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A parametric model is a family of probability distributions P, such that there exists some
(open) subset of a finite dimensional Euclidean space, say Θ, such that P can be written as
{Pθ : θ ∈ Θ ⊂ Rk}. In other words, we can associate each distribution in P with a θ ∈ Θ. When
this tagging/correspondence is one-one, we say that the parameter is identifiable; in other words,
the parameter uniquely specifies the distribution. For meaningful statistical inference, this is
usually a requirement.

In what follows, identifiability will be implicitly assumed. Note that we are really interested in
the class of probability distributions (this may be our postulated model for observed data) and
not the parameter space itself. So what does a parametrization buy us? For meaningful inference,
the parameter describes an integral feature of the probability distribution it is associated with,
so that knowledge about the parameter translates easily to knowledge about the features of the
distribution. Hence, to obtain meaningful results, one requires adequate regularity conditions
that govern the behavior of the distribution functions or density functions in terms of θ, in a
mathematically tractable manner. We will usually write parametric models as {p(x, θ) : θ ∈ Θ}
where p(x, θ) is the density of Pθ with respect to some dominating measure µ, and x assumes
values in the range space of the random variable/vector. The log-density log p(x, θ) is denoted by
l(x, θ).

Estimation procedures for θ can be many and varied. A ubiquitous method is maximum
likelihood, which, as you know has many desirable properties. Under appropriate regularity
conditions on the parametric model, it is consistent for θ, and asymptotically normal, with an
asymptotic variance that is the best possible among the class of so-called “regular” estimators.
We will talk about “regularity” in some detail later. Roughly, it requires fairly nasty scenarios to
render maximum likelihood impotent. Furthermore, the likelihood ratio statistic for testing θ = θ0

is asymptotically χ2, so that confidence sets for θ may be obtained by inversion. Likelihood ratio
based confidence sets in many cases have better finite sample properties than their Wald type
counterparts based on the asymptotic distribution of the MLE’s, since they are more data-driven
and adapt nicely to the skewness in the underlying distribution.
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The regularity conditions under which maximum likelihood works well can be found in any
standard text (see, for example, Chapter 7 of Lehmann (Elements of Large Sample Theory) or
Chapter 11 of Keener’s notes or Chapter 4 of Wellner’s notes). The smoothness of the log-density
in θ is a key-requirement. Before, we proceed further, a brief discussion on the term “maximum
likelihood estimator” is warranted. Recall that the MLE θ̂n is defined as:

θ̂n = argmaxθ∈Θ

n∑

i=1

l(Xi, θ) ≡ argmaxθinΘ ln(θ; X = (X1, X2, . . . , Xn))

Things are ideal when this exists, is unique and is an interior point of the parameter space, in which
case it also satisfies the “score equation”

1
n

n∑

i=1

l̇(Xi, θ) = 0 .

Here, l̇(x, θ), the score function is simply (∂/∂ θ) l(x, θ), written as a column vector. However, it is
possible that the MLE may not be unique; furthermore there may be local solutions to the score
equation that may not globally maximize the log-likelihood function ln(θ, X). However, under
appropriate regularity conditions (see Page 5 of Chapter 4 of Wellner’s notes), it can be shown
that with probability converging to 1, there exist solutions θ̃n of the score-equations, such that θ̃n

converges in probability to θ0, when θ0 is true. Henceforth, when we refer to the MLE θ̂n, we will
mean such a consistent sequence of solutions of the score-equation.

0.1 Likelihood ratio, score and Wald statistics

The main result on asymptotic normality of θ̂n, the MLE of θ can be stated as:
√

n(θ̂n − θ0) →d N(0, I(θ0)−1) ,

where I(θ0) is the Fisher Information matrix for θ at the point θ0 and p(x, θ0) is the density from
which the i.i.d. observations X1, X2, . . . , Xn are generated. Recall that

I(θ) = E
[
l̇(X, θ) l̇(X, θ)T

]
= −Eθ (l̈(X, θ)) ,

where l̈(X, θ) = (∂2/∂ θ ∂ θT ) l(X, θ). Here X generically denotes a random variable that follows
density p(x, θ).

Furthermore, we can consider different tests of hypothesis for the parameter θ. Thus, we
seek to test H0 : θ = θ0, based on three different statistics. These are:

(a) Likelihood ratio statistic: This is given by:

2 log λn = 2

(
n∑

i=1

l(Xi, θ̂n)−
n∑

i=1

l(Xi, θ0)

)
.
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(b) Score statistic: Set Zn = n−1/2
∑n

i=1 l̇(Xi, θ0). Define the score statistic as, Rn =
ZT

n I−1(θ0) Zn. Another version of the score statistic is obtained by replacing I(θ0) by I(θ̂n)
above, or even, În(θ̂n), where În(θ) = −n−1

∑n
i=1 l̈(Xi, θ).

(c) Wald statistic: The Wald statistic measures the (square of the) distance between the
estimate θ̂n and the hypothesized parameter θ0, with respect to an appropriate metric. We
define it as: Wn = n(θ̂n − θ0)T I(θ0) (θ̂n − θ0). As before I(θ0) can be replaced by În(θ̂n).

Proposition: When the null hypothesis H0 : θ = θ0 holds true, all the three displayed statistics
above are asymptotically distributed as a χ2

k random variable, where k is the number of dimensions
of θ.

The proofs of (b) and (c) are left as homework. The proof of (a) will be sketched below.

We first indicate how the asymptotic normality of θ̂n comes about. This is a proof-sketch
but contains the essentials of the argument. For technical rigour, see any standard text (Chapter
4 of Wellner’s notes, for example). Also, the proof below is for one–dimensional θ; the extension
to multidimensional θ is routine, albeit at the cost of more complicated notation.

Observe that
∑n

i=1 l̇(Xi, θ̂n) = 0. A standard Taylor series expansion yields that

n∑

i=1

l̇(Xi, θ0) + (θ̂n − θ0)
n∑

i=1

l̈(Xi, θ0) +
(θ̂n − θ0)2

2

n∑

i=1

l′′′(Xi, θ
?
n) = 0 ,

for a random point θ?
n that lies between θ̂n and θ0. Some rearrangement yields

−√n(θ̂n − θ0)
1
n

n∑

i=1

l̈(Xi, θ0) =
1√
n

n∑

i=1

l̇(Xi, θ0) +
√

n (θ̂n − θ0)2

2n

n∑

i=1

l′′′(Xi, θ
?
n) (0.1)

whence

√
n(θ̂n − θ0)

[
− 1

n

n∑

i=1

l̈(Xi, θ0)− (θ̂n − θ0)
1
2n

n∑

i=1

l′′′(Xi, θ
?
n)

]
=

1√
n

n∑

i=1

l̇(Xi, θ0) . (0.2)

A typical assumption is a boundedness condition on the third derivative of l(x, θ) with respect
to θ. More formally, one assumes that | l′′′(x, θ) |≤ M(x) for all θ in some neighborhood of θ0,
for almost every x, with Eθ0(M(X)) < ∞. This, in conjunction with (0.2) and the consistency
of θ̂n for θ0 implies that

√
n (θ̂n − θ0) is Op(1) (WHY?). By the strong law of large numbers

−n−1
∑n

i=1 l̈(Xi, θ0) converges almost surely to I(θ0). It follows now from (0.1) that:

I(θ0)
√

n(θ̂n − θ0) =
1√
n

n∑

i=1

l̇(Xi, θ0) + op(1) .
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Another typical assumption is that Eθ l̇(X, θ) = 0 for all θ (this happens in models where one can
differentiate the density under the integral sign, which is a key assumption for the Cramer-Rao
inequality). The CLT now implies that:

I(θ0)
√

n(θ̂n − θ0) →d N(0, I(θ0))

whence √
n(θ̂n − θ0) →d N(0, I(θ0)−1) .

Furthermore, θ̂n has an asymptotically linear representation as:

√
n(θ̂n − θ0) =

1√
n

n∑

i=1

I(θ0)−1 l̇(Xi, θ0) + op(1) .

We now establish the limit distribution of the likelihood ratio statistic. This argument also relies
on Taylor expansion. The likelihood ratio statistic, recall, is given by:

2 log λn = 2

[
n∑

i=1

l(Xi, θ̂n)−
n∑

i=1

l(Xi, θ0)

]
.

Expanding the second term within square brackets around θ̂n, and using the fact that∑n
i=1 l̇(Xi, θ̂n) = 0, we get:

2 log λn = −(θ̂n − θ0)2
n∑

i=1

l̈(Xi, θ̂n) +
(θ̂n − θ0)3

3

n∑

i=1

l′′′(Xi, θ
?
n)

for some intermediate point between θ̂n and θ0. Once again, the term involving the third derivative
is op(1) (by the boundedness condition on the third derivative in terms of the function M ; show
this rigorously), whence

2 log λn = −(θ̂n − θ0)2
n∑

i=1

l̈(Xi, θ0) + op(1) .

I want you to justify this last step too (Hint: a Taylor expansion will do it). Conclude that the
random variable on the left side of the above display converges to χ2

1.

Food for thought: The above derivations required a Taylor expansion up to the third
order; we needed to do this in order to exploit the boundedness assumption on the third derivative.
However, it is possible to get away with an expansion up to the second order, without any
assumptions on the third derivative of the log-likelihood, provided we make some assumptions on
the second derivative. Suppose that for some neighborhood Θ0 of θ0 we have:

supθ∈Θ0
| n−1

n∑

i=1

l̈(Xi, θ)− Eθ0 l̈(X1, θ) |→Pθ0
a.s. 0 .
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This is a version of the strong law of large numbers holding uniformly over a class of functions
{l̈(X, θ) : θ ∈ Θ0}. If this happens, the class of functions is referred to as a Glivenko-Cantelli class.
Glivenko-Cantelli functions play an important role in the modern theory of empirical processes,
and consequently, in modern statistical theory.

Can you reconstruct the proofs of the asymptotic normality of θ̂ and the limit distribution
of the likelihood ratio statistic using the Glivenko-Cantelli phenomenon above? (Actually, the
almost sure convergence in the last display can be weakened to convergence in probability) This is
an exercise. Remember, we have forsaken all assumptions about the third derivative now, so you’ll
need play tricks on a Taylor series expansion up to the quadratic term.

0.2 Confidence sets for θ0

We indicate how large sample level 1−α confidence sets for θ0 can be constructed. The likelihood
ratio based confidence set is given by

{θ : 2 log λn(θ) ≤ qχ2
k,α} ,

where λn(θ) is the likelihood ratio for the data computed under the null hypothesis H0,θ (that
stipulates that the true data–generating parameter] is θ) and qχ2

k,α is the upper α’th quantile of the
χ2

k distribution. If p(x, θ) is log-concave in θ for almost every x (as happens with exponential family
models), then this is guaranteed to be an interval. (WHY?) On the other hand, the confidence set
based on the Wald statistic is given by:

{θ : n (θ̂n − θ)T In(θ̂n) (θ̂n − θ) ≤ qχ2
k,α} .

This is an ellipsoid centered at the MLE θ̂n and is necessarily convex. The In(θ̂n) can be replaced
by I(θ̂n) or I(θ) even; asymptotically these are all level 1−α confidence sets, though finite sample
properties will differ. When k = 1 this reduces to an interval centered around θ̂n and is given by

[θ̂n − n−1/2 zα/2

√
I(θ̂n), θ̂n + n−1/2 zα/2

√
I(θ̂n)] ,

where zα/2 is the upper α/2’th quantile of the standard normal distribution (VERIFY). This
is identical to the confidence interval that one derives using the asymptotic normality of θ̂n:√

n(θ̂n − θ0) →d N(0, I(θ0)−1) when θ0 is the data–generating parameter. Finally, letting
Zn(θ) ≡ n−1/2

∑n
i=1 l̇(Xi, θ), the confidence set based on the score–statistic is given by:

{θ : Zn(θ̂n)T I−1(θ̂n)Zn(θ̂n) ≤ qχ2
k,α} .

Of course I−1(θ̂n) can be replaced by Î−1
n (θ̂n).

Variance stabilizing transformations: Apart from the likelihood ratio based confidence
set, the construction of the others involves estimation of the information matrix (or its inverse),
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which typically introduces more variability into the confidence set. The problem gets trickier in
semiparametric models, where one has to contend with an infinite dimensional nuisance parameter,
in the presence of which inference on θ has to be made, and what needs to be estimated is an
efficient information matrix that involves projection operators onto infinite dimensional spaces,
thereby rendering the whole procedure computationally quite complex. This is why I (and
many others) like the likelihood ratio based method of inference, because it turns out to have
parameter–free limit distributions in many different statistical settings. This allows construction
of confidence sets without having to estimate asymptotic variances of estimators, which in my
book is an unmixed blessing. A significant body of my own research has centered around the use of
likelihood ratios in shape–restricted inference, and at least, in the context of estimating monotone
functions, we now know that the likelihood ratio statistic for testing pointwise hypotheses about
the monotone function does exhibit the same pleasing behavior, as in the parametric models of
our current discussion. The limit distribution is no longer a χ2

1 owing to certain basic differences
in the asymptotics involved, but nonetheless, nuisance parameters – those satans of inference–are
effectively exorcised. See for example, Banerjee and Wellner (2001) (Annals of Statistics), and
Banerjee (2004) (Tech. Report, 414, University of Michigan, Department of Statistics). But
enough digression, and enough of beating one’s own drum.

It turns out that for one dimensional θ there is often a somewhat different way of exorcising nuisance
parameters in the limit distribution, thereby facilitating the construction of confidence sets. This
is the method of variance stabilizing transformations. By the Delta Method, we know that for any
continuously differentiable function g from R to R,

√
n (g(θ̂n) − g(θ0)) →d N(0, g′(θ0)2 I(θ0)−1).

Now, the functional form for I(θ) is known in many parametric models. Our goal is to choose
g(θ) in such a way that the limiting variance g′(θ)2 I(θ)−1 is a constant – say, 1, without loss of
generality. This means that g′(θ) can be chosen either to be

√
I(θ) or −

√
I(θ); to keep things

simple, choose the first, whence g(θ) is simply the primitive of
√

I(θ). Of course, this whole
business really works in practice if the primitive has an analytic closed form expression. We now
have,

√
n(g(θ̂n) − g(θ)) →d N(0, 1), whence a level 1 − α large sample confidence set for g(θ) is

given by: [g(θ̂n) − n−1/2 zα/2, g(θ̂n + n−1/2 zα/2]. Since g is strictly increasing, transforming the
above C.I. by g−1 yields a level 1− α large sample C.I. for θ.

An illustration: We illustrate the above concepts for the Poisson distribution, along with
some numerical simulations. Consider i.i.d. data X1, X2, . . . , Xn from the Poisson distribution
with parameter θ, where θ is also the mean of the distribution. Thus:

p(x, θ) =
e−θ θx

x!
.

Here x = 0, 1, 2, . . . takes values in the space of non–negative integers. For this model,
l(x, θ) = −θ +x log θ +log x! whence l̇(x, θ) = −1+x/θ, and the score equation

∑n
i=1 l̇(Xi, θ) = 0

has the unique solution θ̂n = X (check!). This is indeed the MLE (the log–concavity of the
density implies uniqueness) and is strongly consistent for the parameter value θ by the strong law
of large numbers. For this model l̈(x, θ) = −x/θ2. Check that for this model In(θ̂n) = I(θ̂n) = 1/θ̂n.
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It is easy to check that the Glivenko-Cantelli property is satisfied for the class of functions
{l̈(x, θ) : θ ∈ (θ0 − ε, θ0 + ε)}; in other words,

supθ∈[θ0−ε,θ0+ε]

∣∣∣∣∣
1
n

n∑

i=1

(
−Xi

θ2

)
+

Eθ0(X)
θ2

∣∣∣∣∣ →Pθ0
a.s. 0 .

The left side of the above display is dominated by (θ0− ε)−2 | n−1
∑n

i=1 Xi − θ0 | which converges
to 0 almost surely by the usual strong law of large numbers. Hence, for this model, one could
Taylor–expand only up to the quadratic, in order to derive the asymptotics of the MLE and the
likelihood ratio statistic.

The information in this model is I(θ) = θ−1, and hence
√

n (θ̂n − θ) →d N(0, θ), which
also follows as a direct consequence of the CLT. The likelihood ratio statistic for testing θ = θ0 is
given by:

2 log λn ≡ 2

[
n∑

i=1

(Xi log θ̂n − θ̂n)−
n∑

i=1

(Xi log θ0 − θ0)

]
.

Based on this, the large sample level 1− α likelihood ratio based C.I. for θ is given by:
{

θ : n θ − log θ
n∑

i=1

Xi ≤
qχ2

1 α

2
+ n θ̂n − log θ̂n

n∑

i=1

Xi

}
.

This set can be obtained numerically either by bisection methods, or grid search.

For this model, Zn(θ) = n−1/2
∑n

i=1 (Xi/θ − 1). The score statistic leads to two different
kinds of confidence sets. One is based on the asymptotic pivot Zn(θ)T I−1(θ̂n) Zn(θ), the other
on Zn(θ)T I−1(θ)Zn(θ). Noting that I−1(θ) = θ, the two different kinds of confidence sets are
respectively obtained as: {

θ :
n θ̂n (θ̂n − θ)2

θ2
≤ qχ2

1,α

}

and {
θ :

n (θ̂n − θ)2

θ
≤ qχ2

1,α

}
.

The Wald statistic also leads to two different confidence sets for θ. Since, under parameter value
θ0, both n (θ̂n−θ0)2 I(θ0) and n (θ̂n−θ0)2 In(θ̂n) converge to a χ2

1 distribution, we get two different
confidence sets:

{θ : n (θ̂n − θ)2/θ̂n ≤ qχ2
1,α}

and
{θ : n (θ̂n − θ)2/θ ≤ qχ2

1,α} .

The second Wald–type confidence set and second score type confidence set coincide for this
model. There is nothing systemtatic here; it just works out that way in this example.
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Table 1: Coverage and average confidence interval length, Poisson data
LRT S1 S2 W VS

n C L C L C L C L C L
20 .953 .872 .943 1.087 .941 .889 .929 .873 .935 .869
30 .959 .711 .956 .817 .949 .720 .910 .710 .942 .710
50 .949 .553 .956 .598 .942 .557 .926 .554 .934 .553
100 .954 .390 .951 .406 .951 c .392 .948 .391 .954 .391
150 .950 .319 .951 .327 .948 .320 .942 .320 .950 .320
200 .942 .276 .937 .282 .935 .277 .943 .278 .938 .277

Last, but not the least, we consider the confidence set based on variance stablization in this
problem. Here I(θ) = 1/θ, so g′(θ) =

√
I(θ) = 1/

√
θ, hence g(θ) = 2

√
θ. This gives

[2
√

θ̂n − n−1/2 zα/2, 2
√

θ̂n + n−1/2 zα/2] ≡ [an, bn] as an asymptotic level 1 − α confidence set for
g(θ0), whence [a2

n/4, b2
n/4] (using the inverse transformation of g) gives the corresponding C.I. for θ0.

Numerical simulations comparing the different methods: For each value of n displayed in
Table 1, 1000 replicates from the distribution of (X1, X2, . . . , Xn) were generated, where the Xi’s
are i.i.d. Poisson(1). For each replicate, a 95% confidence interval using 5 different methods –
likelihood ratio, score statistic based (1’st kind), score statistic based (2’nd kind), Wald statistic
based (1’st kind) and variance stabilization based – were generated. The average lengths of
the different C.I’s (over the 1000 replicates) and the empirical coverage are displayed. Note the
improvement effected by variance stabilization (over the Wald type interval) especially for small
samples, and the overall pleasing behavior of the likelihood ratio based C.I’s.

0.3 Problems

(1) Repeat the above simulation exercise but with X1, X2, . . . , Xn i.i.d. Bernoulli(θ) for some θ
between 0 and 1. I advocate trying this for θ in the vicinity of 0.5 and also in the vicinity
of the boundaries, and reporting your conclusions for various sample sizes. You will need
to find an appropriate variance stablizing transformation for the Bernoulli variance in this
problem.

(2) One parameter full–rank exponential families: Consider a one parameter full rank
exponential family model nautrally parametrized. Denote the natural parameter by η. The
density can be written as:

q(x, η) = exp[η T (x)−B(η)]h(x) ,

with respect to an appropriate dominating measure, for a strictly convex function B that
is infinitely differentiable. The sufficient statistic is T (x), with Eη (T (X)) = B′(η) and
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Varη(T (X)) = B′′(η). Verify this using the fact that if W (X) has finite expectation, then
ψ(η) = Eη W (X) can be differentiated infinitely many times under the integral sign. Check
that the information in this model for η, say I(η) = B′′(η).

Given a sample X1, X2, . . . , Xn from such a density, show that the MLE θ̂n is the
unique solution to the score equation and is given by η̂n = H(T (X)), where H is the inverse
function of B′ and T (X) is n−1(T (X1) + . . . + T (Xn)). Use this to deduce consistency of
η̂ from first principles and establish that

√
n(η̂ − η) →d N(0, 1/B′′(η)). Also, from first

principles deduce that the likelihood ratio statistic for testing η = η0 converges to the χ2
1

distribution when the null hypothesis is indeed satisfied.

The above formulation includes normal (with known fixed variance), binomial and
poisson as special cases. Consider for example X1, X2, . . . , Xn i.i.d. Bernoulli(θ), where
0 < θ < 1 and θ is the probability of success in a single trial. Note that θ = Eθ(X1). However,
this is not the natural parametrization for this family. Identify the nautral parameter and
B for this family. Do the same for the Poisson, where X1, X2, . . . , Xn are i.i.d. Poisson(θ)
random variables, with θ denoting the expectation of the Poisson. The natural parameter
η, in either case, will be a strictly monotone function of the usual parameter θ (with the
function depending on the model).

(3) Unbiased estimators may not always exist (i) Show that there does not exist any
unbiased estimator of the odds ratio θ/(1− θ) based on i.i.d. data X1, X2, . . . , Xn following
Bernoulli(θ).

(ii) Let F denote a class of densities {f(x, θ) : θ > 0} with mean θ−1 and variance
θ−2, that satisifies the conditions of the information inequality. For what family is the Fisher
information I(θ) minimized over F?

(4) (i) Suppose that X1, X2, . . . , Xn are i.i.d. vectors with values in Rk, with E X1 = µ and
E(XT

1 X1) < ∞, so that Σ = E (X1 − µ) (X1 − µ)T is well-defined. Let g be a real–valued
function on Rk and suppose that g is continuously differentiable in a neighborhood of µ; thus
5 g exists and is continuous in a neighborhood of µ. Show then that g(Xn) is asymptotically
linear at µ, i.e.

√
n (g(Xn)− g(µ)) =

1√
n

n∑

i=1

ψ(Xi) + op(1) ,

for some function ψ(x) that you need to identify.

(ii) Show that in a regular parametric model, with θ0 denoting the true underlying
parameter and θ̂n denoting the MLE and q being a continuously differentiable map, q(θ̂n) is
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asymptotically linear, i.e.

√
n(q(θ̂n)− q(θ0)) = n−1/2

n∑

i=1

ψθ0(Xi) + op(1) ,

for some function ψθ0(·) that you need to identify.

4 Nonregular parametric models: A classic example of a nonregular parametric model
is the set of uniform distributions on (0, θ) where θ > 0. Consider i.i.d. observations
X1, X2, . . . , Xn from U(0, θ). It is well known (derive for yourself if not comfortable with
this fact) that the MLE of θ is X(n). However, unlike regular parametric models, X(n) is not
asymptotically normal. The following exercises reveal certain facts about X(n).

(a) Show that there exist sequences of constants {an} and {bn}, possibly depending
upon θ such that (X(n) − an)/bn converges to a limiting distribution. Identify the limit. Is
X(n) consistent for θ?

(b) Find the UMVUE of θ. Call this Tn. Compute the mean squared errors of Tn,
X(n) and Rn ≡ 2Xn as estimates of θ and comment on their relative behavior for fixed and
increasing n.

(c) Use both the exact and the limit distributions of X(n) to construct level 1 − α
confidence sets (exact and asymptotic respectively) for θ.

5 Exchangeability and conditional independence for Bernoulli random variables.
The history of this problem dates back to the 1700’s and originates according to Stigler in the
work of Bayes (see Chapter 3 on Inverse Probability by Stigler – The History of Statistics,
pages 122 – 131 for a detailed discussion).

Let X1, X2, . . . , be (a possibly infinite sequence of) random variables defined on a common
probability space. Call this sequence exchangeable if for all n and for all permutations Π of
{1, 2, . . . , n}, the joint distribution of (X1, X2, . . . , Xn) is the same as the joint distribution
of (XΠ(1), XΠ(2) . . . , XΠ(n)). Thus exchangeability amounts to the invariance of the joint
distribution under permutations of the data.

In addition to the above, suppose that each Xi is a Bernoulli random variable with
parameter pi.

(a) Show that the pi’s are all equal; in other words the random variables are identically
distributed.

(b) Let Θ be a random variable on (0, 1) with distribution denoted by G. Conditional on Θ,
generate X1, X2, . . . , as i.i.d. Bernoulli(θ). Show that the joint distribution of the Xi’s is
exchangeable. What is the common pi for all these Xi’s?
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(c) Here is a much stronger fact (the converse of (b)). Suppose we have a sequence
of exchangeable Bernoulli random variables X1, X2, . . . ,. Then there exists a random variable
Θ assuming values between 0 and 1, such that given Θ, X1, X2, . . . are all i.i.d. Bernoulli(θ).
Thus, infinite exchangeability amounts to conditional independence. This is essentially a
version of the De Finetti representation theorem. This part is not for credit, but if you’ve
already taken the 620’s you should give it a shot.

(d) Consider an infinite sequence of exchangeable Bernoulli random variables, X1, X2, . . . ,.
By (c), without loss of generality you can assume that these are conditionally independent
given some Θ, assuming values in (0,1). Suppose that you know that the chance that each
of the first n trials ends in a success is 1/n + 1 for any n, i.e.

P (X1 = 1, X2 = 1, . . . , Xn = 1) =
1

n + 1
, n = 1, 2, 3, . . . .

Show that this implies that for each 1 ≤ n < ∞,

P (k out of the first n trials are successes) ≡ P (Sn = k) =
1

n + 1
, k = 0, 1, . . . , n .

In the above display, Sn = X1 + X2 + . . . + Xn.

Hint: Can you say anything about the distribution of Θ in this problem?

(e) Now consider a finite sequence of exchangeable Bernoulli random variables X1, X2, . . . , XN

and assume that assume that,

P (X1 = 1, X2 = 1, . . . , Xn = 1) =
1

n + 1
, n = 1, 2, . . . , N .

Then Sn ≡ X1 + X2 + . . . + Xn, the number of successes in the first n trials has a discrete
uniform distribution for each n ≤ N ; i.e.

P (k out of the first n trials are successes) ≡ P (Sn = k) =
1

n + 1
, k = 0, 1, . . . , n .

The proof I have uses induction, but other proofs would be welcome. There is a subtle
difference between scenarios (d) and (e). In (e) we only have finitely many random variables
and therefore we cannot conclude that they are conditionally i.i.d. given some fixed Θ. The
De Finetti representation can only be invoked for an infinite sequence. The assertion in (d)
can be established using the distribution of Θ; in (e) the exchangeability hypothesis needs to
be used more fundamentally. Indeed, as (e) shows, the fact that the distribution of the total
number of successes Sn has a discrete uniform distribution is fundamentally a consequence
of exchangeability, rather than the De Finetti representation. While the result in (d) seems
to be well-known, the result in (e) does not seem to be. Thomas Richardson and myself
stumbled on this fact a few years ago. It does not seem substantial enough for a paper, but
certainly makes a very good homework problem.
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