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1 Extended Weak Convergence

The lack of measurability of the empirical process with respect to the sigma-field generated by

the ‘natural’ l∞ metric, as illustrated in the previous notes, needs an extension of the standard

weak convergence theory that can handle situations where the converging stochastic processes

may no longer be measurable (though the limit will be a tight Borel measurable random element).

Of course, an alternative solution is to use a different metric that will make the converging

processes measurable, which in the scenario of Donsker’s theorem, Version 1 in the previous notes

is achieved by equipping the space D[0, 1] with the Skorohod (metric) topology. However, for

empirical processes that assume values in very general (and often more complex spaces) such cute

generalizations are not readily achievable and the easier way out is to keep the topology simple and

tackle the measurability issues. Of course, any generalization of the notion of weak convergence

must allow a powerful continuous mapping theorem.

In what follows, we briefly describe this extended weak convergence theory following the

development in Section 9 of Pollard (1990). An extensive coverage is available in Chapter 1 on

stochastic convergence in van der Vaart and Wellner (1996) which will be referred to sparingly.

Our goal here is to develop the extended weak convergence ideas to the extent required for a

proper understanding of the characterization of weak convergence of the empirical process in terms

of finite-dimensional convergence and asymptotic equicontinuity. Our emphasis will be on building

the tools needed to verify these conditions in different situations and as we will see, such tools

typically involve quantifying the ‘largeness’ of the class of functions indexing the empirical process.
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We consider sequences of maps {Xn} from a probability space (Ω,A,P) into a metric space

(X , d). If each Xn is measurable with respect to the Borel σ-field B(X ), convergence in distribution

to the probability measure P can be defined as:

P f(Xn)→ P f ∀f ∈ U(X ) ,

U(X ) denoting the class of bounded uniformly continuous real-valued functions on X . If Xn’s are

not necessarily measurable then neither is f(Xn) and the above definition is inadequate. However,

we can still define the outer expectation: for each bounded real-valued H on Ω, set:

P?H = inf {Ph : H ≤ h and h integrable} .

Similarly, define the inner expectation:

P?H = sup {Ph : H ≥ h and h integrable} .

Check that P ?H = −P?(−H). We can now formally extend the definition of weak-convergence to

accommodate non-measurability.

Definition: If {Xn} is a sequence of (not-necessarily Borel measurable) maps from Ω into

a metric space X , and if P is a probability measure defined on B(X ), then Xn →d P is defined to

mean: P?(f(Xn))→ P f for every f ∈ U(X ).

Note that the definition could also have been stated in terms of inner expectations. It could also

have been stated in terms of a limiting Borel-measurable random element X (a measurable map

from some probability space, say (Ω′,A′,P′) into (X ,B(X )) by requiring P?(f(Xn))→ P′ f(X) for

all f ∈ U(X ). Also note that the definition here differs slightly from the one used in van der Vaart

and Wellner (1996) who require f to vary among all bounded continuous functions. However, not

much is lost by changing to ‘bounded uniformly continuous’ instead.

An example: If {Yn} is a sequence of random elements assuming values in a metric space

(Y, e) converging in probability to a constant y, i.e. P?(e(Yn, y) > δ) → 0 for every δ > 0, and

if Xn →d X, then (Xn, Yn) →d (X, y) in the product space X × Y (equipped with the product

topology which is generated, say, by the metric ρ((x1, y1), (x2, y2)) = d(x1, x2) + e(y1, y2)). To

see this, suppose that f is uniformly continuous on X × Y and bounded in absolute value by a

constant M . Given ε > 0, we can find δ > 0 such that if two points in the domain of f are at
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distance less than δ apart in the ρ metric then the function values at these points differ in absolute

magnitude by less than ε. Conclude that:

f(Xn, Yn) ≤ f(Xn, y) + ε+ 2M 1{e(Yn, y) > δ} .

Taking outer expectations gives:

P? f(Xn, Yn) ≤ P f(Xn, y) + 2M P?(e(Yn, y) > δ) + ε ,

using the facts that P?(H1 +H2) ≤ P?(H1) + P?(H2) with equality if either is measurable. Letting

n go to infinity and using that Yn converges in probability to y, we have:

lim sup P? f(Xn, Yn) ≤ lim sup P? f(Xn, y) + ε = P f(X, y) + ε .

Now, since f is arbitrary, it is certainly the case that:

lim sup P? (−f(Xn, Yn)) ≤ P (−f(X, y)) + ε ,

which shows that:

− lim inf P? f(Xn, Yn) ≤ −P f(X, y) + ε .

Putting things together, we get:

P f(X, y)− ε ≤ lim inf P? f(Xn, Yn) ≤ lim sup P? f(Xn, Yn) ≤ P f(X, y) + ε .

Since ε > 0 is arbitrary, we conclude that P f(X, y) = lim inf P? f(Xn, Yn) = lim sup P? f(Xn, Yn).

This shows that P? f(Xn, Yn) converges to P f(X, y), as we sought to establish.

2 A Representation Theorem

The extended weak-convergence theory admits a nice representation theorem originally due to

Dudley (1985). We next discuss an elaborate statement of this theorem and use it to formally prove

a continuous mapping theorem. An almost sure representation for Xn, converging in distribution

to a Borel measure P , would require the construction of a common probability space (Ω̃, Ã, P̃) and

random elements X̃n defined on this space as well as a measurable random element X̃ into X with

distribution P , such that X̃n has the ‘same distribution” as Xn and furthermore X̃n ‘converges
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almost surely’ to X̃. However, note that the term ‘same distribution’ is ill-defined since the Xn’s

are not measurable and therefore do not have a distribution in the proper sense of the term. Also,

the set of points in Ω for which X̃n’s have a limit may not be measurable. These difficulties can

however be circumvented using the notion of a perfect map.

In Dudley’s representation theorem, perfect maps φn are constructed from a new probability space

(Ω̃, Ã, P̃) to the space (Ω,A,P) with the defining property that φn is measurable and that for every

bounded map H from Ω to R, P?H = P̃? [H ◦φn]. Note that this property implies that P̃◦φ−1
n = P

(but is much stronger than this measure preservation property). To see this, let H = 1A for A ∈ A.

Then P(A) = P 1A = P̃ [1A ◦ φn] = P̃ 1φ−1
n (A) = P̃(φ−1

n (A)). The versions of Xn in the almost

sure representation are defined by X̃n(ω̃) = Xn(φn(ω̃)). Using the defining property of perfect

maps, it follows that P? g(Xn) = P̃?[g(X̃n)], regardless of the measurability properties of Xn. For

a measurable Xn, the outer expectations in this equality can be replaced by ordinary expectations

and the equality itself would follow from the measure-preservation property (this is the theorem

of the unconscious statistician that one encounters in probability). However, measure preservation

alone would not guarantee the equality in the absence of measurability, because in general, outer

expectations only satisfy an inequality:

P?H ≥ P̃?[H ◦ φn] ∀ bounded H on Ω .

This follows from the fact that for any measurable h ≥ H, h◦φn ≥ H ◦φn but the set of measurable

majorants of H ◦ φn could be larger than {h ◦ φn : h ≥ H and measurable}. To establish the

perfectness of φn, one needs to show that P?H ≤ P̃ g for all measurable real g ≥ H ◦ φn and the

reverse inequality follows by taking the infimum over all such g.

The Representation Theorem: If Xn →d P in the extended sense discussed above and if the

limit distribution P concentrates on a separable Borel subset X0 of X , then there exists a probability

space (Ω̃, Ã, P̃) supporting measurable maps φn into (Ω,A) and a measurable map X̃ into (X0,BX0),

such that:

(a) each φn is a perfect map: i.e. P?H = P̃?(H ◦ φn) for every bounded H on Ω;

(b) P̃ X̃−1 = P as measures on B(X0);

(c) there is a sequence of extended-real-valued measurable random variables {δ̃n} defined from

(Ω̃, Ã) to ([0,∞],B[0,∞]), such that d(X̃n(ω̃), X̃(ω̃)) ≤ δ̃n(ω̃) → 0 for almost every ω̃, where

X̃n(ω̃) = Xn(φn(ω̃)).
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It is easy to see that Conditions (a), (b) and (c) imply that Xn converges weakly to P . To see

this, it suffices to show that for any bounded uniformly continuous g from X to R, P? g(Xn), which

equals P̃?(g(X̃n)) by perfectness, converges to P g(X), which equals P̃ g(X̃). Given any ε > 0, there

exists η > 0 such that d(X̃n, X̃) < η implies that |g(X̃n) − g(X̃)| < ε. Also, let M be an upper

bound on the absolute value of g. Then,

|P̃? g(X̃n)− P̃ g(X̃)| ≤ P̃? |g(X̃n)− g(X̃)|

≤ P̃? [ε 1(d(X̃n, X̃) ≤ η) + 2M 1(d(X̃n, X̃) > η)

≤ ε+ 2M P̃? 1(δn > η)

≤ 2 ε eventually,

using the fact that P̃? 1(δn > η) = P̃ 1(δn > η) → 0, since δn converges to 0 almost surely.

Continuous Mapping Theorem: Suppose that Xn →d P with P concentrated on a separable

Borel subset X0 of X . Suppose that τ is a map into from X into another metric space Y such that:

(a) the restriction of τ to X0 is Borel measurable, and, (b) τ is continuous at P -almost-all points

of X0. Then τ(Xn) converges in distribution to the probability measure P τ−1 (which is defined

on the Borel σ-field on the metric space Y).

Proof of the continuous mapping theorem: Invoke the representation theorem to obtain the

X̃n’s, X̃ and the δn’s. We need to show that for any f ∈ U(Y), P? f(τ(Xn)) → (P ◦ τ−1) f ≡
P (f ◦ τ) ≡ P h where h = f ◦ τ . Now P? f(τ(Xn)) = P? h(Xn) = P̃? h(X̃n) and it suffices to show

that this converges to P̃h(X̃).

Without loss of generality (why?), we can assume that 0 ≤ h ≤ 1. Let ε > 0 be pre–

assigned. For each positive integer k, set Gk to be the set of all x ∈ X such that there exist points

y, z ∈ B(x; 1/k) with |h(y)−h(z)| > ε. This is an open set: for if x0 is in Gk and y0, z0 ∈ B(x0; 1/k)

satisfy |h(y) − h(z)| > ε, choosing δ0 < {(1/k − d(x0, y0)) ∧ (1/k − d(x0, z0))}, one ensures that

every point in B(x0, δ0) is within distance 1/k of each of y0 and z0 and by definition is a member

of Gk. The sets Gk are nested with G1 containing G2 which in turn contains G3 and so. The

sets Gk then shrink to a set, say G∞, which excludes all continuity points of h and therefore all

continuity points of τ . Thus P (G∞) = 0 and one can therefore find a Gk, for k sufficiently large,

such that P Gk < ε, i.e. P̃(X̃ ∈ Gk) < ε. Note that the Gk’s are open and therefore measurable sets.
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Now, by the definition of Gk, if X̃(ω̃) /∈ Gk and δn(ω̃) < 1/k, so that d(X̃n(ω̃), X̃(ω̃)) < 1/k, then

|h(X̃n(ω̃))− h(X̃(ω̃))| ≤ ε. Conclude that:

h(X̃n) ≤ (ε+ h̃(X̃)) 1(X̃ /∈ Gk, δn < 1/k) + 1(X̃ ∈ Gk) + 1(δn ≥ 1/k) .

Taking expectations, we conclude that:

P̃?(h(X̃n)) ≤ ε+ P̃h(X̃) + P̃(X̃ ∈ Gk) + P̃(δn > 1/k) .

Since P̃(X̃ ∈ Gk) < ε and P̃(δn > 1/k) converges to 0, conclude that:

lim sup P̃?(h(X̃n)) ≤ 2 ε+ P̃h(X̃) .

Since ε > 0 is arbitrary, conclude that lim sup P̃?(h(Xn)) ≤ P̃h(X̃). An analogous argument with h

replaced by 1− h leads to the conclusion that lim inf P̃?(h(Xn)) ≥ P̃h(X̃). These two conclusions,

in conjunction, show that lim P̃? h(X̃n) = P̃h(X̃). 2

A full version of the Portmanteau Theorem allowing for potential non-measurability is available

in Chapter 1 of van der Vaart and Wellner. See also the more classical portmanteau theorem

in Billingsley’s weak convergence text. The various (equivalent) characterizations of weak given

in the portmanteau theorem prove useful in different settings. A nice necessary and sufficient

condition of weak convergence of stochastic processes living in l∞(T ) for an arbitrary set T will be

established in the next section, and will use some of the alternative characterizations of (extended)

weak convergence in general metric spaces.

3 Weak Convergence: Key Characterizations

We first state and prove a proposition that provides a useful characterization of sample-bounded

stochastic processes indexed by a set T .

Proposition 0: Let {X(t), t ∈ T} be a sample-bounded stochastic process. Then the

finite dimensional distributions of X are those of a tight Borel probability measure on l∞(T ) if

and only if there exists a pseudometric ρ on T for which (T, ρ) is totally bounded and such that

X has a version with almost all its sample paths uniformly continuous for ρ.

Remark: If X and Y are tight Borel measurable maps into l∞(T ), then X and Y are equal in

Borel law if and only if all corresponding marginals of X and Y are equal in law. For a proof see
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Section 1.5 of van der Vaart and Wellner. Thus, tight Borel measures are uniquely characterized

by their finite dimensional distributions.

Proof: (ONLY IF part) Suppose that the induced probability measure of X on l∞(T ) is a

tight Borel measure PX . (We tacitly assume here that X is a Borel measurable random element

assuming values in l∞(T ).) Then, we can find an increasing sequence of compact subsets of l∞(T ),

say {Km}, such that PX(∪mKm) = 1. Let K = ∪mKm. Define a pseudo-metric ρ on T by:

ρ(s, t) =
∞∑
m=1

2−m (1 ∧ ρm(s, t)) ,

where ρm(s, t) = supx∈Km
|x(s)− x(t)|. It is easy to check that this is indeed a pseudo-metric. We

claim that (T, ρ) is totally bounded. Thus, for every ε > 0, we seek to produce a finite subset of

T , say Tε such that any t ∈ T is at ρ– distance less than ε for some member of Tε.

First, choose k so large that
∑∞

m=k+1 2−m < ε/4. Let x1, x2, . . . , xr be a finite subset

of ∪km=1Km = Kk such that it is ε/4-dense in Kk for the supremum norm. Such a

set exists by compactness of Kk in l∞(T ). Consider the subset A of Rr defined by:

{(x1(t), x2(t), . . . , xr(t)) : t ∈ T}. This is bounded in Rr (since Kk is compact in l∞(T )

it is bounded for the sup norm) and therefore totally bounded (as boundedness and total

boundedness are equivalent in Euclidean spaces). Thus, there exists a finite subset of A, say

{(x1(ti), x2(ti), . . . , xr(ti)) : 1 ≤ i ≤ N} where t1, t2, . . . , tN are points in T , that is ε/4 dense in

A with respect to the l∞ norm on Rr. Let Tε = {t1, t2, . . . , tN}. We seek to show that this set is

ε-dense in T . To this end, for any t ∈ T , find tl ∈ Tε such that max1≤i≤r |xi(tl) − xi(t)| < ε/4.

For m ≤ k, consider ρm(t, tl) = supx∈Km
|x(t) − x(tl)|. For any x ∈ Km, we can find xj such

that ‖x − xj‖T < ε/4. Then |x(t) − x(tl)| ≤ 2‖x − xj‖ + |xj(t) − xj(tl)| < 3 ε/4. It follows that

ρm(t, tl) ≤ 3 ε/4 for m ≤ k. Now, by the choice of k and the definition of ρ, it follows readily that

ρ(t, tl) < ε. Thus, it has been shown that (T, ρ) is totally bounded.

We next show that every x ∈ K is uniformly continuous with respect to ρ: given ε > 0,

we need to produce a δ > 0 such that ρ(s, t) < δ would imply |x(s) − x(t)| < ε.

Without loss of generality, let ε < 1. Since x ∈ K, x ∈ Km for some m ≥ 1. Now,

ρ(s, t) ≥
∑∞

j=m 2−j (1 ∧ ρj(s, t)) ≥
∑∞

j=m 2−j (1 ∧ ρm(s, t)), since ρj(s, t) increases with j (owing

to the fact that the Kj ’s are increasing sets). It follows that: 1 ∧ ρm(s, t) ≤ 2m−1 ρ(s, t). Let

δ = ε/2m−1. Then ρ(s, t) < δ implies that ρm(s, t) < ε which, in turn, implies that |x(s)−x(t)| < ε,

establishing uniform continuity of x.
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Since PX(K) = 1, the identity map on (l∞(T ),B, PX) yields a version of X, say X̃, with almost

all its sample paths in K and hence in Cu(T, ρ).

(IF part) The total boundedness of (T, ρ) in conjunction with the fact that almost all sample

paths of X are ρ-uniformly continuous immediately implies that the process X almost surely has

bounded sample paths. We can clearly assume that all sample paths are uniformly continuous by

redefining X on the set of ω’s where uniform ρ–continuity is violated to be the identically zero

function. This does not change the finite dimensional distributions of X. We continue to use X for

this tweaked version. Now, consider X as a map from its domain to the space Cu(T, ρ) equipped

with its Borel σ-field with respect to the uniform metric. For k ∈ N and (t1, t2, . . . , tk) ∈ T k, let

the projection operator πt1,t2,...,tk(x) ≡ (x(t1), x(t2), . . . , x(tk)). Consider the class of subsets of the

Borel σ-field on Cu(T, ρ) given by Π ≡ {π−1
t1,t2,...,tk

(B) : B ∈ BRk , k ∈ N}. The inverse images of

these sets under the map X are measurable in the probability space on which X is defined since,

by assumption, each X(t) is a (measuable) random variable. Since Π generates the Borel σ-field

on Cu(T, ρ), this implies that X is a Borel measurable map into Cu(T, ρ). The induced probability

measure PX on the Borel subsets of Cu(T, ρ) is tight by Ulam’s theorem, since Cu(T, ρ) is complete

and separable. If we now consider X as a map into the larger space l∞(T ) equipped with the

Borel σ-field with respect to the sup metric, it continues to induce a tight measure in this space,

since compactness of a subset of Cu(T, ρ) implies its compactness as a subset of l∞(T ). 2

Remark: Note that though Π generates the Borel σ-field on Cu(T, ρ), it does not generate

the Borel sigma-field in l∞(T ), this being much larger. Measurability of all finite dimensional

marginals of an arbitrary random map (from some probability space) assuming values in l∞(T )

therefore does not necessarily imply measurability of the map itself.

Our next theorem characterizes weak convergence of a sequence of stochastic processes to a tight

Borel measurable random element assuming values in l∞(T ).

Theorem 3.1 Let {Xn} be a sequence of sample-bounded stochastic processes assuming values in

l∞(T ). The following are equivalent:

(1): All finite dimensional distributions of the sample-bounded stochastic processes converge

in law and there exists a pseudo-metric ρ on T such that: (1) (T, ρ) is totally bounded, and, (2)

The processes Xn are asymptotically ρ–equicontinuous in probability, i.e: for every ε > 0,

lim
δ→0

lim sup
n→∞

P ? { sup
ρ(s,t)<δ

|Xn(s)−Xn(t)| > ε} = 0 .
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(2): There exists a process X with tight Borel probability distribution in l∞(T ) such that Xn ⇒ X

in the space l∞(T ).

Furthermore, if (1) holds, then the process X in (2) – this being completely determined by

the limiting finite dimensional distributions of {Xn} – has a version with sample paths in Cu(T, ρ):

the subspace of l∞(T ) that comprises all functions that are uniformly continuous with respect to

the semimetric ρ. On the other hand, if X in (2) has sample functions in Cu(T, γ) for some

pseudo-metric γ for which (T, γ) is totally bounded, then (1) holds with γ taking the role of the

pseudo-metric ρ.

Proof: Assume that (1) holds. Since (T, ρ) is totally bounded, we can find a countably ρ-dense

subset of T . Call this T∞, and let Tk be a sequence of subsets of T∞ that increase to T∞. If

{t1, t2, . . .} is a numbering of T∞, we can take Tk to be {t1, t2, . . . , tk}. The limit distributions of

the processes Xn are consistent and by the Kolmogorov consistency theorem, we can construct a

stochastic process (a collection of random variables) {X(t) : t ∈ T} defined on some (Ω,F ,P) such

that, for each (s1, s2, . . . , sm) ∈ Tm, (X(s1), X(s2), . . . , X(sm)) is distributed like νs1,s2,...,sm , this

being the limit distribution of (Xn(s1), Xn(s2), . . . , Xn(sm)), as n→∞. Now, note that:

P ( max
ρ(s,t)≤δ;s,t∈Tk

|X(s)−X(t)| > ε) ≤ lim inf
n→∞

P ( max
ρ(s,t)≤δ;s,t∈Tk

|Xn(s)−Xn(t)| > ε)

≤ lim inf
n→∞

P ( sup
ρ(s,t)≤δ;s,t∈T∞

|Xn(s)−Xn(t)| > ε) ,

where the first inequality is a direct consequence of the portmanteau theorem for finite

dimensional random variables. Next, letting Vk = maxρ(s,t)≤δ;s,t∈Tk
|X(s) − X(t)| and V∞ =

supρ(s,t)≤δ;s,t∈T∞ |X(s) − X(t)|, we see that Vk increases almost surely to V∞. Thus, P(V∞ >

ε) ≤ P(∪k{Vk > ε}) and this latter probability is given by limk→∞ P(Vk > ε). It follows that:

P ( sup
ρ(s,t)≤δ;s,t∈T∞

|X(s)−X(t)| > ε) ≤ lim
k→∞

P ( max
ρ(s,t)≤δ;s,t∈Tk

|X(s)−X(t)| > ε)

≤ lim inf
n→∞

P ( sup
ρ(s,t)≤δ;s,t∈T∞

|Xn(s)−Xn(t)| > ε) ,

using the first display. Now, using the asymptotic equicontinuity condition, one readily obtains a

sequence δm decreasing to 0, such that,

P ( sup
ρ(s,t)≤δm;s,t∈T∞

|X(s)−X(t)| > ε) ≤ 2−m .

It follows from the first Borel-Cantelli lemma that: {ω : supρ(s,t)≤δm,s,t∈T∞ |X(s) − X(t)| ≤
ε,∀ sufficiently large m} has P–probability 1. Call this set Cε. Then C ≡

⋂∞
m=1 C1/m also has
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P-probability one and the restriction of X to T∞ is ρ uniformly continuous on this set. Since T∞
is ρ–dense in T , we can extend X, by continuity, to the entire set T , on the event C. This gives

a stochastic process, say X̃, defined on T (take X̃ to be the extension of X on C and to be the

identically 0 function on its complement) that has ρ uniformly continuous sample paths. (Check

that the process X̃ is well–defined and that uniform continuity is preserved.) At this point, we

cannot say that X̃ is a version of X, i.e. their finite dimensional marginals coincide. However, by

Proposition 0 at the beginning of this section, X̃ induces a tight Borel measure on l∞(T ) (and

the measure concentrates on a separable subspace of l∞(T ): namely the subspace of ρ uniformly

continuous functions on T ).

We next show that Xn converges in distribution to X̃, subsequently denoted by X in an

abuse of notation, by proving that for any bounded continuous function H : l∞(T ) → R,

E?(H(Xn)) → E(H(X)). Once this is accomplished, it follows that the new X, i.e. X̃ that we

constructed above, is a version of the old X, since convergence in l∞(T ) imples convergence of

all finite–dimensional marginals. Our approach follows Wellner’s Torgnon notes and should be

contrasted with the approach in Theorem 10.2 of Pollard’s monograph which uses techniques

involving almost sure representations. The following fact plays a central role.

Fact: if H : l∞(T ) → R is bounded and continuous, and K ⊂ l∞(T ) is compact, then for every

ε > 0, there exists δ > 0 such that: if x ∈ K and ‖x− y‖T < δ, then |H(x)−H(y)| < ε.

The main idea rests on approximating the processes Xn by what we call δ-discrete approximations:

discrete processes assuming finitely many values for each ω but on a sufficiently fine partition

indexed by a positive number δ. Let Xn,δ denote the δ-discrete approximation to Xn and Xδ, the

corresponding approximation to X. Then,

|E?H(Xn)− EH(X)|

≤ |E?H(Xn)− EH(Xn,δ)|+ |EH(Xn,δ)− EH(Xδ)|+ |EH(Xδ)− EH(X)|

≡ In,δ + IIn,δ + IIIn,δ .

In what follows, we let δ go to 0 along a countable set. So, consider a sequence δm that goes to

0. We next show that limδm→0 lim supn→∞ In,δm = 0 and that the same holds true for IIn,δm and

IIIn,δm . It then follows that |E?H(Xn)−EH(X)| goes to 0. The middle term IIn,δm is the easiest

to deal with while the remaining terms need more work. Before we proceed further, we need to

define the discrete approximating processes. By total-boundedness of (T, ρ), for every δ > 0, there

exists a δ-net, t1, t2, . . . , tn(δ), such that every t ∈ T satisfies ρ(t, tj) < δ for some tj (depending on
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t). Choose and fix such a tj for each t and denote it as πδ(t). Then the δ-discrete approximation

to Xn is defined as: Xn,δ(t) = Xn(πδ(t)). Similarly define Xδ(t). Note that these are measurable

processes. Now, by the finite dimensional convergence of Xn to X, it follows that

Xn,δ → Xδ in the space l∞(T ), for every fixed δ > 0. This can be proved, for example,

by invoking the Skorohod representation for random vectors and is left as an exercise. Thus,

IIn,δm goes to 0 for every δm, as n→∞, and it follows trivially that limδm→0 lim supn→∞ In,δm = 0.

The uniform continuity of the sample paths of X implies that limδm→0 ‖X − Xδm‖T = 0,

almost surely. We next show that limδm→0 IIIn,δm = 0 (note that IIIn,δ does not depend on n, so

the n in the subscript is really redundant). Since Xδ,m converges almost surely to X in the metric

on l∞(T ) and H is a bounded continuous function, the real-valued random variables H(Xδ,m)

converge a.s. to H(X). The boundedness of H then allows the DCT to be applied yielding that

EH(Xδ,m) converges to EH(X) as m→∞.

Finally, to show that limδm→0 lim supn→∞ In,δm = 0, we choose ε, τ and K as in the above

paragraph. Let Kτ/2 be the τ/2 open neighborhood of the set K for the uniform metric. Then we

have:

|E?H(Xn)− EH(Xn,δm)| ≤ 2 ‖H‖∞ {P ?(‖Xn −Xn,δm‖T ≥ τ/2) + P (Xn,δm ∈ Kc
τ/2)}

+2 sup {|H(x)−H(y)| : x ∈ K, ‖x− y‖T < τ} .

To see this, note that if ‖Xn − Xn,δm | < τ/2 and Xn,δm ∈ Kτ/2, then there exists x0 ∈ K

with ‖x0 − Xn,δm‖T < τ/2 < τ and therefore |H(x0) − H(Xn,δm)| ≤ sup {|H(x) − H(y)| :

x ∈ K, ‖x − y‖T < τ}. ALso, ‖x0 − Xn‖T < τ by the triangle inequality, whence

|H(x0) − H(Xn)| ≤ sup {|H(x) − H(y)| : x ∈ K, ‖x − y‖T < τ}. By our choice of τ , the

second term on the right side of the above display is no larger than 2ε. We next take care

of the first term. By the asymptotic equicontinuity condition, for all sufficiently large m, and

therefore sufficiently small δm, lim supn→0∞ P ?(‖Xn − Xn,δm‖T ≥ τ/2) ≤ ε for all sufficiently

large m. Finally, by the Portmanteau Theorem lim supn→∞ P (Xn,δm ∈ Kc
τ/2) ≤ P (Xδm ∈ Kc

τ/2).

Now, lim supδm→0 P (Xδm ∈ Kc
τ/2) ≤ P (X ∈ Kc

τ/2) ≤ P (X ∈ Kc) < ε, showing that

lim supδm→0 lim supn→∞ P (Xn,δm ∈ Kc
τ/2) < ε. Since ε > 0 is arbitrary, it follows that

limδm→0 lim supn→∞ In,δm = 0.

The converse part of the proposition can be deduced, for example, by using the representation

11



theorem. Since the law of X induces a tight Borel probability measure on l∞(T ), by Proposition

0, there exists a pseudo-metric ρ such that (T, ρ) is totally bounded and X assumes values (with

probability 1) in the space of all uniformly ρ-continuous functions on T equipped with the uniform

metric which is a separable subspace of l∞(T ). By the representation theorem above, we can

construct random elements X̃n and a tight Borel measurable random element X̃ with the same

distribution as X on a common probability space (Ω̃, Ã, P̃). Since ‖X̃n(ω̃) − X̃(ω̃)‖ ≤ δ̃n(ω̃) → 0,

it follows trivially that {X̃n(ti)}ki=1 →a.s. {X̃(ti)}ki=1. But {X̃n(ti)}ki=1 and {X̃(ti)}ki=1 have

the same distributions as {Xn(ti)}ki=1 and {X(ti)}ki=1 respectively, showing the convergence of

finite-dimensional distributions. Next, consider

P ?( sup
ρ(s,t)≤δ

|Xn(s)−Xn(t)| > ε) = P̃?( sup
ρ(s,t)≤δ

|X̃n(s)− X̃n(t)| > ε) . (? ?)

Now,

sup
ρ(s,t)≤δ

|X̃n(s)− X̃n(t)| ≤ 2 ‖X̃n − X̃‖T + sup
ρ(s,t)≤δ

|X̃(s)− X̃(t)| .

Thus, P̃ ?(supρ(s,t)≤δ |X̃n(s)− X̃n(t)| > ε) is no larger than:

P̃?(‖X̃n − X̃‖T > ε/4) + P̃( sup
ρ(s,t)≤δ

|X̃(s)− X̃(t)| > ε/2) .

Since P̃(δn(ω̃) > ε/4)→ 0, it follows that limδ→0 lim supn→∞ P̃?(‖X̃n − X̃‖T > ε/4) = 0. Also, by

the almost sure ρ-uniform-continuity of the sample paths of X̃, limδ→0 P̃ (supρ(s,t)≤δ |X̃(s)−X̃(t)| >
ε/2) = 0. The asymptotic equicontinuity condition now follows from (? ?) above. 2

Remark: The case when X is a Gaussian process in l∞(T ) is of special interest as this is

the case that arises repeatedly in empirical process applications. Formally, a stochastic process

X in l∞(T ) is called Gaussian if for each (t1, t2, . . . , tk), τi ∈ T, k ∈ N ), the random vector

(X(t1), X(t2), . . . , X(tk)) is a multivariate normal random variable. Consider, a family of semi-

metrics on T given by ρp(s, t) = E(|X(s) − X(t)|p)1/p∨1. The following result is from Page 41 of

van der Vaart and Wellner:

A (Borel measurable) Gaussian process X in l∞(T ) is tight if and only if (T, ρp) is totally bounded

and almost all paths t 7→ X(t, ω) are uniformly ρp-continuous for some p and then for all p.

In view of the above theorem, we can therefore restrict ourselves to the ρp semimetrics for processes

that have tight Gaussian limits. Typically, the ρ2 semimetric is used in the setting of empirical

process theory: this is just the L2 distance between X(s) and X(t). For an illuminating discussion
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of the role of the ρp semimetrics, we refer the reader to the discussion on pages 39–41 of van der

Vaart and Wellner. The following corollary is immediate.

Corollary: Let F be a class of real-valued measurable functions on (X ,A). Then the

following are equivalent:

(a) F is P–Donsker: Gn ⇒ G in l∞(F) where G is a Borel-measurable tight random element

taking values in l∞(F) with finite-dimensional Gaussian marginals.

(b)(F , ρ2) (where ρ2(f, g) = {E(G(f)−G(g))2}1/2 ≡ {Var(f(X1)− g(X1))}1/2) is totally bounded

and Gn is asymptotically equicontinuous with respect to ρ2 in probability; i.e:

lim
δ→0

lim sup
n→∞

P ?{ sup
f,g∈F :ρ2(f,g)<δ

|Gn(f)−Gn(g)| > ε} = 0 ,

for every given ε > 0.

4 Problems

• 1. Prove the Fact that was crucially used to establish that (A) implies (B) in the proof of

Theorem 3.1.

• 2. Show that Cu(T, ρ), the class of ρ-uniformly-continuous functions from T to R, where ρ

is a pseudometric on T with respect to which it is completely bounded is a complete and

separable subspace of l∞(T ).

• 3. Prove the claim in bold letters on the convergence of Xn,δ to Xδ (in the proof of Theorem

3.1).

• 4. A random variable X is said to be weak L2 if x2 P (|X| > x) → 0 as x → ∞. Show that

for such an X, E(|X|r) <∞ for all r < 2.
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