Statistics 426: Final Exam

Moulinath Banerjee

April 28, 2004

Announcement: The final exam carries 80 points. Half of what you score contributes to your grade in the course.

- (1) . (a) Let Z_1, Z_2, Z_3 be i.i.d. N(0,1) random variables. Let $R = \sqrt{Z_1^2 + Z_2^2 + Z_3^2}$. Find the density function of R. (Hint: Can you write down the density function of R^2 ?)
 - (b) Suppose that $X \sim \Gamma(\alpha, \lambda)$ and $Y \sim \Gamma(\beta, \lambda)$ where $\alpha, \beta, \lambda > 0$. Let

$$U = X + Y$$
 and $V = \frac{X}{X + Y}$.

(i) Show that the joint density of (X, Y) is

$$f(x,y) = \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha_1)\,\Gamma(\alpha_2)} \, e^{-\lambda\,(x+y)} \, x^{\alpha-1} \, y^{\beta-1} \, , \ x > 0, y > 0 \, .$$

(ii) Compute the joint density of U and V. Deduce that they are independent and write down their marginal densities.

(c) Let X be a random variable with distribution function F(x). Let f(x) be the density function of X. Evaluate $\int_{-\infty}^{\infty} F(x) f(x) dx$. (Hint: How is F(X) distributed?) (5 + 10 + 5 = 20 points)

(2) . (a) Consider two groups of patients, say Group A and Group B. The number of patients in each of these groups is 50. Group A patients were on a blood pressure drug for 4 weeks while Group B patients were on placebo. For each patient the systolic blood pressure has been recorded. We denote the measurements for Group A patients by X_1, X_2, \ldots, X_{50} and the measurements for Group B patients by Y_1, Y_2, \ldots, Y_{50} .

Under appropriate conditions, it is reasonable to think of the X_i 's as a random sample from a $N(\mu_1, \sigma^2)$ and the Y_i 's as a random sample from a $N(\mu_2, \sigma^2)$ population. Also, the two populations may be assumed to be independent.

Describe how you construct a confidence interval for the difference in the mean blood pressure for these two groups, based on the above data.

Now suppose that you have been provided with the following statistics:

$$\overline{X} = 140, \ \overline{Y} = 150, \ \sum_{i=1}^{50} (X_i - \overline{X})^2 = 5250 \ \text{and} \ \sum_{i=1}^{50} (Y_i - \overline{Y})^2 = 4800.$$

What is the confidence set for the mean difference in blood pressure?

(b) Let X be a random variable following a $\Gamma(4, \lambda)$ distribution. Find a level $1 - \alpha$ confidence interval for λ .

(c) Let X_1, X_2, \ldots, X_5 be i.i.d. observations from the uniform distribution on [a, b] where a < b are unknown quantities. Consider the following postulated model for the data:

$$a = \theta, b = \theta + 1$$
 for some θ .

Let the observed values of the X_i 's be (-3, -2.3, -3.2, -2.8, -1). Would you trust the postulated model based on the above data? (10 + 5 + 5 = 20 points)

(3) (a) Consider random variables Y_1, Y_2, \ldots, Y_n where

$$Y_i = \beta W_i + \epsilon_i \,.$$

Here W_1, W_2, \ldots, W_n are fixed constants and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are i.i.d. $N(0, \sigma^2)$ random variables. Assume that σ^2 is known. Thus, the only unknown parameter is β .

(i) Show that the joint density of Y_1, Y_2, \ldots, Y_n is

$$p(\underline{Y},\beta) = \left(\frac{1}{2\pi\sigma^2}\right)^{n/2} \exp\left[-\frac{\sum_{i=1}^n (Y_i - \beta W_i)^2}{2\sigma^2}\right]$$

(ii) Compute $\hat{\beta}$, the MLE of β . Show that it is normally distributed with mean equal to β . Also find its variance.

(iii) The score function and its derivative are defined in the usual way as,

$$\dot{l}(\underline{Y},\beta) = \frac{\partial}{\partial\beta} \log p(\underline{Y},\beta) \text{ and } \ddot{l}(\underline{Y},\beta) = \frac{\partial^2}{\partial\beta^2} \log p(\underline{Y},\beta).$$

Compute the information $I(\beta) = E(\dot{l}^2(\underline{Y},\beta)) = -E(\ddot{l}(\underline{Y},\beta)).$

(iv) How does the variance of $\hat{\beta}$ compare to the information bound for unbiased estimators of β in this model? Is $\hat{\beta}$ the best unbiased estimator of β ?

(b) Decide whether the following statements are true or false.

(i) The variance of the best unbiased estimator of a parameter is always equal to the information bound.

(ii) The MLE is always unbiased for the parameter. ((3 + 5 + 4 + 3) + 5 = 20 points.)

(4) Let X_1, X_2, \ldots, X_n be i.i.d. random variables with common distribution $\text{Exp}(1/\beta)$ where $\beta > 0$ is the parameter of interest. Thus the common density function is:

$$f(x,\beta) = \frac{1}{\beta} \exp(-x/\beta), \ x > 0.$$

- (a) Find $\mu_1 = E(X_1)$ and hence find a MOM estimate of β . Call this $\hat{\beta}_{MOM}$.
- (b) Find the MLE of β . How are $\hat{\beta}_{MOM}$ and the MLE related?
- (c) Show that

$$\sqrt{n} \left(\hat{\beta}_{MOM} - \beta \right) \rightarrow_d N(0, \beta^2).$$

(d) Find an appropriate function g such that

$$\sqrt{n} \left(g(\beta_{MOM}) - g(\beta) \right) \rightarrow_d N(0,1) .$$

Hence find an approximate level $1 - \alpha$ confidence interval for β . (4 + 4 + 5 + 7 = 20 points)