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1 Applications to Threshold Estimation Models

1.1 Linear Regression

Consider the model Y = α0 + β0X + ε and n i.i.d. observations from this model. For simplicity,
let ε be independent of X with mean 0 and variance σ2. You can also assume the errors to be
normal, even though this is not required for the subsequent development.

Estimates of (α0, β0) are obtained by minimizing

Mn(α, β) ≡ Pn [(Y − α− β X)2] =
1
n

n∑
i=1

(Yi − α− β Xi)2 .

over all (α, β). This gives us our standard least squares estimates (α̂, β̂), whose consistency we will
take for granted in the ensuing discussion. Thus:

(α̂, β̂) = argmin(α,β) Mn(α, β) .

It is not difficult to check that:

(α0, β0) = argmin(α,β)M(α, β) ,

where M(α, β) = P [(Y − α − β X)2] where P is the distribution of (X,Y ). Check that, up to
a constant, M is a second order polynomial in (α, β) with a constant non–singular Hessian 2H,
with h11 = 1, h22 = E(X2) and h12 = h21 = EX.

We will apply the rate theorem, Theorem 3.2.5, to deduce the rate of convergence of (α̂, β̂). Firstly,
as

M(α, β)−M(α0, β0) = (α− α0, β − β0)H (α− α0, β − β0)T

where H is p.d., it is easy to see that the first condition of the theorem is satisfied, i.e.

(α− α0, β − β0)H (α− α0, β − β0)T ≥ constant× d((α, β), (α0, β0))
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where d((α, β), (α0, β0)) = max {| α − α0 |, | β − β0 |}. Check that the constant can be chosen to
be a multiple of the smallest eigen–value of the p.d. matrix H.

In what follows, we generically denote (α, β) by θ and (α0, β0) by θ0. We seek a bound
on:

E?[supd(θ,θ0)<δ |
√
n(Pn − P )[(Y − αX − β X)2 − (Y − α0X − β0X)2] |] .

This simplifies easily to

E?

[
sup

d(θ,θ0)<δ
| Gn(mθ −mθ0) |

]
≡ E? ‖Gn‖Mδ

(?)

where Gn =
√
n(Pn − P ), mθ(X,Y ) = (Y − α− β X)2, so that:

(mθ −mθ0)(X,Y ) = 2 [(α0 − α) + (β0 − β)X] [Y − (α0 + α)/2− ((β0 + β)/2)X] .

Letting
Mδ = {(mθ −mθ0)(X,Y ) : d(θ, θ0) < δ}

we can find a bound on (?) in terms of an envelope function for the class Mδ and the uniform
entropy integral J(1,Mδ). For any fixed δ, the classMδ is contained in the class of polynomials on
R2 of degree less than or equal to 2 which is a VC class of functions (since any finite dimensional
vector space of measurable functions is VC by Lemma 2.6.15 of Van der Vaart and Wellner (1996))
and therefore itself VC. Also, since δ ≤ δ0, for some fixed δ0, we can find an envelope function Mδ

for the class Mδ of the form:

Mδ(X,Y ) = 2 δ (1+ | X |)(| Y | +C1 + C2 | X |)

for positive constants C1, C2 (which depend on δ0). By Theorem 2.6.7. of Van der Vaart and
Wellner (1996), we have a bound on the covering numbers with respect to the L2 norm for any
probability measure:

N(ε ‖Mδ‖Q,2,Mδ, L2(Q)) .

(
1
ε

)2m

for some m ≥ 1. This inequality implies that for any δ:

J(1,Mδ) = supQ

∫ 1

0

√
1 + log N(ε ‖Mδ‖Q,2,Mδ, L2(Q)) d ε

is finite, this number NOT depending on δ. By the inequalites on Page 291 of Van der Vaart and
Wellner (1996) (see also the MAXIMAL INEQUALITIES on Page 199 of Kim and Pollard (1990)),
we conclude that:

E? ‖Gn‖Mδ
. J(1,Mδ) (P ?M2

δ )1/2 ≤ constant× δ ,

since P M2
δ = O(δ2) by the square integrability of X and Y . Hence φn(δ) = δ works; indeed

φn(δ)/δα is decreasing for some δ < 2. Solving r2n φn(1/rn) ≤
√
n, yields rn =

√
n easily, showing

that: √
n(α̂− α0, β̂ − β0) = Op(1) .
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Our next step is to obtain the asymptotic distributions of these normalized estimators. To
this end, we introduce the local variables (h1, h2), where α = α0 + h1/

√
n and β = β0 + h2/

√
n.

Set ĥ1 =
√
n(α− α0) and ĥ2 =

√
n(β − β0). We have:

(ĥ1, ĥ2) = argmin(h1,h2) [Mn(α0 + h1/
√
n, β0 + h2/

√
n)−Mn(α0, β0)]

= argmin(h1,h2) [(Pn − P )[(m(α0+h1/
√
n,β0+h2/

√
n) −m(α0,β0))(X,Y )]

+P [(m(α0+h1/
√
n,β0+h2/

√
n) −m(α0,β0))(X,Y )]]

= argmin(h1,h2) [n (Pn − P )[(m(α0+h1/
√
n,β0+h2/

√
n) −m(α0,β0))(X,Y )]

+nP [(m(α0+h1/
√
n,β0+h2/

√
n) −m(α0,β0))(X,Y )]]

Check that the second term inside the argmin converges to (h1, h2)H (h1, h2)T , where H is the
matrix referred to above and that this convergence is uniform over compact sets. This is a simple
consequence of the analytical form of M(α, β):

M(α, β) = E(ε2) + (α− α0)2 + (β − β0)2E(X2) + 2 (α− α0) (β − β0)EX .

The first term inside the argmin simplifies to:
√
n(Pn − P ) [−(h1 + h2X)] [2(Y − α0 − β0X)− n−1/2(h1 + h2X)]

which in terms of the empirical measure and underlying distribution of (X, ε) (which we still
continue to denote by Pn and P respectively) is simply:

√
n(Pn − P ) [−(h1 + h2X) 2ε] + (Pn − P ) (h1 + h2X)2 .

The second term in this display converges to 0 in probability, uniformly on compact subsets of R2.
The first term is simply:

−2 (h1, h2) (
√
n(Pn − P ) ε,

√
n(Pn − P )X ε)T

and converges in distribution, under the topology of uniform convergence on compact sets, to:

2σ2 (h1, h2) (W1,W2)T

where σ2 = E(ε2) and W = (W1,W2)T ∼ N(0, H). It follows that

(ĥ1, ĥ2) →d (h?1, h
?
2) ≡ argminh1,h2

[2σ2 (h1, h2) (W1,W2)T + (h1, h2)H (h1, h2)T ]

≡ argminh∈R2 [2σ2 hT W + hT H h] .

Since W follows N(0, H), V ≡ H−1/2W ∼ N(0, I2); letting H1/2 h = ξ, the expression inside the
argmin in the above display can be written as

2σ2 [ξ1 V1 + ξ2 V2] + ξ21 + ξ22

3



and this is minimized over all (ξ1, ξ2) at (ξ̂1 ≡ −σ2 V1, ξ̂2 ≡ −σ2 V2), whence

ĥ = H−1/2 ξ̂ ∼ N(0, σ2H−1) .

This provides the asymptotic distribution.

Exercise: Work out the asymptotics using standard procedures (i.e. arguing from first
principles) and show that the results match.

Exercise: Prove Corollary 3.2.3 (ii) on Page 288 of Van der Vaart and Wellner (1996)
from first principles.

1.2 Change Point Estimation

We consider a simple change point estimation problem. A more general treatment is available in
Chapter 14 of Michael Kosorok’s notes on Empirical Processes that can be downloaded off his
website.

Consider i.i.d. data {Xi, Yi}ni=1 where Yi = µ(Xi) + εi. Assume that Xi is independent of (the
error) εi and follows the uniform distribution on [0, 1] and that µ(x) = α0 1(x ≤ d0) +β0 1(x > d0).
Our goal is to estimate the change–point d0.

The three parameters can be estimated using least squares methods. For now, we will
make the (unrealistic) assumption that the two levels of the regression function, α0 and β0 are
known. Then, writing Pn as the empirical measure of the data-points {Yi, Xi}ni=1 we can write
down our estimate of d̂n as:

d̂n = argmin Pn [(y − α0)2 1(x ≤ d) + (y − β0)2 1(x > d)] .

To simplify things, assume that α0 < β0. A little algebra shows that:

d̂n = argmin Pn [{(y − α0)2 − (y − β0)2}(1(x ≤ d)− 1(x ≤ d0)]

= argmin Pn
[(
y − α0 + β0

2

)
(1(x ≤ d)− 1(x ≤ d0))

]
≡ Mn(d) .

If the sequence of stochastic processes Mn converges to anything, that candidate has to be

M(d) ≡ P
[(
y − α0 + β0

2

)
(1(x ≤ d)− 1(x ≤ d0))

]
.

It is readily checked that M(d) =| d − d0 | (β0 − α0)/2. To show that d̂n is consistent for d0, we
can check the conditions of Corollary 3.2.3 (i) of Van der Vaart and Wellner (1996) appropriately
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modified to cater to the fact that we are dealing with minimization instead of maximization. Firstly,
note that ‖Mn −M‖[0,1] converges to 0 in probability. We have:

‖Mn −M‖[0,1] = supd∈[0,1] |(Pn − P ) fd(x, y)|

where {fd(x, y) ≡ (y − (α0 + β0)/2)(1(x ≤ d)− 1(x ≤ d0)) : d ∈ [0, 1]} is a Glivenko-Cantelli class
of functions. Furthermore, M(d0) = 0 < infd∈B(d0,ε)c M(d) = ε (β0 − α0)/2. It follows that d̂n must
converge in probability to d0.

In the discussion above we have not specified the choice of d̂n. However, the minimizer is
not unique – there is an entire left–closed right–open interval of minimizers. For this problem
it turns out that the limit distribution of d̂n appropriately normalized, of course, depends on
which minimizer is chosen. We will talk about this issue later. The key difference between this
example and the others that we will encounter lies in the fact that the limit distribution of the
normalized minimizer converges to an appropriate minimizer of a compound Poisson process. We
next attempt to determine the rate of convergence.

We apply Theorem 3.2.5 of Van der Vaart and Wellner (1996). The first conditon reduces
to:

M(d)−M(d0) ≥ K ρ2(d, d0)

for some “distance function” ρ. Choosing ρ(d, d0) =| d−d0 |1/2 works. We, next, obtain a bound on
the expected modulus of continuity of the empirical process, for all sufficiently small δ, say δ < δ0.
Thus, we seek to find functions φn(δ), such that

E? sup|d−d0|1/2<δ |
√
n(Mn −M)(d)−

√
n(Mn −M)(d0) |. φn(δ) .

The left side is simply E?[supd∈[d0−δ2,d0+δ2] | Gn fd(x, y) |] where Gn ≡
√
n (Pn − P ). Set

Mδ = {fd(x, y) : d ∈ [d0 − δ2, d0 + δ2]} .

A natural envelope function for this class is given by

Mδ =| y − (α0 + β0)/2 | 1(x ∈ [d0 − δ2, d0 + δ2]) .

With P denoting the probability distribution of (X1, Y1), we have:

E?P ‖Gn‖Mδ
. J(1,Mδ) (P ?M2

δ )1/2 .

It is easily seen that Mδ is a VC class of functions and hence satisfies the uniform entropy bound
on Page 141 of Van der Vaart and Wellner (1996); consequently, the quantity J(1,Mδ) is uniformly
bounded for all sufficiently small δ. Check that P ?M2

δ is O(δ2), showing that the choice φn(δ) = δ
works.

This yields rn =
√
n from the requirement that r2n φn(r−1

n ) ≤
√
n. Thus,

√
nρ(d̂n, d0) =√

n | d̂n − d0 | = Op(1). It follows that n (d̂n − d0) = Op(1).
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1.3 Split Point Estimation

In this section we study the problem of estimating the split point in a binary decision tree for
nonparametric regression.

Let X,Y denote the (one-dimensional) predictor and response variables, respectively. The
nonparametric regression function f(x) = E(Y |X = x) is to be approximated using a decision tree
with a single (terminal) node, i.e., a piecewise constant function with a single jump. The predictor
X is assumed to vary in a compact interval [0,K] and to have a density pX(·). For convenience,
we adopt the usual representation Y = f(X) + ε, with the error ε = Y − E(Y |X) having zero
conditional mean given X. The conditional density of ε given X = x is denoted by pε(· | x), and
the conditional variance of ε given X = x is denoted σ2(x).

Suppose we have n i.i.d. observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn) of (X,Y ). Consider the
working model in which f is treated as a piecewise constant function with a single jump, with
parameters (βl, βu, d), where d is the point at which the function jumps, βl is the value to the left
of the jump and βu is the value to the right of the jump. The best projected values are defined by

(β0
l , β

0
u, d

0) = argminβl,βu,dE [Y − βl 1(X < d)− βu 1(X ≥ d)]2

and satisfy the normal equations

β0
l = E(Y |X < d0), β0

u = E(Y |X ≥ d0), f(d0) =
β0
l + β0

u

2
.

Estimates of these quantities are obtained using least squares as

(β̂l, β̂u, d̂n) = argminβl,βu,d
n∑
i=1

(Yi − βl 1(Xi < d)− βu 1(Xi ≥ d))2 .

The goal is to estimate the split point d0. Before proceeding further, we list some mild
conditions.

Conditions

(A1) d0 is the unique solution of the normal equations and 0 < d0 < K. Also, f(d) 6= f(d0) for
d 6= d0.

(A2) f(x) is continuous and its first and second derivatives exist and are uniformly bounded in a
neighborhood N of d0. Also, f ′(d0) 6= 0.

(A3) pX(x) does not vanish and is continuously differentiable on (0,K).

(A4) σ2(x) is continuous and 0 < infx∈N σ2(x) ≤ supx σ2(x) <∞.

(A5) For some δ > 0, | u |3+δ supx∈N pε(u | x)→ 0 as | u |→ ∞.
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We now introduce the basic idea used to construct our proposed confidence interval for d0.
Consider testing the null hypothesis that the best projected value d0 is located at some point
d. The best piecewise constant approximation to f under this null hypothesis is estimated by
(β̂dl , β̂

d
u, d), where

(β̂dl , β̂
d
u) = argminβl,βu

n∑
i=1

(Yi − βl 1(Xi < d)− βu 1(Xi ≥ d))2 .

A reasonable test statistic is the (centered) residual sum of squares defined by

RSSn(d) ≡
n∑
i=1

(
Yi − β̂dl 1(Xi < d)− β̂du 1(Xi ≥ d)

)2
−

n∑
i=1

(
Yi − β̂l 1(Xi < d̂n)− β̂u 1(Xi ≥ d̂n)

)2
.

If the working model for f is true, and the errors are Gaussian with constant variance, then RSSn(d)
is a likelihood ratio statistic, but in general it has no such interpretation.

The limit distributions of these statistics have been worked out in Banerjee and McKeague
(2007). For the current discussion, we will discuss the “toy” version of this problem in which we
assume (unrealistically) that β0

l and β0
u are known. If this is the case, we can write:

d̂n = argmind
n∑
i=1

(
Yi − β0

l 1(Xi < d)− β0
u 1(Xi ≥ d)

)2
and

RSSn(d0) =
n∑
i=1

(
Yi − β0

l 1(Xi < d0)− β0
u1(Xi ≥ d0)

)2− n∑
i=1

(
Yi − β0

l 1(Xi < d̂n)− β0
u1(Xi ≥ d̂n)

)2
.

The key result below provides the joint asymptotic distribution of d̂n and RSSn(d0) for the “toy
version”.

Theorem 1.1 Suppose conditions (A1)–(A5) hold. Then(
n1/3(d̂n − d0), n−1/3 RSSn(d0)

)
→d (argmaxtQ(t), 2 | β0

l − β0
u | maxtQ(t)) ,

where
Q(t) = aW (t)− b t2 .

Here W (t) is standard two-sided Brownian motion started from 0 and a, b are positive constants
given by

a2 = pX(d0)σ2(d0), b =
1
2
| pX(d0) f ′(d0) | .

Proof of Theorem: In what follows we will assume that β0
l > β0

u. The derivation for the other
case is analogous. Now, elementary algebra shows that(
Yi − β0

l 1(Xi < d)− β0
u 1(Xi ≥ d)

)2−Y 2
i =

(
β0
l − β0

u

) (
β0
l + β0

u − 2Yi
)
)1(Xi < d)+β0

u

(
β0
u − 2Yi

)
.
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Letting Pn denote the empirical measure of the pairs {(Xi, Yi)}ni=1, we have

n−1/3 RSSn(d0) = n−1/3
n∑
i=1

(β0
l − β0

u)
(
β0
l + β0

u − 2Yi
) (

1 (Xi < d0)− 1 (Xi < d̂n)
)

= 2n−1/3 (β0
l − β0

u)
n∑
i=1

(
Yi −

β0
l + β0

u

2

) (
1 (Xi < d̂n)− 1 (Xi < d0)

)
≡ 2n2/3 (β0

l − β0
u) Pn g(·, d̂n) ,

where

g((X,Y ), d) =
(
Y −

β0
l + β0

u

2

) [
1 (X < d)− 1 (X < d0)

]
.

It is easily seen that

d̂n = argmaxd

{
n∑
i=1

(
Yi − β0

l 1(Xi < d0)− β0
u 1(Xi ≥ d0)

)2
−

n∑
i=1

(
Yi − β0

l 1(Xi < d)− βu 1(Xi ≥ d)
)2}

= argmaxd 2n (β0
l − β0

u) Pn g(·, d)
= argmaxd n

2/3 Pn g(·, d) .

Now, define the process
Qn(t) ≡ n2/3 Pn g(·, d0 + t n−1/3) .

Letting t̂ = n1/3 (d̂n − d0), so that d̂n = d0 + t̂ n−1/3, we have t̂ = argmaxtQn(t) and
n−1/3 RSSn(d0) = 2 (β0

l − β0
u)Qn(t̂). It therefore suffices to find the joint limit distribution of

(t̂, Qn(t̂)). Lemma 1.1 below shows that the random processes Qn(t) converge in distribution in the
space Bloc(R) (the space of locally bounded functions on R equipped with the topology of uniform
convergence on compacta) to the Gaussian process Q(t) ≡ aW (t) − b t2 whose distribution is a
tight Borel measure concentrated on Cmax(R) (the separable subspace of Bloc(R) of all continuous
functions on R that converge to −∞ as the argument runs off to ∞ or −∞ and that have a unique
maximum). Furthermore, the sequence {t̂n} of maximizers of {Qn(t)} is OP (1). It then follows by
Theorem 1.2 below that:

(argmaxt∈RQn(t),maxt∈R Qn(t)) ≡ (t̂,Qn(t̂))→d (argmaxt∈RQ(t),maxt∈RQ(t)) .

Theorem 1.2 Suppose that the process Qn(t) converges in distribution in the space Bloc(R) (the
space of locally bounded functions on R equipped with the topology of uniform convergence on
compacta) to the Gaussian process Q(t), whose distribution is a tight Borel measure concentrated on
Cmax(R) (the separable subspace of Bloc(R) of all continuous functions on R that converge to −∞
as the argument runs off to ∞ or −∞ and that have a unique maximum). Furthermore, suppose
that the sequence {t̂n} of maximizers of {Qn(t)} is OP (1) and converges to argmaxtQ(t). Then,

(t̂n, Qn(t̂n))→d (argmaxtQ(t), Q(argmaxtQ(t)) ≡ maxtQ(t)).
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Proof: By invoking Dudley’s representation theorem (Theorem 2.2 of Kim and Pollard (1990)),
for the processes Qn, we can construct a sequence of processes Q̃n and a process Q̃ defined on a
common probability space (Ω̃, Ã, P̃ ) with (a) Q̃n being distributed like Qn, (b) Q̃ being distributed
like Q and (c) Q̃n converging to Q̃ almost surely (with respect to P̃ ) under the topology of uniform
convergence on compact sets. Thus(i) t̃n, the maximizer of Q̃n, has the same distribution as t̂n, (ii)
t̃, the maximizer of Q̃(t), has the same distribution as argmaxQ(t) and (iii) Q̃n(t̃n) and Q̃(t̃) have
the same distribution as Qn(t̂n) and maxQ(t) respectively. So to prove the theorem it suffices to
show that t̃n converges in P̃ ? (outer) probability to t̃ and Q̃n(t̃n) converges in P̃ ? (outer) probability
to Q̃(t̃). The convergence of t̃n to t̃ in outer probability is shown in Theorem 2.7 of Kim and Pollard
(1990).

To show that Q̃n(t̃n) converges in probability to Q̃(t̃), let ε > 0, δ > 0 be given. We need to
show that, eventually,

P ?
(
| Q̃n(t̃n)− Q̃(t̃) |> δ

)
< ε .

Since t̃n and t̃ are OP (1), given ε > 0, we can find Mε > 0 such that, with

Acn ≡ {t̃n /∈ [−Mε,Mε]}, Bc
n ≡ {t̃ /∈ [−Mε,Mε]},

P ?(Acn) < ε/4 and P ?(Bc
n) < ε/4, eventually. Furthermore, as Q̃n converges almost surely and

therefore in probability, uniformly, to Q̃ on every compact set, with

Ccn ≡ {sups∈[−Mε,Mε] |Q̃n(s)− Q̃(s)| > δ} ,

P ?(Ccn) < ε/2, eventually. Hence, eventually, P ?(Acn∪Bc
n∪Ccn) < ε, so that P?(An∩Bn∩Cn) > 1−ε.

But

An ∩Bn ∩ Cn ⊂ {| Q̃n(t̃n)− Q̃(t̃) |≤ δ, } (1.1)

and consequently
P?(| Q̃n(t̃n)− Q̃(t̃) |≤ δ) ≥ P?(An ∩Bn ∩ Cn) > 1− ε

for all sufficiently large n. This implies immediately that for all sufficiently large n

P ?(| Q̃n(t̃n)− Q̃(t̃) |> δ) < ε .

It remains to show (1.1). To see this, note that for any ω ∈ An ∩Bn ∩ Cn and s ∈ [−Mε,Mε],

Q̃n(s) = Q̃(s) + Q̃n(s)− Q̃(s) ≤ Q̃(t̃) + |Q̃n(s)− Q̃(s)| .

Taking the supremum over s ∈ [−Mε,Mε] and noting that t̃n ∈ [−Mε,Mε] on the set An ∩Bn ∩Cn
we have

Q̃n(t̃n) ≤ Q̃(t̃) + sups∈[−Mε,Mε] |Q̃n(s)− Q̃(s)|,

or equivalently
Q̃n(t̃n)− Q̃(t̃) ≤ sups∈[−Mε,Mε] |Q̃n(s)− Q̃(s)| .
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An analogous derivation (replacing Q̃n everywhere by Q̃, and t̃n by t̃, and vice–versa) yields

Q̃(t̃)− Q̃n(t̃n) ≤ sups∈[−Mε,Mε] |Q̃(s)− Q̃n(s)| .

Thus
|Q̃n(t̃n)− Q̃(t̃)| ≤ sups∈[−Mε,Mε] |Q̃n(s)− Q̃(s) ≤ δ ,

which completes the proof.

Lemma 1.1 The process Qn(t) defined in the proof of Theorem 1.1 converges in distribution in the
space Bloc(R) (the space of locally bounded functions on R equipped with the topology of uniform
convergence on compacta) to the Gaussian process Q(t) ≡ aW (t)−b t2 whose distribution is a tight
Borel measure concentrated on Cmax(R). Here a and b are as defined in Theorem 1.1. Furthermore,
the sequence {t̂n} of maximizers of {Qn(t)} is OP (1) (and hence converges to argmaxtQ(t) by
Theorem 1.2).

Proof: We apply the general approach outlined on page 288 of VdV and Wellner (1996).
Letting Mn(d) = Pn [g(·, d)] and M(d) = P [g(·, d)], we have d̂n = argmax0≤d≤K Mn(d) and
d0 = argmax0≤d≤K M(d) and, in fact, d0 is the unique maximizer of M under the stipulated
conditions. The last assertion needs proof, which will be supplied later. We establish the consistency
of d̂n for d0 and then find the rate of convergence rn of d̂n; in other words that rn for which
rn (d̂n − d0) is OP (1). For consistency of d̂n, note that {g(·, d) : 0 ≤ d ≤ K} is a VC class of
functions and hence universally Glivenko–Cantelli in probability. Therefore

sup0≤d≤K |Mn(d)−M(d)| = sup0≤d≤K |(Pn − P ) g(·, d)| → 0

in outer probability. Also d 7→M(d) is continuous and therefore upper semicontinuous with unique
maximizer d0. It follows from Corollary 3.2.3 of VdV and Wellner (1996) that d̂n = sup0≤d≤K Mn(d)
converges in probability to d0.

Next, to derive the rate rn, we invoke Theorem 3.2.5 of VdV and Wellner (1996), with d playing
the role of θ, d0 = θ0 and Θ = [0,K]. We have

M(θ)−M(θ0) = M(d)−M(d0) ≤ −C (d− d0)2

(for some positive constant C) for all d in a neighborhood of d0, on using the continuity of M′′(d)
in a neighborhood of d0 and the fact that M′′(d0) < 0 (which follows from arguments at the end of
this proof). We now need to find functions φn(δ) such that

√
nE?

[
sup|d−d0|<δ

∣∣(Pn − P )[g(·, d)]− (Pn − P )[g(·, d0)]
∣∣] ≤ K φn(δ)

for some universal positive constant K. Letting Gn =
√
n (Pn − P ) denote the empirical process

and

Mδ =
{(

y −
β0
l + β0

u

2

) (
1 {x < d} − 1 {x < d0}

)
: | d− d0 |< δ

}
,
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what we need to show can be restated as

E?P

(
‖Gn‖Mδ

)
≤ K φn(δ) .

From page 291 of VdV and Wellner (1996)

E?P

(
‖Gn‖Mδ

)
≤ K ′ J(1,Mδ) (P ?M2

δ )1/2,

where Mδ is an envelope function for Mδ and K ′ is some universal constant. Since Mδ is a VC
class of functions, it is easy to show that (in the notation of VdV and Wellner (1996))

J(1,Mδ) = supQ

∫ 1

0

√
1 + log N(ε ‖Mδ‖Q,2,Mδ, L2(Q)) d ε < R ,

where R is a positive number not depending on δ. We take

Mδ(x, y) =
∣∣y − f(d0)

∣∣ 1 (x ∈ [d0 − δ, d0 + δ]) .

Next, we have

E(Mδ(X,Y )2) = E
[
(Y − f(d0))2 1 {X ∈ [d0 − δ, d0 + δ]}

]
=

∫ d0+δ

d0−δ
E
[
(Y − f(d0))2 | X = x

]
pX(x) dx

=
∫ d0+δ

d0−δ
(σ2(x) + (f(x)− f(d0))2) pX(x) dx

≤ K δ,

whenever δ < δ0 for some constant K (depending on δ0) by the continuity of all functions involved
in the integrand in a neighborhood of d0. Therefore

(EM2
δ )1/2 = K

1/2
δ1/2

and it follows that E?(‖Gn‖Mδ
) ≤ K̃ δ1/2 for some constant K̃ depending neither on n, nor on δ,

whenever δ < δ0. Hence φn(δ) =
√
δ works. Indeed φn(δ)/δα is decreasing for α = 1. Solving

r2n φn(1/rn) ≤
√
n

we find rn = n1/3 works. Since d̂n maximizes Mn(d), it follows that n1/3 (d̂n − d0) = OP (1).

It remains to find the limiting distribution of t̂n = n1/3 (d̂n−d0). Now, t̂n = argmaxtQn(t) with
Qn(t) = n2/3 Pn g(·, d0+t n−1/3). We show that Qn(t)→d Q(t), a Gaussian process in Cmax(R) and
then use the argmax continuous mapping theorem to deduce that t̂n →d t̂, the unique maximizer
of Q(t). Write

n2/3 Pn
[
g(·, d0 + t n−1/3)

]
= n2/3 (Pn − P )

[
g(·, d0 + t n−1/3)

]
+ n2/3 P

[
g(·, d0 + t n−1/3)

]
= In(t) + IIn(t) .
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In terms of the empirical process Gn, we have In = Gn (fn,t) where

fn,t(x, y) = n1/6 (y − f(d0)) (1 (x ≤ d0 + t n−1/3)− 1 (x ≤ d0)) .

We will use Theorem 2.11.22 from VdV and Wellner (1996). On each compact set [−K,K], Gn fn,t
converges as a process in l∞ [−K,K] to the tight Gaussian process aW (t) with a2 = σ2(d0) pX(d0).
Hence Gn fn,t converges to aW (t) on the line, in the topology of uniform convergence on compact
sets. Also, IIn(t) converges on every [−K,K] uniformly to the deterministic function −b t2, with
b = |f ′(d0) pX(d0)|/2 > 0. Hence Qn(t) →d Q(t) ≡ aW (t) − b t2 in l∞[−K,K] for all K > 0.
Consequently, (t̂n, Qn(t̂n))→d (t̂, Q(t̂)).

We now establish that In and IIn indeed converge to the claimed limits. As far as In is
concerned, provided we can verify the other conditions of Theorem 2.11.22, the covariance kernel
K(s, t) of the limit of Gn fn,t is given by the limit of P (fn,s fn,t)−P fn,s P fn,t as n→∞. We first
compute P (fn,s fn,t). This vanishes if s and t are of opposite signs. For s, t > 0,

P fn,s fn,t = E [n1/3 (Y − f(d0))2 1{X ∈ (d0, d0 + (s ∧ t)n−1/3]}]

=
∫ d0+(s∧t)n−1/3

d0
n1/3

[
E [(f(X) + ε− f(d0))2 | X = x]

]
pX(x) dx

= n1/3

∫ d0+(s∧t)n−1/3

d0

(
σ2(x) + (f(x)− f(d0))2

)
pX(x) dx

→ σ2(d0) pX(d0) (s ∧ t)
≡ a2 (s ∧ t) .

Also, it is easy to see that P fn,s and P fn,t converge to 0. Thus, when s, t > 0,

P (fn,s fn,t)− P fn,s P fn,t → a2 (s ∧ t) ≡ K(s, t) .

Similarly, it can be checked that for s, t < 0, K(s, t) = a2 (−s∧−t). Thus K(s, t) is the covariance
kernel of the Gaussian process aW (t).

Next we need to check

supQ

∫ δn

0

√
log N(ε ‖Fn‖Q,2,Fn, L2(Q)) d ε→ 0 , (1.2)

for every δn → 0. Here

Fn =
{
n1/6(y − f(d0)) [1(x < d0 + t n−1/3)− 1(x < d0)] : t ∈ [−K,K]

}
and

Fn(x, y) = n1/6
∣∣y − f(d0)

∣∣ 1(x ∈ [d0 −K n−1/3, d0 +K n−1/3])
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is an envelope for Fn. Now

log N(ε ‖Fn‖Q,2,Fn, L2(Q)) ≤ K V (Fn) (16 e)V (Fn)

(
1
ε

)2 (V (Fn)−1)

for some universal constant K. Here V (Fn) is the VC-dimension of Fn. Using the fact that V (Fn)
is uniformly bounded, we see that the above inequality implies

log N(ε ‖Fn‖Q,2,Fn, L2(Q)) ≤ K?

(
1
ε

)s
where s = supn 2(V (Fn) − 1) < ∞ and K? is a constant not depending upon n or Q. To check
(1.2) it therefore suffices to check that∫ δn

0

√
− log ε d ε→ 0

as δn → 0. But this is trivial. We finally check the conditions (2.11.21) in VdV and Wellner (1996);
these are:

P ? F 2
n = O(1), P ? F 2

n 1{Fn > η
√
n} → 0, ∀η > 0 ,

and
supρ(s,t)<δn P (fn,s − fn,t)2 → 0, ∀δn → 0 .

With Fn as defined above, an easy computation shows that

P ? F 2
n = K

1
K n−1/3

∫ d0+K n−1/3

d0−K n−1/3

(σ2(x) + (f(x)− f(d0))2) pX(x) dx = O(1) .

Denote the set [d0 −K n−1/3, d0 +K n−1/3] by Sn. Then

P ? (F 2
n 1{Fn > η

√
n}) = E [n1/3 | Y − f(d0) |2 1{X ∈ Sn} 1 {| Y − f(d0) | 1{X ∈ Sn} > η n1/3}]

≤ E
[
n1/3 | Y − f(d0) |2 1{X ∈ Sn} 1{| ε |> η n1/3/2}

]
≤ E

[
2n1/3 (ε2 + (f(X)− f(d0))2) 1{X ∈ Sn} 1{| ε |> η n1/3/2}

]
(1.3)

eventually, since for all sufficiently large n

{| Y − f(d0) | 1 {X ∈ Sn} > η n1/3} ⊂ {| ε |> η n1/3/2} .

Now, the right side of (1.3) can be written as T1 + T2 where

T1 = 2n1/3E [ε2 1 {| ε |> η n1/3/2} 1 {X ∈ Sn}]

and
T2 = 2n1/3E [(f(X)− f(d0))2 1 {X ∈ Sn} 1 {| ε |> η n1/3/2}] .
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We will show that T1 = o(1). Similar arguments can be used to show that T2 is also o(1). Using
condition (A5), eventually

T1 = 2n1/3

∫ d0+K n−1/3

d0−K n−1/3

[∫
|u|>η n1/3/2

u2 pε (u | x) du

]
pX(x) dx

≤ 2n1/3

∫ d0+K n−1/3

d0−K n−1/3

[∫
|u|>η n1/3/2

u2 | u |−(3+δ) du

]
pX(x) dx

= 2n1/3

∫ d0+K n−1/3

d0−K n−1/3

[∫
|u|>η n1/3/2

| u |−(1+δ) du

]
pX(x) dx

= k̃(η, δ)n1/3

∫ d0+K n−1/3

d0−K n−1/3

n−δ/3 pX(x) dx

= 2
k̃(η, δ)
nδ/3

n1/3

∫ d0+K n−1/3

d0−K n−1/3

pX(x) dx

= o(1) .

In the above display k̃(η, δ) is a quantity depending only on η and δ. Finally, the fact that

sup|s−t|<δn P (fn,s − fn,t)2 → 0

as δn → 0 can be verified through analogous computations which are omitted.

We next deal with IIn. For convenience we sketch the uniformity of the convergence of IIn(t)
to the claimed limit on 0 ≤ t ≤ K. We have

IIn(t) = n2/3E
[
(Y − f(d0)) (1 (X < d0 + t n−1/3)− 1 (X < d0))

]
= n2/3E

[
(f(X)− f(d0)) 1 (X ∈ [d0, d0 + t n−1/3))

]
= n2/3

∫ d0+t n−1/3

d0
(f(x)− f(d0)) pX(x) dx

= n1/3

∫ t

0
(f(d0 + un−1/3)− f(d0)) pX(d0 + un−1/3) du

=
∫ t

0
u
f(d0 + un−1/3)− f(d0)

un−1/3
pX(d0 + un−1/3) du

→
∫ t

0
u f ′(d0) pX(d0) du (uniformly on 0 ≤ t ≤ K)

=
1
2
f ′(d0) pX(d0)t2 = −bt2.

It only remains to verify that (i) d0 is the unique maximizer of M(d), and (ii) f ′(d0) pX(d0) < 0,
so that the process aW (t)− b t2 is indeed in Cmax(R). To show (i), recall that

M(d) = E [g((X,Y ), d)]
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= E

[(
Y −

β0
l + β0

u

2

)
(1(X < d)− 1(X < d0))

]
.

Let,
ξ(d) = E [Y − β0

l 1(X < d)− β0
u 1(X ≥ d)]2 .

By condition (A1), it follows immediately that d0 ∈ (0,K) is the unique minimizer of ξ(d).
Consequently, d0 is also the unique maximizer of the function ξ(d0)−ξ(d). Straightforward algebra
shows that

ξ(d0)− ξ(d) = 2 (β0
l − β0

u) M(d)

and since β0
l − β0

u > 0, it follows that d0 is also the unique maximizer of M(d). This shows (i).
Now,

M(d) = E

[(
f(X)−

β0
l + β0

u

2

)
(1(X < d)− 1(X < d0))

]
+ E

[
ε (1(X < d)− 1(X < d0))

]
= E

[(
f(X)−

β0
l + β0

u

2

)
(1(X < d)− 1(X < d0))

]
+ 0

=
∫ K

0

(
f(x)−

β0
l + β0

u

2

) (
1(x < d)− 1(x < d0)

)
pX(x) dx

=
∫ d

0

(
f(x)−

β0
l + β0

u

2

)
pX(x) dx−

∫ d0

0

(
f(x)−

β0
l + β0

u

2

)
pX(x) dx .

Thus, for 0 < d < K
M′(d) = (f(d)− f(d0)) pX(d) ,

on recalling that f(d0) = (β0
l + β0

u)/2 and

M
′′
(d) = f ′(d) pX(d) + (f(d)− f(d0))p′x(d) .

Thus, M′(d0) = 0 and M′′(d0) = f ′(d0) pX(d0). Since d0 is the maximizer at an interior point,
M′′(d0) ≤ 0. This implies (ii), since by our assumptions f ′(d0) pX(d0) 6= 0.

15


