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1 Lp spaces and Hilbert spaces

We first formally define Lp spaces. Consider a measure space (X ,A, µ), where µ is a (σ-finite)
measure. Let F be the set of all real–valued measurable functions defined on X . The space Lp(µ)
comprises that subset of functions of F that have finite p’th moments (here p ≥ 1). In other words:

Lp(µ) = {f ∈ F :
∫

| f(x) |p dµ(x) <∞} .

When the measure µ is a probability P , we obtain the class of all random variables on the probability
space, (X ,A, P ) that have finite p’th moments. This is a normed linear space over R with the norm
(length) of the vector f (this is called the Lp norm) being given by

‖f‖p =
(∫

| f(x) |p dµ(x)
)1/p

.

The above norm induces a metric d where d(f, g) = ‖f − g‖p. Note that d(f, g) = 0 if and only if
f = g a.e. µ, in which case we identify f with g. The Lp norm, like all worthy norms, satisfies the
triangle inequality:

‖f + g‖p ≤ ‖f‖p + ‖g‖p ;

this is precisely Minkowski’s inequality. For random variables X,Y defined on the same probability
space and having finite p’th moments, Minkowski’s inequality states:

E(| X + Y |p)1/p ≤ E(| X |p)1/p + E(| Y |p)1/p .

Minkowski’s inequality is a consequence of Hölder’s inequality which states that for measurable
real-valued functions f, g defined on X , we have:

|
∫

f(x) g(x) dµ(x) |≤
(∫

| f(x) |p dµ(x)
)1/p (∫

| g(x) |q dµ(x)
)1/q

.
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The space Lp(µ) is a Banach space for p ≥ 1 – this is a normed linear space that is complete – i.e.
in which every Cauchy sequence has a limit.

The notion of continuity for real valued functions defined on Lp(µ) is a natural extension
of the usual one for Euclidean spaces. A sequence of functions gn converges to a function g in
Lp(µ) if ‖gn− g‖p → 0. A real-valued function ψ defined on Lp(µ) is said to be continuous if ψ(gn)
converges to ψ(g) as a sequence of real numbers whenever gn converges to g in Lp(µ).

Let’s concretize to a specific example. Let X be the space of positive integers N , A be
the power set of N and µ be counting measure that assigns the cardinality of a subset of N as
its measure. The space Lp(µ) is then the space of all real valued sequences {x1, x2, . . .} that are
p’th power summable – i.e.

∑∞
i=1 | xi |p< ∞. Clearly all sequences that have only finitely many

non-zero entries satisfy this condition. This space is referred to as the lp space. The lp spaces are
infinite-dimensional spaces – i.e. these spaces do not have a finite basis.

Another crucial inequality, which in particular, implies that the function f 7→ ‖f‖p is a
continuous function from Lp(µ) to the reals is that

|‖h1‖p − ‖h2‖p| ≤ ‖h1 − h2‖p .

This is once again a consequence of the triangle inequality.

For p = 2, the space Lp(µ) has more geometric structure: it becomes a Hilbert space. We
introduce Hilbert spaces in some generality. A Hilbert space H is a normed linear (vector) space
(over the field R in the current discussion, though the general treatment requires the field to be
the field of complex numbers) that is complete (with respect to the metric topology induced by the
norm) and such that the norm arises from an inner product. The inner product 〈x, y〉 is a (bilinear)
map from H×H to R satisfying the following properties: (a) 〈αx+ β y, z〉 = α〈x, z〉+ β〈y, z〉, (b)
〈x, y〉 = 〈y, x〉, and (c) 〈x, x〉 = ‖x‖2. Note that properties (a) and (b) jointly imply linearity in
the second co-ordinate as well; i.e. 〈z, αx+ βy〉 = α 〈z, x〉+ β〈z, y〉. Hence bilinearity follows.

It is worthwhile here to recall the fundamental properties of a norm (on any normed linear
space). These are (a) ‖x‖ = 0 if and only if x = 0, (b) ‖αx‖ =| α | ‖x‖, for any scalar α, and (c)
‖x+ y‖ ≤ ‖x‖+ ‖y‖, the triangle inequality.

The Hilbert spaces that we will be most concerned will be L2 spaces, but this is not the
simplest example of this species. The simplest Hilbert spaces over R are the Euclidean spaces
Rk for any integer k. In Rk, the inner product is 〈x, y〉 =

∑k
i=1 xi yi = xT y(if we write x and

y as column vectors). Check that this inner product does induce the usual Euclidean norm.
Completeness of Rk with respect to the usual Euclidean metric follows as a direct consequence of
the fact that the real line is complete.

A fundamental relation in Hilbert spaces is the Cauchy-Schwarz inequality which states
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that:
| 〈x, y〉 |≤ ‖x‖ ‖y‖ .

Simple as this relation is, its ramifications are profound. How do we prove this? Assume without loss
of generality that neither x nor y is 0 (otherwise, the inequality is trivial). Observe that ‖x−α y‖2

is necessarily non-negative, for every real α. Expanding this in terms of the inner product, we find:

‖x‖2 − 2α 〈x, y〉+ α2 ‖y‖2 ≥ 0 .

This function is strictly convex in α and is uniquely minimized at α0 = 〈x, y〉/‖y‖2, as can be
checked by straightforward differentiation. Plugging in α0 for α must preserve the inequality above;
doing so, and simplifying leads to the fact that

〈x, y〉2 ≤ ‖x‖2 ‖y‖2 .

This implies the inequality.

The line of proof above admits a nice geometric intepretation that will prove useful in thinking
about inner products. Draw vectors x, y on the (R2) plane (emanating from the origin), and for
simplicity let them lie in the first quadrant (so that the angle θ between the two of them is an
acute angle). For each α you can draw the vector x−α y; it is then easy to see that the the length
of this vector (‖x − α y‖, with the norm here denoting the usual Euclidean norm) is minimized
for that α0 for which the vector x − α0 y is perpendicular to the vector α0 y (and α0 6= 0, unless
x = y). Now, by the proof above, α0 should be (x1 x2 + y1 y2)/(y2

1 + y2
2). Does this tally with what

analytical geometry tells us? We can use the Pythagoras’ theorem to verify. We have:

α2
0(y

2
1 + y2

2) + (x1 − α0 y1)2 + (x2 − α0 y2)2 = x2
1 + x2

2 ,

which on simplification gives:

−2α0 (x1 y1 + x2 y2) + 2α2
0(y

2
1 + y2

2) = 0 ,

and this yields:

α0 =
x1 y1 + x2 y2

y2
1 + y2

2

=
〈x, y〉
〈y, y〉2 .

Now, check (from definitions) that the cosine of the angle between x and y is:

cos θ =
α0 ‖y‖
‖x‖ =

〈x, y〉
‖x‖ ‖y‖ .

But since cos θ in absolute magnitude is less than or equal to 1, the Cauchy-Schwarz inequality
must hold. The same arguments would work in 3 dimensions, but in any case, the following is clear:
Geometrically, the Cauchy-Schwarz inequality is a restatement of the fact that the cosine of the
angle between two vectors in a Hilbert space is no greater than 1 in absolute value. Of course, it is
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difficult to visualize angles in a general Hilbert space. But taking the cue from 2 or 3 dimensions,
one can define the angle between two vectors in a Hilbert space to be:

α = cos−1 〈x, y〉
‖x‖ ‖y‖ .

Orthogonality of two vectors then corresponds to α being either π/2 or 3π/2 whence the numerator
in the argument to cos−1 function should vanish: in other words, vectors x and y in a Hilbert
space will be said to be orthogonal to each other (written as x ⊥ y), if 〈x, y〉 = 0.

As a consequence of the Cauchy-Schwarz inequality, it follows that the inner product is a
continuous function from H × H → R; in other words, if (xn, yn) → (x, y) in H × H then
〈xn, yn〉 → 〈x, y〉.

We develop the concept of orthogonality in some detail as it plays an important role in
probabilistic and statistical computations. A vector x is said to be orthogonal to a non-empty
subset S of H if x ⊥ y for every vector y ∈ S. The set of all vectors orthogonal to S is
denoted by S⊥. Check that the following hold: (i) {0}⊥ = H, H⊥ = 0, (ii) S ∩ S⊥ ⊂ {0}, (iii)
S1 ⊂ S2 ⇒ S⊥2 ⊂ S⊥1 and (iv) S⊥ is a closed linear subspace of H. By a suspace S̃ of H, we
mean a subset that is closed under the formation of finite linear combinatons of elements in S̃
(and hence in particular, contains the 0 vector). A subspace of a Hilbert space is not necessarily a
Hilbert space, but a closed subspace of a Hilbert space necessarily is. To show that S⊥ is a closed
subspace, it suffices to show that if x and y are in S⊥ so is αx+β y. But this follows trivially from
the definition of S⊥. We only need to verify that S⊥ is closed. So let xn be a sequence of elements
in S⊥ converging to x ∈ H. Then by the continuity of the inner product, we have 〈xn, y〉 → 〈x, y〉
for any y ∈ H. Now for any y ∈ S, 〈xn, y〉 is 0 for all n, showing that 〈x, y〉 must also be 0. But
this shows that x ∈ S⊥. Check that S ⊂ S⊥⊥ ≡ S⊥⊥. If S is a non-empty subset of H, then
S⊥⊥ is the closure of the set of all (finite) linear combinations of vectors in S. Thus S⊥⊥ is the
smallest closed linear subspace of H that contains S. In particular, if S is a subspace, then S⊥⊥

is the closure of S (which is also a subspace), and in addition, if S is closed S⊥⊥ = S.

Proposition: Let M be a closed linear subspace of S. Then any h ∈ H can be written
uniquely as h1 + h2 where h1 ∈ M and h2 ∈ M⊥. The map h 7→ h1 is called the orthogonal
projection into the subspace M (denoted by πM ) and is a (continuous) linear operator. The map
h 7→ h2 is the orthogonal projection onto M⊥ (written as πM⊥).

We will not prove this proposition. For a proof, see for example pages 247–251 of Simmons
(Introduction to Topology and Modern Analysis), or a standard textbook in Functional Analysis.
Note that

πM h = argmin w∈M ‖h− w‖2 .

That this is the case follows on noting that:

‖h− w‖2 = ‖h− πM h‖2 + ‖πM h− w‖2 + 2 〈h− πM h, πM h− w〉 ;
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now the third term vanishes, since h− πM h ∈M⊥ and πM h− w ∈M . The result follows.

We now return to L2(µ) spaces. We have already seen that this is a normed linear (Banach) space.
Define an inner product on L2(µ) by:

〈f, g〉 =
∫

f(x) g(x) dµ(x) .

It is not difficult to see that this is well defined, satisfies the criteria for an inner product
and induces the L2(µ) norm. Hence L2(µ) is a Hilbert space with respect to this inner
product. For the moment, specialize to the case where µ is a probability measure P and consider
the space L2(P ) (with underlying sample space (X ,A). Let Y and X be random variables in L2(P ).

Regression: Consider the regression problem of regressing Y on X. This is the problem
of finding that function φ of X that minimizes E(Y − φ(X))2. This can be posed in the following
manner: Let σ(X) be the sub sigma-field of A generated by X. Let S̃ denote the set of all
random variables in L2(P ) that are measurable with respect to σ(X). This is a closed linear
subspace of L2(P ). The problem now is one of determining that random variable W in the
subspace S̃ that minimizes ‖Y −W‖2 where ‖ ‖2 denotes the L2(P ) norm. By the general theory
of Hilbert spaces, this will be the orthogonal projection of Y onto the subspace S̃. Now note that
Y = E(Y | X) + (Y −E(Y | X)), where E(Y | X) ≡ E(Y | σ(X)). Clearly E(Y | X) lies in S̃. We
will show that Y − E(Y | X) lies in S̃⊥, whence it will follows that E(Y | X) is the orthogonal
projection of Y onto S̃ and hence minimizes ‖Y −W‖2 over all W in S̃. Thus, for any W ∈ S̃ we
need to show that 〈W,Y − E(Y | X)〉 = 0. Now,

〈W,Y −E(Y | X)〉 = E [W (Y − E(Y | X))]
= E [E [W (Y −E(Y | X)) | σ(X)] ]
= E [W [E(Y | X)−E(Y | X)] ]
= 0 .

Regression problems in statistics can be viewed as those of computing orthogonal projections on
appropriate subspaces of L2 spaces. In linear regression one projects the response variable Y onto
the finite dimensional linear subspace of linear combinations of the covariate random variables.
This is smaller than the subspace of all random variables that are measurable with respect
to the sigma-field generated by the covariate variables. The mean squared error in regression:
E(Y − E(Y | X))2 can be viewed as the squared length of the projection of Y onto S̃⊥, the
orthogonal complement of S̃.

Exercise 1: Let S1 and S2 be two closed linear subspaces of the Hilbert space H and
suppose that S1 is strictly contained in S2. For any vector h consider πS1 h and πS2 h. How does
the length (norm) of πS1 h compare to that of πS2 h? What is the relation between πS1 h and
πS1 πS2 h?
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Exercise 2: Consider a probability space (X ,A, P ). Let G1 and G2 be sub-sigma fields of
A, with G1 ⊂ G2. Let Y be a random variable defined on (X ,A). From the theory of conditional
expectations we know that E[[Y | G2] | G1] = E [Y | G1]. Can you derive this from your
considerations in Exercise 1? Also, provide a geometric interpretation to the inequality:

E [Y − E[Y | G2]]2 ≤ E [Y −E[Y | G1]]2 .

2 Metrics on spaces of probability measures

Consider the space of all probability measures on a probability space (X ,A). We discuss how this
space can be metrized. Metrization of probability measures (i.e. defining a notion of distance)
is important, since in statistics one is often concerned about convergence of estimates based on
finite samples to the true parameter (which is often a probability measure) and fundamental to a
definition of convergence is the notion of a distance.

Two widely used metrics are: (a) Total variation (TV) and (b) Hellinger distance. The TV
distance between probability measures P and Q is defined as:

dTV (P,Q) = supA∈A | P (A)−Q(A) | .
The Hellinger metric is defined as:

H2(P,Q) =
1
2

∫
(
√
p−√q)2 dµ ,

where µ is any measure that dominates both P and Q and p and q are the densities of P and Q
with respect to µ. Note that this definition of the Hellinger distance ostensibly depends on the
dominating measure µ. However, as we show below, the quantity on the left side of the above
display is independent of µ (and the densities p and q). To this end, let µ0 = P0 +Q0, and define:

p0 =
dP0

dµ0
and q0 =

dP0

dµ0
.

Notice that µ0 dominates both P and Q, so the above derivatives exist. Furthermore, note that µ0

is dominated by µ, so dµ0/dµ exists. Also p = dP/dµ and q = dQ/dµ. Now,

∫
(
√
p−√q)2 dµ =

∫ [√
dP

dµ
−

√
dQ

dµ

]2

dµ

=
∫ [√

dP

dµ0

dµ0

dµ
−

√
dQ

dµ0

dµ0

dµ

]2

dµ

=
∫ [√

dP

dµ0
−

√
dQ

dµ0

]2
dµ0

dµ
dµ

=
∫ [√

dP

dµ0
−

√
dQ

dµ0

]2

dµ0 .
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This shows the invariance of the Hellinger distance to the choice of the dominating measure µ.

The TV distance can also be characterized in terms of densities p and q with respect to
some dominating measure µ. We have:

dTV (P,Q) = supA∈A | P (A)−Q(A) |= 1
2

∫
| p− q | dµ .

Thus the TV distance can be thought of as the natural distance between the densities p and q in
L1(µ), whereas the Hellinger distance is the natural distance between

√
p and

√
q in L2(µ). To

establish the above display, note that, since
∫

(p− q) dµ = 0 we have:
∫

{p>q}
(p− q) dµ =

∫

{p>q}
| p− q | dµ =

∫

{q>p}
(q − p) dµ =

∫

{q>p}
| q − p | dµ .

Let A0 = {p > q} and B0 = {q > p}. Then, the above display implies that

P (A0)−Q(A0) =| P (A0)−Q(A0) |= Q(B0)− P (B0) =| P (B0)−Q(B0) | .
Now, for any set A, we have:

P (A)−Q(A) =
∫

A
p dµ−

∫

A
q d µ

=
∫

A∩{p>q}
(p− q) dµ+

∫

A∩{p<q}
(p− q) dµ

≤
∫

A∩{p>q}
(p− q) dµ

≤
∫

{p>q}
(p− q) dµ

= P (A0)−Q(A0)
= | P (A0)−Q(A0) | .

Similarly, we deduce that for any set A:

Q(A)− P (A) ≤ Q(B0)− P (B0) =| Q(B0)− P (B0) | .
It follows that:

supA∈A | P (A)−Q(A) |≤| P (A0)−Q(A0) |=| Q(B0)− P (B0) | .
But

1
2

∫
| p− q | dµ =

1
2

∫

{p>q}
(p− q) dµ+

1
2

∫

{q>p}
(q − p) dµ

=
| P (A0)−Q(A0) | + | P (B0)−Q(B0) |

2
= | P (A0)−Q(A0) |
= | P (B0)−Q(B0) | .
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Exercise (a): Show that H2(P,Q) = 1 − ρ(P,Q) where the affinity ρ is defined as
ρ(P,Q) =

∫ √
p q d µ.

Exercise (b): Show that dTV (P,Q) = 1− ∫
p ∧ q d µ.

Exercise (c): Show that the following inequalities hold:

H2(P,Q) ≤ dTV (P,Q) ≤ H(P,Q) (1 + ρ(P,Q))1/2 ≤
√

2H(P,Q) .

We now introduce an important discrepancy measure that crops up frequently in statistics. This is
the Kullback-Leibler distance, though the term “distance” in this context needs to be interpreted
with a dose of salt, since the Kullback-Leibler divergence does not satisfy the properties of a
distance. For probability measures P,Q dominated by a probability measure µ and densities p and
q respectively with respect to µ, we define the Kullback-Leibler divergence as:

K(P,Q) =
∫

log
p

q
p d µ ≡

∫
log

p

q
dP ≡ EP [log p/q].

The above is, at this point, only a formal definition, since we do not know whether the above
expectation is meaningfully defined. Recall that any random variable X can be written as
X+ −X−, with X+ = max {Z, 0} and X− = max {−Z, 0} and for EX to exist as a finite quantity
both EX+ and EX− need to be finite, and then EX = EX+ − EX−. If both are infinite EX
does not exist, and in the case that only one is finite EX is either ∞ or −∞. We show below that
K(P,Q) always exists and is either finite or ∞. To that end, we first need a brief discussion on
Jensen’s inequality.

Jensen’s Inequality: Let X be a random variable with P (X ∈ I) = 1 where I is an
open sub-interval of R. Assume that EX (exists and) is finite. Let φ be a real-valued convex
function defined on I. Then E(φ(X)) ≥ φ(EX).

Note that we do not require φ(X) to have finite expectation in the above inequality. As the proof
will show, the only two possibilities are for E(φ(X)) to be finite or equal ∞ and the inequality
holds in either case (trivially for the latter). By hypothesis φ(λx+(1−λ) y) ≤ λφ(x)+(1−λ)φ(y)
for x, y ∈ I and 0 ≤ λ ≤ 1. This is equivalent to the condition that for all s < t < u with s, t, u ∈ I,

φ(t)− φ(s)
t− s

≤ φ(u)− φ(t)
u− t

.

Now, EX in I. Setting t = EX and letting β be the supremum of the quotients on the left side of
the above display for s ∈ I, s < t, we obtain: φ(u) ≥ φ(EX)+β (u−EX) for all u > EX. Similarly,
letting γ be the infimum of the quotients on the right side of the above display for u ∈ I, u > t, we
obtain: φ(s) ≥ φ(EX) + γ (s− EX) for all s < EX.(Note that both β and γ are finite numbers.)
It follows that with probability 1:

φ(X) ≥ φ(EX) + (β ∧ γ) (X −EX) .
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The right side of the preceding display is an integrable random variable and therefore E(φ(X))
is either finite or ∞. (If X ≥ Y and Y has finite expectation, then EX is either finite or equals
infinity. This is because X− ≤ Y − and E Y − <∞. Note that X can be allowed to be an extended
real valued random variable.) If φ(X) has finite expectation, Jensen’s inequality follows by taking
expectations on either side of the above display. If E(φ(X)) = ∞, Jensen’s inequality is trivial.

Proposition: Let φ be a map defined on [0,∞), such that φ is real-valued and convex on
(0,∞) and φ(0) = ∞. Let X be a non-negative random variable with a finite expectation. Then
E(φ(X)) ≥ φ(EX).

The proof of this proposition runs along the lines of that of Jensen’s inequality. First, if X
is degenerate at 0, the result is trivial. Second, if P (X = 0) = 1, we are in the previous setting. So,
consider the situation that 0 < P (X = 0) < 1. Using the convexity of φ on (0,∞), conclude that
whenever X > 0, φ(X) ≥ φ(EX) +λ (X −EX) for some finite λ. Whenever X = 0, the inequality
is trivially satisfied. Thus φ(X) either has finite expectation, or E(φ(X)) = ∞, as argued before.
In this case, Eφ(X) = ∞, since φ(0) = ∞ and P (X = 0) > 0. So E φ(X) ≥ φ(EX).

We are now in a position to show that K(P,Q) exists and is non-negative. Consider
EP (log(p/q)). Note that the random variable log(p/q) is well-defined, possibly as an extended
random variable, on a set with P–probability 1, namely the set {p > 0} and on this set
log p/q = − log(q/p). Now set φ = − log in the above proposition and let X = q/p. Note
that EP X is finite, and by the proposition, EP (− log(q/p)) exists, is either finite or ∞ and
K(P,Q) = EP (log(p/q)) = EP (− log(q/p)) ≥ − log(EP (X)) = − log (

∫
p>0 q d µ) ≥ 0. There is

one more issue that needs to be commented on. The KL distance is invariant to the choice of the
dominating measure µ and the corresponding densities p and q and is an outcome of the fact that
p = (dP/dµ0) (dµ0/dµ) and q = (dQ/dµ0) (dµ0/dµ) for µ0 = P +Q (which is absolutely continuous
with respect to µ).

It is clear from the above discussion that the Kulback-Leibler (KL) distance from P to Q,
K(P,Q), becomes infinitely large whenever P (q = 0, p > 0) > 0. However, this does not imply
that K(Q,P ) is infinity as well. The KL distance is not symmetric in its arguments. In the
discussion on ML estimation in Section 3, assume that all KL distances considered are finite,
to avoid complication. We next discuss the connection of the Kullback-Leibler discrepancy to
Hellinger distance. We have:

K(P,Q) ≥ 2H2(P,Q) .

It is easy to check that

2H2(P,Q) = 2
[∫ (

1−
√
q

p

)
p dµ

]
.

Thus, we need to show that:
∫ (

− log
q

p

)
p dµ ≥ 2

∫ (
1−

√
q

p

)
p dµ .
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This is equivalent to showing that:
∫ (

− log
√
q

p

)
p dµ ≥

∫ (
1−

√
q

p

)
p dµ .

But this follows immediately from the fact that for any positive x, log x ≤ x− 1 whence − log x ≥
1− x. We thus have:

d2
TV (P,Q) ≤ 2H2(P,Q) ≤ K(P,Q) .

It follows that if the Kullback-Leibler divergence between a sequence of probabilities {Pn} and a
fixed probability P goes to 0, then convergence of Pn to P must happen both in the Hellinger and
the TV sense (the latter two modes of convergence being equivalent).

• Problem (d): Let Pθ and Pη denote the Uniform (0, θ) and Uniform (0, η) distributions with
θ 6= η. Evaluate K(Pθ, Pη) and show that this is different from K(Pη, Pθ).

• Problem (e): Let f1, f2, . . . and g1, g2, . . . be two sequences of probability density functions
defined on a measure space (Ω,A, µ), with P1, P2, . . . and Q1, Q2, . . . being the corresponding
distributions. Let P̃n ≡ P1 × P2 × . . . Pn and Q̃n = Q1 ×Q2 ×Qn be the n’th stage product
measures, defined on the appropriate product spaces. Calculate H2(P̃n, Q̃n) in terms of
H2(Pi, Qi)’s.

• Problem (f): For probability measures P and Q, find the possible limit points of the sequence
H2(Pn, Qn).

• Problem (g) Consider a one-parameter exponential family model in its natural form: p(x, θ) =
exp(θ x− B(θ)), with θ ∈ Θ, an open subset of R. Let X1, X2, . . . , Xn be i.i.d. observations
from some p(x, θ0).
(i) Consider testing H0 : θ ∈ [a, b] versus its complement and suppose that θ0 /∈ [a, b]. Let
λn denote the likelihood ratio statistic for testing H0. Show that log λn/n converges to
K(Pθ0 , Pη) where η is the point in the null hypothesis closest to θ0 in KL distance. Compute
the asymptotic distribution of log λn/n.
(ii) Now let θ0 = 0 (wlog) and consider testing H0 : θ = 0 versus H1 : θ ≥ 0. Find the limit
distribution of the likelihood ratio statistic for this problem.

3 Connections to Maximum Likelihood Estimation

The Kullback-Leibler divergence is intimately connected with maximum likelihood estimation as
we demonstrate below. Consider a random variable/vector whose distribution comes from one of
a class of densities {p(x, θ) : θ ∈ Θ}. Here Θ is the parameter space (think of this as a subset of
a metric space with metric τ). For the following discussion, we do not require to assume that Θ
is finite-dimensional. Let θ0 denote the data generating parameter. The MLE is defined as that
value of θ that maximizes the log-likelihood function based on i.i.d. observations X1, X2, . . . , Xn

from the underlying distribution; i.e.

θ̂n = argmaxθ∈Θ

n∑

i=1

l(Xi, θ) ,
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where l(x, θ) = log p(x, θ). Now

K(pθ0 , pθ) = Eθ0

[
log

p(X, θ0)
p(X, θ)

]
≥ 0 ,

with equality if and only if θ = θ0 (this requires the tacit assumption of identifiability), since:

Eθ0

[
log

p(X, θ0)
p(X, θ)

]
= Eθ0

[
− log

p(X, θ)
p(X, θ0)

]
≥ − log

[
Eθ0

p(X, θ)
p(X, θ0)

]
= 0 .

Equality happens if and only if the ratio p(x, θ)/p(x, θ0) is Pθ0 a.s. constant, in which case equality
must hold a.s Pθ0 if Pθ and Pθ0 are mutually absolutely continuous. This would imply that the two
distribution functions are identical. Now, define B(θ) = Eθ0 (log p(X, θ)). It is then clear that θ0
is the unique maximizer of of B(θ). Based on the sample however, there is no way to compute the
(theoretical) expectation that defines B(θ). A surrogate is the expectation of l(X, θ) ≡ log p(X, θ)
based on the empirical measure Pn that assigns mass 1/n to every Xi. In other words, we stipulate
θ̂n as an estimate of θ, where:

θ̂n = argmaxθ∈Θ Pn (l(X, θ)) ≡ argmaxθ∈Θ n
−1

n∑

i=1

l(Xi, θ) = argmaxθ∈Θ

n∑

i=1

l(Xi, θ) .

Since Pn(l(X, θ)) → Eθ0 l(X, θ) a.s., one might expect θ̂n, the empirical maximizer to converge to
θ0, the theoretical maximizer. This is the intuition behind ML estimation.

Define gθ(X) = log {p(X, θ0)/p(X, θ)}. Then Eθ0 gθ(X) = K(pθ0 , pθ). From the definition
of θ̂n it follows that:

0 ≥ 1
n

n∑

i=1

gθ̂n
(Xi) =

1
n

n∑

i=1

(gθ̂n
(Xi)−K(pθ0 , pθ̂n

)) +K(pθ0 , pθ̂n
)

which implies that:

0 ≤ K(pθ0 , pθ̂n
) ≤

∣∣∣∣∣
1
n

n∑

i=1

gθ̂n
(Xi)−K(pθ0 , pθ̂n

)

∣∣∣∣∣ . (3.1)

By the strong law of large numbers, it is the case that for each fixed θ,

1
n

n∑

i=1

gθ(Xi)−K(pθ0 , pθ) →Pθ0
a.s. 0 .

This however does not imply that:

1
n

n∑

i=1

gθ̂n
(Xi)−K(pθ0 , pθ̂n

) →Pθ0
a.s. 0
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since θ̂n is a random argument. But suppose that we could ensure:

supθ∈Θ

∣∣∣∣∣
1
n

n∑

i=1

gθ(Xi)−K(pθ0 , pθ)

∣∣∣∣∣ →Pθ0
a.s. 0 .

This is called a Glivenko-Cantelli condition: it ensures that the strong law of large numbers holds
uniformly over a class of functions (which in this case is indexed by θ). Then, by (3.1) we can
certainly conclude that K(pθ0 , pθ̂n

) converges a.s. to 0. By the inequality relating the Hellinger
distance to the Kullback-Leibler divergence, we conclude that H2(pθ0 , pθ̂n

) converges a.s. to 0.
This is called Hellinger consistency. However, in many applications, we are really concerned with
the consistency of θ̂n to θ0 in the natural metric on Θ (which we denoted by τ). The following
proposition, adapted from Van de Geer (Annals of Statistics, 21, Hellinger consistency of certain
nonparametric maximum likelihood estimators, pages 14 – 44) shows that consistency in the
natural metric can be deduced from Hellinger consistency under some additional hypotheses.

Proposition: Say that θ0 is identifiable for the metric τ on Θ if, for all θ ∈ Θ, H(pθ, pθ0) = 0
implies that τ(θ, θ0) = 0. Suppose that (a) (Θ, τ) is a compact metric space, (b) θ 7→ p(x, θ) is
µ–almost everywhere continuous (here, µ is the underlying dominating measure) in the τ metric,
and (c) θ0 is identifiable for τ . The H(pθn , pθ0) → 0 implies that τ(θn, θ0) → 0.

Hence, under the conditions of the above proposition, Hellinger consistency a.s.(in probability)
would imply a.s. consistency (in probability) of θ̂n for θ0 in the τ–metric.

Proof: Suppose that τ(θn, θ0) 9 0. Since {θn} lies in a compact set (assumption (a)) and
does not converge to θ0, there exists a subsequence {n′} such that θn′ → θ? 6= θ0 in the τ -metric.
Note that h(pθn′ , pθ0) → 0. Now, by the triangle inequality:

h(pθ0 , pθ?) ≤ h(pθn′ , pθ0) + h(pθn′ , pθ?) .

The first term on the right side of the above display converges to 0; as for the second term, this also
goes to 0, since by Scheffe’s theorem, the a.s. convergence of p(x, θn′) to p(x, θ?) (see assumption
(b)) guarantees that convergence of the densities {pθn′} to pθ? happens in total variation
norm, and consequently in the Hellinger metric. Conclude that h(pθ0 , pθ?) = 0; by identifiability
(assumption (c)) τ(θ0, θ?) = 0. This shows that θn′ converges to θ0 and provides a contradiction. 2

Exercise: Consider the model {Ber(θ) : 0 < a ≤ θ ≤ b < 1}. Consider the M.L.E. of θ
based on i.i.d. observations {Xi}n

i=1 from the Bernoulli distribution, with the true parameter θ0
lying in (a, b). Use the ideas developed above to show that the MLE converges to the truth, almost
surely, in the Euclidean metric. This is admittedly akin to pointing to your nose by wrapping
your arm around your head, but nevertheless, illustrates how these techniques work. For “real
applications” of these ideas one has to work with high dimensional models, where the niceties of
standard parametric inference fail.
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