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We continue our discussion of likelihood based inference for parametric models; in particular,
we will talk more about information bounds in the context of parametric models, and the role they
play in likelihood based inference. We first introduce the multiparameter version of the celebrated
Cramer-Rao inequality.

I will not describe the underlying assumptions in details. These are the usual sorts of
assumptions one makes for parametric models, in order to be able to establish sensible results. See
Page 11 of Chapter 3 of Wellner’s notes for a detailed description of the conditions involved. For
a multidimensional parametric model {p(x, θ) : θ ∈ Θ ⊂ Rk}, the information matrix I(θ) is given
by:

I(θ) = Eθ(l̇(X, θ), l̇(X, θ)T ) = −Eθ l̈(X, θ) ,

where
l̇(X, θ) =

∂

∂ θ
l(X, θ)

being a k × 1 column vector (recall that l(x, θ) = log p(x, θ)), and

l̈(x, θ) =
∂2

∂ θ ∂ θT
l(X, θ) ,

is a k × k matrix. Consider a smooth real-valued function q(θ) that is estimated by some statistic
T (X), and let q̇(θ) denote the derivative of q (written as a k×1 vector). Let b(θ) = Eθ(T (X))−q(θ)
be the bias of the estimator T , and let ḃ(θ) denote the derivative of the bias. We then have:

Varθ(T (X)) ≥ (q̇(θ) + ḃ(θ))T I−1(θ) (q̇(θ) + ḃ(θ)) .

In particular, if T (X) is unbiased for q(θ), then

Varθ(T (X)) ≥ q̇(θ)T I−1(θ) q̇(θ) .

For a proof of this result, see Page 12 of Chapter 3 of Wellner’s notes – the proof runs along
lines similar to the one–dimensional case. We will not be worried about the construction of exact
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unbiased estimators for q(θ) that attain the information bound; in the vast majority of situations
this is not feasible. Rather, we focus on the connection of the MLE θ̂n to the information bound
arising from the multiparameter inequality above. Consider the asymptotically linear representation
of the MLE given by:

√
n(θ̂n − θ) =

1√
n

n∑
i=1

I(θ)−1 l̇(Xi, θ) + op(1) .

Invoke the Delta method to obtain:

√
n(q(θ̂n)− q(θ)) =

1√
n

n∑
i=1

q̇(θ)T I(θ)−1 l̇(Xi, θ) + op(1) .

It is easily seen that the asymptotic variance of
√
n(q(θ̂n) − q(θ)) is exactly q̇(θ)T I−1(θ) q(θ),

the information bound arising from the multiparameter Cramer Rao inequality. The function
q̇(θ)T I(θ)−1 l̇(x, θ) (that provides a linearization of the MLE) is called the efficient influence
function for estimating q(θ). Motivated by the above considerations, we define efficient influence
functions and information bounds for vector-valued functions of θ.

Let ν be a Euclidean parameter defined on a regular parametric model and P = {Pθ : θ ∈ Θ}. We
can identify ν with the parametric function q : Θ → Rm defined by:

q(θ) = ν(Pθ), for Pθ ∈ P .

Fix P = Pθ and suppose that q has a derivative q̇k×m at θ. Define the information bound for ν as:

I−1(P | ν,P) = q̇(θ)T I−1(θ) q̇(θ) . (0.1)

Also, define the efficient influence function for ν as:

l̃(·, P | ν,P) = q̇(θ)T I−1(θ) l̇θ . (0.2)

The definitions of the two quantities above seem to depend on the parametrization θ, but in
fact are independent of it, as the notation suggests. This is the content of the following proposition.

Proposition: The information bound I−1(P | ν,P) and the efficient influence function
l̇(·, P | ν,P) are invariant under smooth changes of parametrization.

A derivation of this is given on Page 18, Chapter 3 of Wellner’s notes; or, you can also
look at the document posted on the 612 webpage that discusses this phenomenon separately.

So far, we have been interested in estimating the entire parameter vector θ. We now write
θ = (ν, η), where ν is an m–dimensional sub-parameter of interest and η is a nuisance parameter,
and estimation of ν needs to be carried out in the presence of the nuisance parameter. We
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introduce partitions of the score functions and the information matrix in correspondence with the
partitioning (ν, η) of the parameter vector θ. We write:

l̇(x, θ) =
[ ∂

∂ν l(x, ν, η)
∂
∂η l(x, ν, η)

]
≡
[
l̇ν(x, ν, η)
l̇η(x, ν, η)

]
,

and
∂

∂η
l̇ν(x, ν, η) ≡

∂2

∂ν ∂η
l(x, ν, η) = l̈ν η(x, ν, η)m×k−m ,

and
∂

∂ν
l̇η(x, ν, η) ≡

∂2

∂η ∂ν
l(x, ν, η) = l̈η ν(x, ν, η)k−m×m .

We define l̈ν ν and l̈η η similarly. Now,

I(θ0) =
[
Iν0 ν0 Iν0 η0

Iη0 ν0 Iη0 η0

]
=
[
I11 I12
I21 I22

]
= −

[
Eθ0 l̈ν0 ν0 Eθ0 l̈ν0 η0

Eθ0 l̈η0 ν0 Eθ0 l̈η0 η0

]
.

We also write l̇(x, θ0) = (l̇T1 , l̇
T
2 )T , with

l̇1 =
∂

∂ν
l(x, ν0, η0) and l̇2 =

∂

∂η
l(x, ν0, η0) .

Then, note that I11 = Eθ0 [l̇1 l̇
T
1 ], I12 = Eθ0 [l̇1 l̇

T
2 ] and I22 = Eη0 [l̇2, l̇

T
2 ], with I12 = IT

21. Now define:

I11.2 = I11 − I12 I
−1
22 I21 and I22.1 = I22 − I21 I

−1
11 I12 .

These are p.d. matrices (and are known as Schur complements in the linear algebra literature).
Write:

I(θ0)−1 =
[
I11 I12

I21 I22

]
.

From one of the homework problems, it will follow that:

I(θ0)−1 =
(
I11 I12
I21 I22

)−1

=
(

I−1
11.2 −I−1

11.2 I12 I
−1
22

−I−1
22.1 I21 I

−1
11 I−1

22.1

)
.

Let q(θ) = ν. Then q̇(θ)T = [Im×m, 0m×k−m]. Now,

√
n (ν̂n − ν0) =

1√
n

n∑
i=1

q̇(θ0)T I(θ0)−1 l̇(Xi, θ0) + op(1) .

We have:

q̇(θ0)T I(θ0)−1 l̇(x, θ0) = [Im×m : 0m×k−m]
[
I11 I12

I21 I22

] [
l̇1
l̇2

]
= [I11 : I12]

[
l̇1
l̇2

]
= I11 l̇1 + I12 l̇2

= I−1
11.2 [l̇1 − I12 I

−1
22 l̇2] .
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Hence, we can write:

√
n (ν̂n − ν0) =

1√
n

n∑
i=1

I−1
11.2 [l̇1(Xi)− I12 I

−1
22 l̇2(Xi)] + op(1) .

We denote by l̃1 the efficient influence function I−1
11.2 [l̇1 − I12 I

−1
22 l̇2] ≡ I−1

11.2 l
?
1 for estimation of

the parameter ν; here l?1 = l̇1 − I12 I
−1
22 l̇2 is called the efficient score function for estimating the

parameter ν in the presence of η at parameter value θ0 = (ν0, η0). Note that
√
n(ν̂n − ν0) →d N(0, I−1

11.2) .

Also check that Cov l̃1 = I−1
11.2. Now, I−1

11.2 is the information bound for estimating ν when the
value of the nuisance parameter η is unknown.

Consider the problem of estimating ν0 when information is available on η, i.e. we know
that η = η0. In this case, we have a regular parametric model of dimension m given by
{p(x, ν, η0) : ν varying}, and the ordinary score function in this model at parameter value ν0 is
simply given by l̇1 itself. If ν̂0 denotes the M.L.E. of ν in this (lower–dimensional) model, we have:

√
n (ν̂0

n − ν0) =
1√
n

n∑
i=1

I−1
11 l̇1(Xi) + op(1) ;

the information bound for estimating ν at ν0 is simply I−1
11 (which is also the asymptotic

variance of the normalized MLE in this model). How does this compare to I−1
11.2, the information

bound when η is unknown? Now, note that I−1
11 = I11 − I12 (I22)−1 I21 and I−1

11.2 = I11; hence
I−1
11.2 − I−1

11 = I12 (I22)−1 I21, which is a p.d. matrix. This shows, that as one might intuitively
expect, the information bound for estimating ν is smaller when η is known (as compared to when
it is not). The loss of information between the two situations is the difference of the efficient
information; this is I12 I−1

22 I21.

The phenomenon above can be given a geometric interpretation if we consider the functions
(l̇1, l̇2) as a vector of functions living in L0

2(Pθ0), the Hilbert space of mean 0 square integrable
functions with respect to the probability measure Pθ0 . Recall that the inner product between
random variables u and ũ in L2(Pθ0) is 〈u, ũ〉 = Eθ0(u ũ). For simplicity of presentation, consider
the situation where ν is 1–dimensional. Then l̇1 is an element of L0

2(Pθ0). Consider the closed
linear subspace of L0

2(Pθ0) that is formed by linear combinations of the components of l̇2 (each
component of course lives in L0

2(Pθ0)). If S denotes this subspace, then we know that l̇1 admits a
unique decomposition as πS l̇1 + πS⊥ l̇1. We claim that l?1 = πS⊥ l̇1. To show this, observe that:

l̇1 = l̇1 − I12 I
−1
22 l̇2 + I12 I

−1
22 l̇2 ;

the latter is obviously in S, so all we need to show is that the former lives in S⊥. To this end, it
suffices to show that 〈l̇1 − I12 I

−1
22 l̇2, α

T l̇2〉 = 0 for all vectors α. We have:

〈l̇1 − I12 I
−1
22 l̇2, α

T l̇2〉 = E [(l̇1 − I12 I
−1
22 l̇2) (αT l̇2)]
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= αT E [l̇2 l̇1]− I12 I
−1
22 E(l̇2 l̇T2 )α

= αT I21 − I12 I
−1
22 I22 α

= 0 .

Hence, with ‖ ‖0 denoting the norm in L0
2(Pθ0), we have:

‖l̇1‖2
0 = ‖l̇?1‖2

0 + ‖l̇1 − l̇?1‖2
0 .

The left side is precisely I11, and the right side decomposes as I11.2 + I12 I
−1
22 I21. Thus, the

information loss is precisely the squared length of the (orthogonal) projection of the usual score
function in the lower–dimensional submodel (with η known) into the closed linear subspace spanned
by the components of the score function for η. If the score function for ν is uncorrelated with the
score function for η, so that I12 = 0, then there is no information loss, and knowledge of η makes
no difference to the efficiency of estimation. If ν is m–dimensional, with m > 1 then a similar
interpretation can be given. We can write l̇1 = (l̇1,1, l̇1,2, . . . , l̇1,k) with a similar decomposition for
l̇?1, and in this case l̇?1,i = πS⊥ l̇1,i. This is a consequence of the (easily checked) fact that

Cov (l̇1 − I12 I
−1
22 l̇2, l̇2) = 0m×k−m .

Exercise: Once again consider one–dimensional ν. Compute the projection of l̇1 into S by
minimizing Eθ0 (l̇1 − αT l̇2)2 and check that this matches what we have established above.

Tests for composite null hypotheses: We can concentrate on tests of (composite) null
hypotheses of the form η = η0, where ν is left unspecified. We first consider the likelihood ratio
statistic for testing η = η0.

Likelihood ratio statistic: With ln(θ) ≡
∑n

i=1 l(Xi, θ) denoting the log-likelihood function
based on n observations, we have:

2 log λn = 2
(
ln(θ̂n)− ln(θ̂0

n)
)
,

where θ̂n = (ν̂n, η̂n) and θ̂0
n = (ν̂0

n, η0). Now, we can write:

2 log λn = 2 [ln(ν̂n, η̂n)− ln(ν0, η0)]− 2
[
ln(ν̂0

n, η0)− ln(ν0, η0)
]
≡ In − IIn .

Now, by the asymptotics of the likelihood ratio statistic for testing θ = θ0 in the full k dimensional
model, we have:

In =
√
n (θ̂n − θ0)T I(θ0)

√
n (θ̂n − θ0) + op(1) ,

and by the asymptotics of the likelihood ratio statistic for testing ν = ν0 in the (reduced) m
dimensional model (with η known to be fixed at η0),

IIn =
√
n (ν̂0

n − ν0)T Iν0 ν0

√
n (ν̂0

n − ν0) + op(1) .
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Recall that l̇ = (l̇T1 , l̇
T
2 )T . Let Z = (ZT

1 , Z
T
2 ) be a normal random vector with dispersion matrix

I(θ0). Now, using the facts that

1√
n

n∑
i=1

[
l̇1
l̇2

]
→d

[
Z1

Z2

]
∼ N(0, I(θ0))

and that [ √
n (θ̂n − θ0)√
n(ν̂0

n − ν0)

]
=

[
1√
n
I(θ0)−1

∑n
i=1 l̇(Xi)

1√
n
I−1
11

∑n
i=1 l̇1(Xi)

]
+ op(1)

we conclude that [ √
n (θ̂n − θ0)√
n(ν̂0

n − ν0)

]
→d

[
I(θ0)−1 Z

I−1
11 Z1

]
.

It follows by continuous mapping that In − IIn converges in distribution to

ZT I(θ0)−1 I(θ0) I(θ0)−1 Z − ZT
1 I

−1
11 I11 I

−1
11 Z1

and this, by one of the homework problems, follows a χ2
k−m distribution.

Score and Wald statistics: The Wald statistic for testing η = η0 is given by:

Wn = n (η̂n − η0)T Î22.1 (η̂n − η0) ,

and has a limiting χ2
k−m distribution, since

√
n (η̂n − η0) →d N(0, I−1

22.1).

To set up the score statistic, define:

Zn(θ) =
1√
n

n∑
i=1

l̇(Xi, θ) .

To test for the full parameter θ = θ0, recall that the score statistic is given by Zn(θ0)T I−1(θ0)Zn(θ0)
(and converges to a χ2

k distribution). To test η = η0 define the score statistic Sn as

Sn = Zn(θ̂0
n)T I−1(θ̂0

n)Zn(θ̂0
n) .

Now, note that

Zn(θ̂0
n) =

[
1√
n

∑n
i=1 l̇ν(Xi, ν̂

0
n, η0)

1√
n

∑n
i=1 l̇η(Xi, ν̂

0
n, η0)

]
=

[
0

1√
n

∑n
i=1 l̇η(Xi, ν̂

0
n, η0)

]
.

Denoting the bottom component of the vector on the extreme right of the above display by Zn,2(θ̂0
n),

the score statistic becomes:

Sn = Zn,2(θ̂0
n)T I−1(θ̂0

n)22 Zn,2(θ̂0
n) .
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Next, I−1(θ̂0
n)22 →p I

−1(θ0)22 = I−1
22.1. Also,

Zn,2(θ̂0
n) =

1√
n

n∑
i=1

l̇η(Xi, ν̂
0
n, η0)

=
1√
n

n∑
i=1

l̇η(Xi, ν0, η0) +
1√
n

n∑
i=1

(l̇η(Xi, ν̂
0
n, η0)− l̇η(Xi, ν0, η0))

=
1√
n

n∑
i=1

l̇2(Xi) +

[
1
n

n∑
i=1

(l̇η(Xi, ν̂
0
n, η0)− l̇η(Xi, ν0, η0))

]
√
n

=
1√
n

n∑
i=1

l̇2(Xi) +
1
n

n∑
i=1

l̈η ν(Xi, ν0, η0)
√
n (ν̂0

n − ν0) + op(1)

=
1√
n

n∑
i=1

l̇2(Xi) + [−I21 + op(1)]

[
1√
n

n∑
i=1

I−1
11 l̇1(Xi) + op(1)

]
+ op(1)

=
1√
n

n∑
i=1

(
l̇2(Xi)− I21 I

−1
11 l̇1(Xi)

)
+ op(1) .

One of the steps above needs some clarification. The result:[
1
n

n∑
i=1

(l̇η(Xi, ν̂
0
n, η0)− l̇η(Xi, ν0, η0))

]
√
n =

1
n

n∑
i=1

l̈η ν(Xi, ν0, η0)
√
n (ν̂n − ν0) + op(1) ,

though intuitively meaningful does need a little argument. You cannot use a Taylor expansion
with a standard remainder term for vector valued functions. Consider the difference on the left side
componentwise (there are k−m components). Let η = (η1, η2, . . . , ηk−m). Now, the j’th component
of the difference is:

1
n

n∑
i=1

l̇ηj (Xi, ν̂
0
n, η0)−

1
n

n∑
i=1

l̇ηj (Xi, ν0, η0) .

We can write:

1
n

n∑
i=1

l̇ηj (Xi, ν̂
0
n, η0) =

1
n

n∑
i=1

l̇ηj (Xi, ν0, η0) +
1
n

n∑
i=1

[
∂

∂ν
l̇ηj (Xi, ν0, η0)

]
1×m

(ν̂0
n − ν0)

+
1

2n
(ν̂n − ν0)T 1

n

n∑
i=1

∂2

∂ ν2
l̇ηj (Xi, ν̃n,j , η0) (ν̂n − ν0) ,

where ν̃n,j lies on the straight line joining ν̂0
n and ν0. Hence:

√
n

[
1
n

n∑
i=1

l̇ηj (Xi, ν̂
0
n, η0)−

1
n

n∑
i=1

l̇ηj (Xi, ν0, η0)

]
=

1
n

n∑
i=1

[
∂

∂ν
l̇ηj (Xi, ν0, η0)

]
1×m

√
n(ν̂0

n − ν0)
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+
1

2n
(ν̂n − ν0)T 1

n

n∑
i=1

∂2

∂ ν2
l̇ηj (Xi, ν̃n,j , η0)

√
n (ν̂n − ν0) .

The second term on the right side of the above display is op(1) by virtue of the fact that
√
n(ν̂0

n−ν0)
is Op(n−1/2) and furthermore

1
n

n∑
i=1

∂2

∂ ν2
l̇ηj (Xi, ν̃n,j , η0) = Op(1) ,

using the fact that ν̃n,j converges to ν0 (in probability) and the assumption that for all i, j, k,∣∣∣∣ ∂3

∂ θi, ∂ θj ∂ θk
l(x, θ)

∣∣∣∣ ≤Mijk(x) ,

uniformly over θ in a neighborhood of θ0, where Eθ0(Mijk) < ∞ (see, for example, Assumption
(A.3) on Page 5 of Chapter 4 of Wellner’s notes). It follows that:

√
n

[
1
n

n∑
i=1

l̇η(Xi, ν̂
0
n, η0)−

1
n

n∑
i=1

l̇η(Xi, ν0, η0)

]
=

1
n

n∑
i=1

[
l̈η ν(Xi, ν0, η0)

]
k−m×m

√
n(ν̂0

n−ν0)+op(1) .

1 Problems

(1) (a) Consider a regular parametric model {f(x, θ) : θ ∈ Θ ⊂ Rk}. Fix θ0 ∈ Θ and let
I(θ0) denote the (positive definite) information matrix at the point θ0. Let θ = (ν, η) be a
partitioning of θ and let θ0 = (ν0, η0). Here ν is an m–dimensional parameter. Write the
information matrix as:

I(θ0) =
(
I11 I12
I21 I22

)
.

As defined in class, let
I11.2 = I11 − I12I

−1
22 I21

and let I22.1 be defined similarly with 2 and 1 swapped. Write,

I(θ0)−1 =
(
A B
C D

)
and use the fact that I(θ0) I(θ0)−1 = I = I(θ0)−1 I(θ0) to show that,

I(θ0)−1 =
(

I−1
11.2 −I−1

11.2 I12 I
−1
22

I−1
22.1 I21 I

−1
11.2 I−1

22.1

)
.

(b) Use (a) to deduce that if Zk×1 follows a multivariate normal distribution with dispersion
matrix I(θ0), then

ZT I(θ0)−1 ZT − ZT
2 I

−1
22 Z2 ∼ χ2

m .
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Here Z1 denotes the first m components of Z and Z2 the remaining k − m. What is the
distribution of

ZT I(θ0)−1 ZT − ZT
1 I

−1
11 Z1 ?

(c) Consider the Rao/Score statistic for testing H0 : η = η0. This is

Rn ≡ Zn(θ̂0
n)T I−1(θ̂0

n)Zn(θ̂0
n)

where, θ̂0
n = (ν̂0

n, η0) is the MLE of θ under the null hypothesis and

Zn(θ) =

(
1√
n

∑n
i=1 l̇ν(Xi, ν, η)

1√
n

∑n
i=1 l̇η(Xi, ν, η)

)
.

Show that under H0, Rn has an asymptotic χ2
k−m distribution.

(d) Consider the null hypothesis H0 : ν = ν0. Let θ̂ = (ν̂, η̂) and let η̂0 be the MLE
of η obtained under H0. Show that, under H0,

√
n(η̂ − η̂0) = −I−1

22 I21
√
n (ν̂ − ν0) + op(1) . (?)

Now consider the likelihood ratio statistic, 2 log λn for testing H0. Show, that under H0,

2 log λn =
√
n(θ̂ − θ0) I(θ0)

√
n(θ̂ − θ0)−

√
n(η̂0 − η0) I22

√
n(η̂0 − η0) + op(1) .

Now, using the representation (?) or otherwise, show that

2 log λn = n (ν̂ − ν0)T I11.2 (ν̂ − ν0) + op(1) .

Hence, deduce the asymptotic distribution of the likelihood ratio statistic.

(e) Show that I12 I
−1
22 l̇2 is the closest element to l̇1 in the span of l̇2 in the sense

that
argminαE (l̇1(X)− αT l̇2(X))2 = I12 I

−1
22 .

(2) (a) Let X1, X2, . . . , Xn be a sample from the exponential distribution with parameter θ
and let Y1, Y2, . . . , Yn be a sample from an exponential µ distribution. Also, let the first
sample be independent of the second. Consider testing the null hypothesis µ = 2 θ. Use an
appropriate reparametrization to recast the null hypothesis into the form ψ = ψ0 for some
fixed ψ0, compute the likelihood ratio and Wald statistics and determine their asymptotic
distributions under the null.

(b) For i = 1, 2, . . . , k letXi1, Xi2, . . . , Xin be independent samples from Poisson distributions,
Poi(θi) respectively. Find the likelihood ratio test and its asymptotic distribution for testing
H0 : θ1 = θ2 = . . . = θk.
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(3) Let X follow the Beta(α, β) distribution. Thus,

p(θ, x) = p(α, β, x) =
Γ(α+ β)
Γ(α) Γ(β)

xα−1 (1− x)β−1 1 (x ∈ (0, 1)) .

This is a regular parametric model. Let,

ψ(α) ≡ Γ
′
(α)

Γ(α)
.

(a) Compute the scores for α and β based on one X following Beta(α, β). Hence, compute
the information matrix.

(b) What is the information for α if β is known? What if β is unknown? Draw a
picture of the scores to illustrate this geometrically.

(c) Now, suppose that we have i.i.d. observations X1, X2, . . . , Xn from a Beta(α0, β0)
distribution. Let q(θ) = ψ(α)− ψ(β).

(i) Compute the efficient influence function and the information bound for the estimation of
q at the point θ0 ≡ (α0, β0).

(ii) Propose a method of moments estimator of the parameter q(θ); i.e. find some
h(X) such that Eθ(h(X)) is q(θ) and use n−1

∑n
i=1 h(Xi) as an estimate of q(θ). Compute

Varθ(h(X1)) and determine the asymptotic distribution of your estimate.

(4) (a) Let X1, X2, . . . , Xn be i.i.d. N(µ, σ2). Consider testing the null hypothesis H0 : µ =
µ0, σ = σ0. Show that the likelihood ratio statistic can be written as:

2 log λn =
n(X − µ0)2

σ2
0

+ n log
σ2

0

σ̂2
+ n

[
σ̂2

σ2
0

− 1
]
.

Hence, deduce that 2 log λn converges under H0 to a χ2
2. Here σ̂2 is the usual MLE for σ2.

(b) Consider the same data and model as in (a), but now the goal is to test H0 : µ = 0 versus
µ > 0. Derive the likelihood ratio test for this problem. What is the asymptotic distribution
of the likelihood ratio statistic under H0?

(5) Consider a model for the joint distribution of two random variables Y and Z in which Z has
a Bernoulli distribution with success probability η ∈ [0, 1], and the conditional distribution
for Y given Z = z is exponential with failure rate λ eγ z. Then verify that (Y, Z) has joint
density:

fθ(y, z) = λ eγ z exp(−λ eγ z y) ηz (1− η)1−z, z ∈ {0, 1}, y > 0 ,

where θ = (λ, γ, η). This is a parametric version of the Cox proportional hazards model and
γ, the regression parameter is of primary interest. Let {Yi, Zi}n

i=1 be i.i.d. observations from

10



this model.

(a) Discuss the computation of the M.L.E’s of (λ, γ, η) in this model. Explicitly determine
the limit distributions of the M.L.E’s.

(b) Is the limit distribution of (λ̂, γ̂), these being MLE’s, affected by knowledge of the
Bernoulli parameter η? Explain your answer.

(c) Define ν(θ) = Pθ(Y ≥ y0 | Z = 1), where y0 is a fixed positive number. Consider
the estimation of ν using the estimator

ν̂1 =
n−1

∑n
i=1 1{Yi ≥ y0, Zi = 1}

n−1
∑n

i=1 1{Zi = 1}
.

Why is this a reasonable estimator of ν? Compute its asymptotic distribution. How does ν̂1

compare to ν̂2 = ν(θ̂) where θ̂ is the MLE of θ?
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