Θ defined by d̃(θ1, θ2) = ρP (fθ1 , fθ2). Let d be a ”natural metric” on Θ such that
if d(θn, θ0) → 0, then d̃(θn, θ0) goes to 0. Suppose that θ̂n is a random variable (depending on
X1, X2, . . . , Xn) such that d(θ̂n, θ0)→P 0. Then |Gn fθ̂n −Gn fθ0 | →P 0.

This proposition is a direct consequence of Proposition A and the lemma following it. We
are now in a position to show that Bn is op(1). We take Θ = [µ − δ0, µ + δ0]. Then
{fθ(x) : θ ∈ Θ} is a P–Donsker class of functions provided EP (X2) is finite (which we have
assumed), as it is then a VC class of functions with square–integrable envelope function. This
fact will need characterizations of Donsker classes that we take up later in the course. Let
θ̂n = X 1(X ∈ [µ− δ0, µ+ δ0]) + µ 1(X /∈ [µ− δ0, µ+ δ0]) and θ0 = µ. Now,

Bn =
√
n (Pn − P )(fXn

− fµ) = (Gn fθ̂n −Gn fθ0) + (Gn fXn
−Gn fθ̂n) .

The second term is op(1) by virtue of the fact that P (θ̂n 6= Xn) goes to 0. Now take d(θ1, θ2) to be
|θ1 − θ2|; clearly d(θ̂n, θ0) is op(1) and it suffices to show, by Proposition B, that d̃(θn, θ0) is o(1)
whenever d(θn, θ0) is. So, consider:

ρ2
P (fθn , fθ0) = VarP {|X − θn| − |X − θ0|}

≤ P
[
(|X − θn| − |X − θ0|)2

]
≤ (θn − θ0)2 = o(1) .
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This finishes the proof.

Another Example – The Binary Choice Model: This example is from Van de Geer’s
book on ‘Empirical Processes in M-Estimation’. Available are i.i.d. data {Yi, Zi}ni=1 where Yi
assumes the values 1 or 0 (depending on whether, say, the individual has a job) and Zi is a
continuous covariate (say, the education level measured on some continuous scale) on [0, 1]. The
logit model postulates that

P (Y = 1|Z = z) = F0(α0 + θ0z)

where F0(x) = ex/(1 + ex) is the logistic distribution. In what follows, we assume α0 = 0. Let θ̂n
denote the MLE of θ0. The θ̂n maximizes

n∑
i=1

log pθ(Yi, Zi) =
n∑
i=1

[Yi logF0(θZi) + (1− Yi) log(1− F0(θZi))] .

Letting lθ(y, z) = log pθ(y, z), we have: lθ(y, z) = y logF0(θz) + (1 − y) log(1 − F0(θz)) and some
algebra shows that:

l̇θ(y, z) =
∂

∂θ
lθ(y, z) = z(y − F0(θz)) .

Thus θ̂n solves Pn l̇θ(y, z) = 0. To study the asymptotic normality of θ̂n, we introduce the following
quantities:

m(θ) = Eθ0(l̇θ(Y,Z)) and σ2(θ) = Varθ0(l̇θ(Y,Z)) .

Note that:
σ2(θ0) = I(θ0) = −Eθ0 (l̈θ(Y, Z)) .

Next, {
l̇θ(y, z) ≡ z

[
y − eθz

1 + eθz

]
: θ ∈ [−K,K]

}
is a Pθ0 Donsker class of functions. This can be established quite easily by using preservation
properties of Donsker classes of functions. By asymptotic equicontinuity, if θn converges to θ0 in
the ρPθ0 metric, it must be the case that Gn l̇θn − Gn l̇θ0 → 0. Let us now compute the ρPθ0 ≡ ρ0

metric for this problem. We have:

ρ2
0(θ1, θ2) = Varθ0 [l̇θ1(Y,Z)− l̇θ2(Y,Z)]

≤ Eθ0

[
Z2

(
Y − eθ1Z

1 + eθ1Z
− Y +

eθ2Z

1 + eθ2Z

)2
]

= Eθ0

[
Z2

(
eθ1Z

1 + eθ1Z
− eθ2Z

1 + eθ2Z

)2
]
.

A trite application of the mean value theorem which involves computing the derivative of eθz/(1 +
eθz) with respect to θ and using the facts that θ1 and θ2 lie in a compact set and that Z is bounded
shows that the random variable within the square brackets on the right side of the above display is
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bounded almost surely, up to a constant, by (θ2 − θ1)2. It follows immediately that if θn converges
to θ0 in the usual Euclidean sense then convergence also happens in the ρ0 metric, whence the
Lemma above can be invoked to conclude that Gn l̇θ̂n − Gn l̇θ0 →P 0 if θ̂n → θ0 in the Euclidean
metric. This fact is not difficult to establish and follows via standard arguments. We are now in a
position to wrap up the proof of asymptotic normality. Expanding the identity

√
nPn l̇θ̂n = 0 in a

telescoping sum we write:

Gn l̇θ0 + Gn (l̇θ̂n − l̇θ0) +
√
n (Pθ0 l̇θ̂n − Pθ0 l̇θ0) = 0 .

By what we have shown, the above equality can be rewritten as:

√
n(Pn − P ) l̇θ0 = −

√
n(θ̂n − θ0)

m(θ̂n)−m(θ0)

θ̂n − θ0
+ op(1) ;

since m′(θ0) = −I(θ0) 6= 0 (easily checked),

ξn ≡

(
m(θ̂n)−m(θ0)

θ̂n − θ0)

)−1

→P −I(θ0)−1

and, in particular, is Op(1). Multiplying both sides of the display preceding the last by ξn we get:
√
n(θ̂n − θ0) = ξn

√
n(Pn − P ) l̇θ0 + op(1)

and it follows immediately that the limit distribution is N(0, I(θ0)−1) as one expects from classical
theory.

1 Problems

• 1. (i) Let F be a distribution function as in the second version of Donsker’s Theorem. Explain
(with explicit arguments) why the limit distribution of supx∈R

√
n|Fn(x) − F (x)| does not

depend on F . What about the finite sample distribution?
(ii) In Donsker’s Theorem second version, the class of functions F indexing the empirical
process can be identified with R. However, R is not totally bounded with respect to the
Euclidean distance. Is there a paradox here in view of the discussion on Page 4 of these
notes? Explain mathematically.

• 2. Let {Xn} be a sequence of stochastic processes assuming values in l∞(T ) and let ρ be a
pseudo-metric on l∞(T ). Show that the following are equivalent:
(a) For every ε > 0,

lim
δ→0

lim sup
n∞

P ?( sup
ρ(s,t)<δ

|Xn(s)−Xn(t)| > ε) = 0 .

(b) For every ε > 0 and {δn} decreasing to 0,

limP ? ( sup
ρ(s,t)<δn

|Xn(s)−Xn(t)| >) = 0 .
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• 3. Show that the empirical process based on i.i.d real-valued random variables X1, X2, . . . , Xn

is not measurable when considered as a map from the underlying probability space into l∞(R)
(equipped with the Borel σ-field corresponding to the uniform metric) for any n.
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