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1 Some concepts from probability

Uniform integrability: A sequence of random variables {Xn} (with Xn defined on (Xn,An, Pn))
is said to be uniformly integrable if:

limλ→∞ supn≥1 En(| Xn | 1(| Xn |≥ λ)) = 0 .

The following lemma gives a necessary and sufficient condition for uniform integrability.

Lemma 1.1 {Xn} is uniformly integrable if and only if the following two conditions are satisfied:

(i) supn≥1 En | Xn |< ∞.

(ii) For any sequence of sets {Bn} with Bn ∈ An, whenever Pn(Bn) converges to 0, then
EPn (| Xn | 1Bn) converges to 0.

The following theorem illustrates the usefulness of uniform integrability; uniform integrability in
conjunction with convergence in distribution implies convergence of moments.

Theorem 1.1 Suppose that Xn ∈ Lr(P ) with 0 < r < ∞ and Xn →p X. Then, the following are
equivalent.

(i) {| Xn |r} are uniformly integrable.

(ii) Xn →r X; in other words: E(| Xn −X |r) converges to 0.

(iii) E | Xn |r converges to E | X |r.

1



2 Hodges’ Superefficient Estimator

Let X1, X2, . . . , Xn be i.i.d Pθ from a one–dimensional regular parametric model P, for which the
conditions of the information inequality hold. If Tn is unbiased for estimating q(θ), then, from the
information inequality:

Varθ(Tn) ≥ q̇(θ)2

n I(θ)
.

Now, consider a general
√

n–consistent estimator Sn of q(θ), such that
√

n (Sn − q(θ)) →d N(0, V 2(θ)) .

If θ̂n is the MLE of θ, then
√

n (q(θ̂n)− q(θ)) → N(0, q′(θ)2/I(θ)) .

An application of the Skorokhod representation in conjunction with Fatou’s lemma yields:

liminfE [
√

n(Sn − q(θ))]2 ≥ V 2(θ) .

If Sn is unbiased, we have:
V 2(θ) ≤ liminfn Varθ(Sn) .

Now, suppose that limnVarθ(Sn) exists and equals V 2(θ). This is the case, for example, if the
sequence {n(Sn − q(θ))2} is uniformly integrable. Then, the information inequality would imply
that:

V 2(θ) ≥ q̇(θ)2

I(θ)
.

A question that then naturally arises is whether this inequality holds under the usual restrictions
on the parametric model alone. So, for usual regular parametric models, is it possible to find

√
n

consistent estimators that are asymptotically normal with the variance of the limiting distribution
strictly less than the bound from the information inequality? The following example due to Hodges
shows that this is indeed the case.

Hodges’ superefficient estimator: Let X1, X2, . . . , Xn be i.i.d. N(θ, 1), so that I(θ) = 1,
identically. Let | a |< 1 and define:

Tn = Xn 1(| Xn |> n−1/4) + aXn 1(| Xn |≤ n−1/4) .

Then
√

n (Tn − θ) →d N(0, V 2(θ)) where V 2(θ) = 1 = 1/I(θ) for θ 6= 0 and V 2(0) = a2 < 1/I(0).
Hence this beats the MLE X at 0, and is superefficient in this sense.

Proof: Note that
√

n (Xn − θ) ≡d Z where Z follows N(0, 1), for all n ≥ 1 and for all θ.
Now,

√
n (Tn − θ) =

√
n (Xn − θ) 1{| X |> n−1/4}+

√
n (aXn − θ) 1{| Xn |≤ n−1/4}

=
√

n (Xn − θ) 1{√n | X − θ + θ |> n1/4}
+{a√n(Xn − θ) +

√
n θ (a− 1)} 1{√n | X − θ + θ |≤ n1/4}

≡d Z 1{| Z +
√

n θ |> n1/4}+
(
aZ +

√
n θ (a− 1)

)
1{| Z +

√
n θ |≤ n1/4} .

2



If θ = 0, the above is easily seen to converge a.s. to aZ, whereas if θ 6= 0 this converges a.s. to Z.
This implies the result. Note that V 2(θ) is discontinuous in θ. If θn = c n−1/2, then under Pθn at
stage n,

√
n (Tn − θn) ≡d Z 1 {| Z + c |> n1/4}+ {aZ + c(a− 1)} 1{| Z + c |≤ n1/4} .

This converges to N(c(a− 1), a2) as n goes to infinity. Thus, the limit here depends on c. In this
sense, Hodges’ superefficient estimator is not locally regular in the following sense.

Locally regular estimators: {Tn} is called a sequence of locally regular estimators of θ at the
point θ0 if, for every sequence {θn} belonging to the parameter space with

√
n (θn − θ0) → t ∈ Rk

(here k is the number of dimensions of the parameter θ), under Pθn ,
√

n (Tn − θn) →d Z ,

where the distribution of Z can depend on θ0 but not on t.

The assumption of regularity is a key one for the convolution theorems we have in statistics; these
are roughly results that provide lower bounds on the limiting variances (or other measures of
precision) of broad classes of estimators, and in that sense provide natural thresholds for estimation.
The most well known of these – Hajek’s convolution theorem, to be discussed later, establishes the
MLE as the most optimal estimator, among all regular ones, in the usual regular parametric models.

We next turn to the important concepts of contiguity and LAN and their consequences for
inference in standard parametric models.

3 Contiguity and LAN

Consider a sequence of statistical problems with measure spaces (Xn,An, µn) (for the sake of
concreteness and as is the case in many statistical applications, you can think of Xn as Rn, An as
the Borel sigma–field on Rn and µn as Lebesgue measure). Consider two sequences of probability
measures {Pn} and {Qn} with Pn and Qn being defined on An and both being dominated by µn.
Recall that this means that whenever µn(An) = 0 for An ∈ An then Pn(An) = Qn(An) = 0. Let
pn and qn denote the densities of Pn and Qn respectively with respect to µn (which exist by the
Radon–Nikodym theroem). Define the sequence of likelihood ratios Ln where

Ln =





qn/pn , pn > 0
1 , qn = pn = 0
n , qn > 0 = pn

.

Call the sequence {Qn} to be contiguous with respect to {Pn} if, for every sequence An ∈ An for
which Pn(An) → 0, we have Qn(An) → 0. Contiguity is also referred to as “asymptotic absolute
continuity”. We write {Qn} <<as {Pn}. Of course contiguity of Pn with respect to Qn is defined
similarly. Pn and Qn are mutually contiguous with respect to each other if Qn is contiguous with
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respect to Pn and Pn is also contiguous with respect to Qn.

Example 1: Contiguity is ubiquitous in parametric models. For any sufficiently regular
parametric model {Pθ : θ ∈ Θ}, the measures {Pn

θ0+n−1/2 h
} (Pn

θ0+n−1/2 h
is the joint distribution of

i.i.d. observations X1, X2, . . . , Xn drawn from Pθ0+n−1/2 h) and {Pn
θ0
} (defined similarly as before

but with h = 0) are mutually contiguous. This will be established later in detail.

Example 2: Consider a regression model Yi = xi β + εi where the εi’s are i.i.d. N(0, σ2)
and

∑∞
i=1 x2

i < ∞. Let Pn denote the joint distribution of (Y1, Y2, . . . , Yn) under β = β0 and
Qn denote the joint distribution of the data under β = β1. Then, the sequences Pn and Qn are
mutually contiguous.

Example 3: For contiguous alternatives in nonparametric problems, see Problem (a) below.

Example 4: If P and Q are absolutely continuous with respect to each other, then the
sequence {Pn} where Pn ≡ P and {Qn} where Qn ≡ Q are contiguous with respect to one another.

We will denote Ln often by dQn/dPn. The following proposition describes various conditions
(sufficient, necessary and sufficient) for contiguity.

Proposition 0. Contiguity and the behavior of likelihood ratios.

(i) If Ln →d V under Pn where E V = 1, then Qn <<a.s Pn. (This proposition is known as
Le Cam’s first lemma and is one of the most important tools for establishing contiguity. We
discuss a key corollary of this lemma very soon that we will use quite a lot subsequently).

(ii) If Ln →d U under Pn where P (U > 0) = 1, then Pn <<a.s Qn.

(iii) Qn <<a.s Pn if and only if Ln is uniformly integrable under Pn and Qn(pn = 0) → 0.

The proposition will be (partially) established below. First, let’s try to get a feel for contiguity
from the following partially heuristic discussion. Let’s split up the sample space Xn into 4 pieces
– these are, (i) An = {pn > 0 , qn > 0} (ii) Bn = {pn = 0 , qn > 0} (iii) Cn = {qn = 0 , pn > 0}
(iv) Dn = {qn = 0 = pn}. On An, 0 < Ln < ∞, on Bn, Ln = n, on Cn, Ln = 0(by definition),
on Dn, Ln = 1. Now, note that the sets Dn do not really play a role in determining contiguity
since they are ignorable under both Pn and Qn, so we can forget that they exist and take Bn

to be the set where pn vanishes and Cn to be the set where qn vanishes. For Qn <<a.s Pn, we
must have Qn(Bn) → 0 (since Pn(Bn) ≡ 0) and for Pn <<a.s. Qn we require that Pn(Cn) → 0.
(Thus, if Pn and Qn are mutually contiguous, they must both asymptotically concentrate
on An, the subregion of Xn where pn and qn are both positive.) If Pn is contiguous w.r.t Qn,
Pn(Ln = 0) goes to 0. It is easy to deduce that Pn(Ln = 0) must go to 0 under the hypothesis of (ii).

To show this: since Ln converges to U in distribution, by the Portmanteau Theorem (look
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up the characterization of distributional convergence in Billingsley, for example),

lim inf Pn(Ln ∈ (0,∞)) ≥ P (U ∈ (0,∞)) .

But the right-side of the display is 1 showing that the lim inf on the left side is at least as large as
1. But the sequence on the left side is a sequence of probabilities and hence bounded above by 1.
Therefore the lim sup cannot exceed 1. It follows that both the lim sup and the lim inf coincide
and are equal to 1 and hence Pn(Ln ∈ (0,∞)) goes to 1. It follows that Pn(Ln = 0) goes to 0.

On the other hand, it is easy to see that (i) implies that Qn(pn = 0) must converge to 0,
provided that Ln is uniformly integrable under Pn (as it must be if you look at (i) and (iii) in
juxtaposition). Note that,

EPn(Ln) =
∫

pn>0

qn

pn
pn dµ = Qn(pn > 0) ≤ 1 .

If Ln is uniformly integrable under Pn, then EPn(Ln) converges to E V = 1. Thus Qn(pn > 0)
converges to 1. It follows that Qn(pn = 0) = 1−Qn(pn > 0) converges to 0.

We now discuss a key corollary of Le Cam’s first lemma.

Corollary to Le Cam’s first lemma: Suppose that log Ln →d L̃ under Pn where L̃ follows
N(−σ2/2, σ2). Then the sequences of probability measures Pn and Qn are mutually contiguous.
Proof: We have Ln →d exp(L̃) under Pn. Since exp(L̃) ≡ U is positive with probability 1,
by (ii) of Proposition 0, Pn is contiguous with respect to Qn. To show the converse, note that
E(exp(L̃) = φL(1) where φL is the moment–generating function of L. Now,

φL(t) = exp
(

µ t +
1
2

σ2 t2
)

,

where µ is the mean of L and σ2 the variance. But µ = −σ2/2, so

φL(1) = exp
(
−1

2
σ2 +

1
2

σ2

)
= 1 .

The desired conclusion now follows from (i) of Proposition 0.

Let us illustrate the above corollary on Example 2. We can write,

log Ln = log
Πn

i=1

(
1√

2 π σ2

)
exp

[− 1
2 σ2

∑n
i=1 (Yi − xi β1)2

]

Πn
i=1

(
1√

2 π σ2

)
exp

[− 1
2 σ2

∑n
i=1 (Yi − xi β0)2

]

= − 1
2σ2

n∑

i=1

[
(Yi − xi β1)2 − (Yi − xi β0)2

]

=
n∑

i=1

Yi xi(β1 − β0)
σ2

− 1
2

n∑

i=1

x2
i (β2

1 − β2
0)

2σ2
.
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Now, under Pn, Yi xi ∼ N(x2
i β0, x

2
i σ2) and are independent and simple algebra shows that

n∑

i=1

Yi xi(β1 − β0)
σ2

∼ N

(
β0 (β1 − β0)

σ2

n∑

i=1

x2
i ,

(β1 − β0)2

σ2

n∑

i=1

x2
i

)
.

Thus,

log Ln ∼ N

([
β0(β1 − β0)− β2

1 − β2
0

σ2

] ∑n
i=1 x2

i

σ2
,

(β1 − β0)2

σ2

n∑

i=1

x2
i

)

≡ N

(
−

∑n
i=1 x2

i

2σ2
(β1 − β0)2,

∑n
i=1 x2

i

σ2
(β1 − β0)2

)

≡ N

(
−τ2

n

2
, τ2

n

)

where

τ2
n =

∑n
i=1 x2

i

σ2
(β1 − β0)2 .

Thus,

log Ln →d N

(
lim
n
−τ2

n

2
, lim

n
τ2
n

)
≡ N

(
−τ2

2
, τ2

)
,

under Pn, where

τ2 =
∑∞

i=1 x2
i

σ2
(β1 − β0)2 < ∞ .

It follows from a direct application of the corollary above that Pn and Qn are mutually contiguous.
One can similarly work out the limit distribution of log Ln under Qn. Check for yourselves that
under Qn, log Ln converges to N(τ2/2, τ2).

Example 4 discussed: To show here that Qn is contiguous with respect to Pn, consider
the likelihood ratio Ln; this is (q/p) 1(p > 0) + n 1(p = 0), where q and p are densities with
respect to a common dominating measure µ. Since the set {p = 0} has 0 probability under
Pn ≡ P , Ln is q/p a.s. P and is independent of n. Checking uniform integrability boils down
to checking integrability of Ln; this is simply

∫
p>0 q d µ ≤ 1. Also Qn(pn = 0) = Q(p = 0) = 0

since Q is dominated by P and P (p = 0) = 0. Part (iii) of Proposition 0 now says that Qn is
contiguous w.r.t Pn. Similarly, the fact that Pn is contiguous with respect to Qn may be established.

The converse, i.e. P and Q being mutually contiguous implies that they are mutually absolutely
continuous, follows on taking a sequence of sets {An} with An = A and using the basic definition
of contiguity.

Example 5: Here is a scenario, where Pn is contiguous with respect to Qn but not the
other way around. Let Pn be the distribution of the maximum of n i.i.d. U(0, 1) random variables,
and Qn be the distribution of the maximum of n i.i.d U(0, 1 + 1/n) random variables. To show
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that Pn is contiguous with respect to Qn, we can write L̃n, the likelihood ratio of Pn with respect
to Qn. We have:

L̃n(x1, x2, . . . , xn) = (1 + 1/n)−n 1(maxi xi < 1) + n 1(maxi xi > 1 + 1/n) .

For all n, L̃n is bounded by 1 a.s. with respect to Qn; hence L̃n is uniformly integrable with
respect to Qn. Also Pn(qn = 0) = 0, since the support of qn contains the support of pn. It follows
that Pn is contiguous with respect to Qn, by Part (iii) of Proposition 0. To show that the converse
is not true, consider the set An = {maxi xi > 1}. This set An has 0 probability under Pn; the
probability of this set under Qn is simply the probability that maxi Xi lies between 1 and 1 + 1/n,
where Xi’s are i.i.d. U(0, 1 + 1/n). This is simply 1 − (1 + 1/n)−n and converges to 1 − 1/e > 0.
Hence Qn(An) does not go to 0.

Proof of Proposition 0, (i): Consider Bn ∈ An with Pn(Bn) → 0. Consider now, the
problem of testing H0 : f = pn versus H1 : f = qn based on an observation xn from the sample
space Xn. We seek to obtain the most powerful test of level αn = Pn(Bn) for this problem. By the
NP–lemma, the most powerful test φn must be of the form

φn ≡ 1 {Ln > kn}+ γn 1{Ln = kn} ,

and EPn φn = αn = Pn(Bn). Consider the test function φ̃n = 1(xn ∈ Bn). Then EPn φ̃n has level
αn and hence EQn φn ≥ EQn φ̃n = Qn(Bn). So, to show that Qn(Bn) → 0 (the defining property
of contiguity), it suffices to show that EQn φn goes to 0.

Now, for any fixed 0 < y < ∞,

EQn φn = Qn(φn 1{Ln ≤ y}) + Qn(φn 1{Ln > y})
= Pn (φn Ln 1{Ln ≤ y}) + Qn(φn 1{Ln > y})
≤ y Pn(φn) + Qn(1 {Ln > y})
= y Pn(φn) + 1−Qn(1 {Ln ≤ y})
= y Pn(φn) + 1− Pn(Ln 1 {Ln ≤ y}) .

We want to show that given any ε > 0, the quantity in the last step of the above display can
be made smaller than ε for all sufficiently large n. Now, choose y to be a continuity point of
the distribution of L, so large that E (L 1{L ≤ y}) is greater than 1 − ε/2; since E L = 1 and
the continuity points of L are dense in R this can be arranged. Now Ln 1(Ln ≤ y) converges to
L 1{L ≤ y} by Slutsky’s theorem (note that 1 {Ln ≤ y} converges in probability to 1 {L ≤ y}).
Since the random variables involved are all bounded (and therefore uniformly integrable),
expectations converge as well, and therefore, for sufficiently large n, 1 − Pn(Ln 1 {Ln ≤ y}) can
be made less than ε/2. The term y Pn(φn) can be made eventually smaller than ε/2 as well, since
αn = Pn(φn) converges to 0 by hypothesis. This finishes the proof. 2.
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Proof of Proposition 0, (iii): First, note that for Bn ∈ An, we have:

Qn(Bn) =
∫

1Bn qn dµn

=
∫

1Bn∩{pn>0} qn d µn +
∫

1Bn∩{pn=0} qn dµn

=
∫

1Bn Ln dPn +
∫

1Bn∩{pn=0} qn dµn .

Thus, on one hand, we have:

Qn(Bn) ≤
∫

1Bn Ln d Pn + Qn(pn = 0) (?),

and on the other,

Qn(Bn) ≥
∫

1Bn Ln dPn (??).

First suppose that Ln is uniformly integrable and Qn(pn = 0) converges to 0. Now, take a sequence
of sets Bn, such that P (Bn) converges to 0. From Lemma (1.1), it follows that

∫
1Bn Ln dPn

converges to 0 . Then (?) implies that Qn(Bn) goes to 0. It follows that Qn is contiguous with
respect to Pn.

Conversely, suppose that Qn is contiguous with respect to Pn. Then Qn(pn = 0) must go
to 0, since Pn(pn = 0) = 0. Take any sequence of sets Bn such that Pn(Bn) goes to 0. Then
Qn(Bn) goes to 0. From (??) it follows that

∫
1Bn Ln dPn converges to 0. Also EPn (Ln) is

bounded by 1. Hence, uniform integrability of Ln follows by Lemma (1.1). 2.

Problems: Here are a set of problems that illustrate contiguity in various different ways.

(1) (a) Let Pn = N(0, 1) and Qn = N(µn, 1). Show that the sequences Pn and Qn are mutually
contiguous if the sequence {µn} is bounded.

(b) Let Pn and Qn denote the distribution of the mean of a sample of size n from
the N(0, 1) and the N(θn, 1) distribution, respectively. Show that Pn and Qn are mutually
contiguous if θn = O(n−1/2).

(c) This part does not need to be turned in, but what about the converse? Suppose
that it is given in (a) and (b) that the sequences Pn and Qn are mutually contiguous. Can
you conclude that the sequence µn is bounded?

(2) (a) Suppose that ‖Pn − Qn‖ → 0 where ‖ ‖ is the total variation distance: i.e.
‖Pn −Qn‖ = supA∈A | P (A)−Q(A) |. Show that Pn and Qn are mutually contiguous with
respect to each other.

(b) Given ε > 0 find an example of mutually contiguous sequences but for which the
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total variation distance is at least 1 − ε. This exercise shows that it is wrong to think of
contiguous sequences as being close. (Try measures supported on two points).

(3) Contiguity in nonparametric problems: Consider i.i.d. data {Xi, Zi}n
i=1 where (X1, Z1)

has the following distribution: Z1 follows some Lebesgue density pZ , and X1 | Z1 = z has
density p(·;ψ(z)) where p(x, θ) is a regular parametric family of models. Here ψ is some
unknown (dependence) function that needs to be estimtated.

Consider a fixed point z0 such that both pZ and ψ are continuously differentiable in a
neighborhood of z0. Let Bn be a sequence of continuous functions that vanish outside the
interval (−c, c) and suppose that Bn converges uniformly to a (continuous) function B
(that also vanishes outside of (−c, c)). Define a sequence of functions ψn in the following
manner: ψn(z) = ψ0(z) + n−α Bn(n1−2 α(z − z0)), with 0 < α < 1/2. Let Qn denote the
joint distribution of {(Xi, Zi)}n

i=1, when the dependence function is ψn, and Pn the joint
distribution of {(Xi, Zi)}n

i=1, when the dependence function is ψ0. Show that the sequences
{Pn} and {Qn} are mutually contiguous.

We will now discuss Le Cam’ second lemma and its applications which will involve establishing a
LAN (local asymptotic normality) expansion of the log–likelihood ratios in a regular parametric
model. (Example 1).

The Set-Up of Le Cam’s second lemma: Consider a measure space (X ,A, µ) and let Xn =
(X1, X2, . . . , Xn) ∈ Xn ≡ X n with the product sigma–field An and probability measure µn ≡ µn

defined on it. Consider two sequences of measures {Pn} and {Qn} where Pn = Πn
i=1 Pni, Pni being

some measure on (X ,A) that is dominated by µ and has density fni and where Qn = Πn
i=1 Qni,

Qni being some measure on (X ,A) that is dominated by µ and has density gni. The density of Pn

with respect to µn is
pn(x1, x2, . . . , xn) = Πn

i=1 fni(xi)

and the density of Qn with respect to µn is

qn(x1, x2, . . . , xn) = Πn
i=1 gni(xi) .

Statistically, you can think of n independent observations from an underlying sample space with
two possible candidates for the distribution of the i’th observation at stage n – either Pni (think
of this as the null disitribution at stage n) or Qni (think of this as the alternative at stage n) and
Pn and Qn denote the joint distributions of the observed random vector Xn under the null and
the alternative respectively (at stage n). Fundamental to a study of the contiguity of these two
sequences of probability measures is an understanding of the likelihood ratio or equivalently its
logarithm,

log Ln =
n∑

i=1

log
(

gni

fni
(Xi)

)
.
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A way to determine contiguity is to study the limiting behavior of Ln (or equivalently log Ln). Le
Cam’s second lemma gives a way of doing this by analysing quantities of the type,

Wn ≡ 2
n∑

i=1

{
g
1/2
ni

f
1/2
ni

(Xi)− 1

}
≡

n∑

i=1

Tni .

This is the sum of independent random variables and provided variances do not blow up, there is
hope of invoking Central Limit Theorems. Note that each Tni has finite variance under Pn , since

EPn (Tni + 1)2 = E (gni(Xi)/fni(Xi)) =
∫

fni>0
gni dµ ≤ 1 .

Le Cam’s second lemma reduces the proof of asymptotic normality of log Ln to the problem of
establishing asymptotic normality of the sequence Wn.

Le Cam’s second lemma: Suppose that the following condition (the UAN (uniform asymptotic
negligibility) condition) holds :

max1≤i≤n Pn

(∣∣∣∣
gni

fni
(Xi)− 1

∣∣∣∣ > ε

)
→ 0 .

Suppose also that Wn converges in distribution to N(−σ2/4, σ2) for some σ2 > 0. Then,

log Ln − (Wn − σ2/4) = oPn(1)

and hence
log Ln →d N(−σ2/2, σ2)

under Pn showing thereby that Qn and Pn are mutually contiguous.

We will not prove this lemma here. The proof is long and provided in Wellner’s notes.
However, we will study an important consequence of this lemma. We specialise to the case of i.i.d.
observations. Thus, at stage n, X1, X2, . . . , Xn are i.i.d f under Pn (thus fni ≡ f) and under
Qn, they are i.i.d. fn (thus gni ≡ fn). But before, we proceed further, we need some preliminary
notions. These are discussed below.

The notion of the derivative of a function taking values in L2(µ) is defined in a way analogous to
that in multivariate calculus. Formally, a map ψ : Θ → L2(µ), where Θ is an open subset of Rp, is
said to be differentiable in quadratic mean (QMD) at θ0 with derivative vector V in L2(µ)p if

ψ(θ0 + ε)− ψ(θ0)− εT V = o(‖ε‖) ,

i.e.
‖ψ(θ0 + ε)− ψ(θ0)− εT V ‖µ

‖ε‖ → 0 .
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The vector V is the total derivative of the map ψ at the point θ0 and can be viewed as a linear
map Dψ(θ0) from Rp to L2(µ) which is defined as:

Dψ(θ0)(η) = ηT V ∈ L2(µ) ,

for η ∈ Rp. Since the vector V has the interpretation of a derivative (the derivative of ψ at the
point θ0) in an extended sense, a natural question arises as to whether V is actually the pointwise
derivative of ψ(·, θ) with respect to θ at the point θ0 (assuming adequate smoothness of ψ in θ). In
other words, is

Dψ(θ0) =
∂

∂ θ
ψ(·, θ) |θ=θ0 ?

The following lemma gives sufficient conditions for this to be the case.

Lemma 3.1 Let θ 7→ ψ(·, θ) be a map from Rp to L2(µ). If 5θ ψ(·, θ) exists for almost all x (w.r.t
µ), for θ in some neighborhood of θ0 and the function

θ 7→
∫
‖5θ ψ(x, θ)‖2 dµ(x) ,

is continuous at θ0, then ψ is QMD at θ0 with derivative vector V ≡ Vθ0 ≡ 5θ ψ(x, θ0).

Note that if h is a density function on X , then h1/2 is in L2(µ). For our current purpose, we
will be specially interested in studying the function s(θ) = f(·, θ)1/2 where {f(·, θ) : θ ∈ Θ} is a
regular parametric model. Now suppose that the function θ 7→ s(θ) is QMD with derivative vector
ṡ(θ) ∈ Rp, p being the dimension of θ. Thus,

‖f(θ0 + ε)1/2 − f(θ0)1/2 − εT ṡ(·, θ0)‖ = o(‖ε‖) . (3.1)

This is often referred to as Hellinger differentiability of the model at the point θ. (Formally,
the Hellinger distance between two probability densities p and q on X is defined as
H(p, q) = ‖p1/2 − q1/2‖µ.) This will be seen to have an important bearing on the local
log–likelihood ratios of the model. To that end, we require the following proposition.

Proposition 1: Suppose that we have a sequence of densities {fn} and a fixed density f such that,
∥∥∥√n(f1/2

n − f1/2)− δ
∥∥∥

2
→ 0

as n →∞ for some δ ∈ L2(µ). Thus the sequence

f
1/2
n − f1/2

1/
√

n
→n→∞ δ

in the L2(µ) metric. Then,

Ef

(
δ

f1/2

)
= 0

11



and

log Ln −
(

1√
n

n∑

i=1

2 δ

f1/2
(Xi)− 1

2
‖2 δ‖2

)
= oPn(1) .

Consequently,

log Ln →d N

(
−1

2
‖2 δ‖2 , ‖2 δ‖2

)
.

It follows that the sequence of probability measures Qn and Pn are mutually contiguous.

Proof: In the following proof IP (f, g) will denote the usual inner product between functions f
and g in L2(µ).

We have,

Wn =
n∑

i=1

Tni

where Tn1, Tn2, . . . , Tnn are independent and Tni = 2 (f1/2
n (Xi)/f1/2(Xi) − 1). We will first show

that as claimed, Ef (δ/f1/2) = 0. Then, by the CLT it will follow that,

1√
n

n∑

i=1

2 δ

f1/2
(Xi) → N

(
0, Var

(
2 δ

f1/2

))
≡ N(0, ‖2 δ‖2) ,

since,

Var
(

2 δ

f1/2

)
= Ef

(
4 δ2

f

)
=

∫
4 δ2/f f dµ = ‖2 δ‖2 .

Next, we will show that,

Wn − 2√
n

n∑

i=1

δ

f1/2
(Xi) + ‖δ‖2 = oPn(1) . (?)

This will imply that

Wn →d N(−‖δ‖2, ‖2 δ‖2) ≡ N(−σ2/4, σ2) under Pn ,

where σ2 = ‖2 δ‖2. By Le Cam’s second lemma,

log Ln − (Wn − σ2

4
) = oPn(1) .

Now (?) readily implies that,

log Ln −
(

1√
n

n∑

i=1

2 δ

f1/2
(Xi)− 1

2
‖2 δ‖2

)
= oPn(1) .

12



What we have omitted above is the verification of the UAN condition. This will be done last.
Step 1. Show that, Ef (δ/f1/2)(X1) = 0. Now, using

‖√n(f1/2
n − f1/2)− δ‖2 → 0 (0)

we easily conclude that,

‖√n(f1/2
n − f1/2)‖2 ≡ n ‖(f1/2

n − f1/2)‖2 → ‖δ‖2 . (1)

Thus,
‖(f1/2

n − f1/2)‖2 → 0 (2) .

Now,

1 =
∫

fn dµ =
∫ (

f1/2 +
δ√
n

+ rn

)2

dµ ,

where
rn ≡ f1/2

n − f1/2 − δ√
n

= o(n−1/2)

by (0). Thus,

1 =
∥∥∥∥f1/2 +

δ√
n

+ rn

∥∥∥∥
2

=
∥∥∥∥f1/2 +

δ√
n

∥∥∥∥
2

+ ‖rn‖2 + 2 IP

(
f1/2 +

δ√
n

, rn

)

= ‖f1/2‖2 + 2 IP

(
f1/2,

δ√
n

)
+
‖δ‖2

n
+ ‖rn‖2 + 2 IP

(
f1/2 +

δ√
n

, rn

)

= 1 + 2
1√
n

∫
δ f1/2 dµ + o(n−1/2) ,

since ‖δ‖2 and ‖rn‖2 are O(n−1) and IP
(
f1/2 + δ√

n
, rn

)
is o(n−1/2). It follows that

0 = 2
1√
n

∫
δ f1/2 dµ + o(n−1/2)

or equivalently

0 = 2
∫

δ f1/2 dµ + n1/2 o(n−1/2) .

But n−1/2 o(n−1/2) is o(1) showing that,
∫

δ f1/2 dµ = Ef

(
δ

f1/2

)
= 0 .

Step 2. To show that

Wn − 2√
n

n∑

i=1

δ

f1/2
(Xi) + ‖δ‖2 = oPn(1)

13



it suffices to prove, by Markov’s inequality, that

V 2
n ≡ EPn

[
Wn − 2√

n

n∑

i=1

δ

f1/2
(Xi) + ‖δ‖2

]2

= oPn(1) .

Now,

V 2
n = E

[
n∑

i=1

2

(
f

1/2
n

f1/2
(Xi)− 1

)
− 2√

n

n∑

i=1

δ

f1/2
(Xi) + ‖δ‖2

]2

= 4 E (K1 + K2 + . . . + Kn)2 ,

where K1,K2, . . . , Kn are i.i.d. random variables and

Ki =

(
f

1/2
n

f1/2
(Xi)− 1

)
− 1√

n

δ

f1/2
(Xi) +

‖δ‖2

2n
.

Thus,
V 2

n = n E(K2
1 ) + n(n− 1) (E(K1))2 .

To show that V 2
n goes to 0 it suffices to show that both E(K1) and E(K2

1 ) are o(n−1). Now,

E(K1) = E

(
f

1/2
n

f1/2
(X1)− 1− 1√

n

δ

f1/2
(X1) +

‖δ‖2

2n

)

= E

(
f

1/2
n

f1/2
(X1)

)
− 1 +

‖δ‖2

2n

=
∫ √

fn(x) f(x) dµ(x)− 1 +
‖δ‖2

2n

= −1
2

[
2− 2

∫
f1/2

n f1/2 d µ

]
+
‖δ‖2

2n

= −1
2
‖f1/2

n − f1/2‖2 +
‖δ‖2

2n
.

Thus,

nE(K1) =
1
2

(
−n ‖f1/2

n − f1/2‖2 + ‖δ‖2
)
→ 0 ,

by (1). Next,

E(K2
1 ) = Ef

[
f

1/2
n

f1/2
(X1)− 1− 1√

n

δ

f1/2
(X1) +

‖δ‖2

2n

]2

=
∫ (

f1/2
n − f1/2 − δ√

n
+
‖δ‖2

2n
f1/2

)2

dµ

14



=
∥∥∥∥rn +

‖δ‖2

2n
f1/2

∥∥∥∥
2

≤ 2
[
‖rn‖2 +

‖δ‖4

4n2
‖f1/2‖2

]

= o(n−1) ,

since ‖rn‖2 is o(n−1). This completes the proof of Step 2.

Step 3. Verification of the UAN condition. We have

max1≤i≤n Pn

(∣∣∣∣
gni

fni
(Xi)− 1

∣∣∣∣ > ε

)
= Pf

(∣∣∣∣
fn

f
(X1)− 1

∣∣∣∣ > ε

)

≤ 1
ε

Ef

(∣∣∣∣
fn

f
(X1)− 1

∣∣∣∣
)

=
1
ε
Ef

(∣∣∣∣∣
f

1/2
n

f1/2
(X1)− 1

∣∣∣∣∣

∣∣∣∣∣
f

1/2
n

f1/2
(X1) + 1

∣∣∣∣∣

)

≤ 1
ε


Ef

[
f

1/2
n

f1/2
(X1)− 1

]2

Ef

[
f

1/2
n

f1/2
(X1) + 1

]2



1/2

=
1
ε

[∫ (
f1/2

n − f1/2
)2

dµ

∫ (
f1/2

n + f1/2
)2

dµ

]1/2

→ 0 ,

since ∫
(f1/2

n + f1/2)2 dµ ≡ ‖f1/2
n + f1/2‖2 ≤ 2 (‖f1/2

n ‖2 + ‖f1/2
n ‖2) = 4

and ∫ (
f1/2

n − f1/2
)2

= ‖f1/2
n − f1/2‖2 → 0

by (2). This proves the UAN condition.

LAN in a Hellinger–differentiable parametric model: Recall the definition of Hellinger
differentiability of a regular parametric model. This is illustrated in display (3.1). This implies
that for a fixed vector h, we have,

∥∥p(·, θ0 + n−1/2 h)1/2 − p(·, θ0)1/2 − n−1/2 hT ṡ(·, θ0)
∥∥

µ

n−1/2 ‖h‖ → 0 ;

equivalently ∥∥∥∥∥
√

n

(
p

(
·, θ0 +

h√
n

)1/2

− p(·, θ0)1/2

)
− hT ṡ(·, θ0)

∥∥∥∥∥
µ

→ 0 .
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Thus, we are in the set-up of Proposition 1 with fn ≡ p(·, θ0+h/
√

n), f ≡ p(·, θ0) and δ = hT s(·, θ0).
Hence, using Proposition 1 we obtain,

log Ln =
1√
n

n∑

i=1

2hT ṡ(Xi, θ0)
f(Xi, θ0)1/2

− 1
2
‖2hT ṡ(·, θ0)‖2 + oPn(1) .

Consequently,

log Ln ≡
dPn

θ0+h/
√

n

dPn
θ0

(X1, X2, . . . , Xn) →d N

(
−1

2
‖2hT ṡ(·, θ0)‖2, ‖2hT ṡ(·, θ0)‖2

)
.

It remains to identify ṡ(·, θ). For nice regular parametric models, the sufficient conditions in Lemma
3.1 hold good and ṡ(x, θ) is simply the partial derivative of f1/2(x, θ) with respect to θ. Thus,

ṡ(x, θ) =
∂

∂ θ
f(x, θ)1/2 = f(x, θ)1/2 1

2
∂

∂ θ
log f(x, θ)1/2 ≡ f(x, θ)1/2 1

2
l̇(x, θ) .

Going back to the conditions of Lemma 3.1, the existence of 5θ ṡ(x, θ) for µ almost all x for every
θ is guaranteed by the underlying regularity conditions and the continuity hypothesis is easy to
verify. For simplicity, if θ is 1–dimensional then,

∫
‖ 5θ ṡ(x, θ)‖2 d µ =

∫
1
4

l̇(x, θ)2 f(x θ) d µ(x) =
1
4

Eθ(l̇(X1, θ)2) =
I(θ)
4

< ∞ ,

and continuity of I(θ) at θ0 guarantees Hellinger differentiability of the model at θ0.

Thus, on plugging in the expression for ṡ obtained above, log Ln has the asymptotic linear
representation (known as the LAN expansion) given by,

log Ln =
1√
n

n∑

i=1

hT l̇(Xi, θ)− 1
2

hT I(θ) h + oPn(1) .

By Proposition 0, it follows that the sequence of measures {Pn
θ0+h n−1/2} and {Pn

θ0
} are mutually

contiguous, as claimed in Example 1. We next come to LeCam’s third lemma.

LeCam’s third lemma: Suppose that Tn = (Tn,1, Tn,2, . . . , Tn,p) satisfies,
(

Tn

log d Qn

d Pn

)
→d Np+1

(
(µT

p×1,−σ2/2)T , Γ
)

under Pn with

Γ =
(

Σ γp×1

γT σ2

)
.

Then {Qn} and {Pn} are mutually contiguous and furthermore,
(

Tn

log d Qn

d Pn

)
→d Np+1

(
(µ + γ)T

p×1, σ
2/2)T ,Γ

)
,
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under the sequence {Qn}.

This proposition is extremely useful as it allows us to deduce the limit distribution of Tn

under Qn from its joint distribution with the log–likelihood ratio under Pn. We will use this
lemma to obtain the limit distribution of the likelihood ratio statistic, the Wald statistic and the
score statistic under contiguous alternatives in regular parametric problems and finally obtain
approximations to the power of these tests at alternatives close to the null hypothesis. We first
provide a proof of (a simplified version of) this result.

The simpler version: Suppose that a statistic Tn satisfies:

L((Tn, log Ln)T | Pn) → L((T, log L)T ) ,

where

(T, log L)T ∼ N2

((
µ

−σ2/2

)
,

(
τ2 c
c σ2

))
.

Then, L((Tn, log Ln)T | Qn) → L((T + c, log L + σ2)T ) which has distribution:

N2

((
µ + c
σ2/2

)
,

(
τ2 c
c σ2

))
.

Proof: Since L(log Ln | Pn) → L(log L) = N(−σ2/2, σ2), it follows that E L = 1, and hence Qn

is contiguous w.r.t. Pn by Proposition 0 (part (i)). Hence, by part (iii) of Proposition 0, Ln is
uniformly integrable and Qn(pn = 0) → 0.

To show that under Qn, the distribution of (Tn, log Ln) converges to the claimed limit, we
proceed as follows. Take any bounded continuous function f from R2 → R. We want to show that
EQn f(Tn, log Ln) → E f(T + c, log L + σ2). Now, we have:

EQn f(Tn, log Ln) = EQn [f(Tn, log Ln) 1{pn > 0}] + EQn [f(Tn, log Ln) 1{pn = 0}]
= EPn [f(Tn, log Ln) Ln] + EQn [f(Tn, log Ln) 1{pn = 0}]
→ E [f(T, log L)L] .

The last step here follows on noting that EQn [f(Tn, log Ln) 1{pn = 0}] is bounded up to a
constant by Qn(pn = 0) which goes to 0 (established above). Since f is bounded and Ln is
uniformly integrable, so is the sequence f(Tn, log Ln) Ln. Furthermore, under Pn the sequence
f(Tn, log Ln) Ln converges in distribution to f(T, log L) L by the continuous mapping theorem. It
follows from Theorem 1.1 that EPn [f(Tn, log Ln) Ln] → E [f(T, log L)L].

It remains to show that E [f(T, log L)L] = E [f(T + c, log L + σ2)], whence it will follow that the
limit distribution of (Tn, log Ln) under Qn is precisely the distribution of (T + c, log L + σ2). To
this end, first observe that:

L (T | log L) = L
(

c

σ2

(
log L +

σ2

2

)
+ Z̃

)
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where L(Z̃) = N(µ, σ2(1 − ρ2)) where ρ = c/σ τ and is independent of log L. This is a direct
consequence of the fact that for a normal random vector (X,Y ), we can write Y = E(Y | X) +
(Y −E(Y | X)), where Y −E(Y | X) is independent of X and E(Y | X) is an explicitly computable
linear function of X. It follows that:

L(T + c | log L) = L
(

c

σ2

(
log L + σ2 +

σ2

2

)
+ Z̃

)
.

Now, consider

E f(T, log L)L = E [E (f(T, log L) L | log L]

= E

{
LE

[
f

(
c

σ2

(
log L +

σ2

2

)
+ Z̃, log L

)
| log L

]}

≡ E [Lξ(log L)] ,

say. Let g denote the N(−σ2/2, σ2) density and g̃ denote the N(σ2/2, σ2) density. Now,

E [Lξ(log L)] =
∫

ew ξ(w) g(w) dw =
∫

ξ(w) g̃(w) dw .

But since g̃ is the distribution of log L + σ2, it follows that

E [Lξ(log L)] = E [ξ(log L + σ2)] .

Hence, we can write:

E f(T, log L) L = E

{
E

[
f

(
c +

c

σ2

(
log L +

σ2

2

)
+ Z̃, log L + σ2

)
| log L

]}

= E f(T + c, log L + σ2) .

This finishes the proof.

Let us deduce the limit distribution of θ̂n, the MLE under a sequence of contiguous alternatives of
the form {Pθ0+h/

√
n} in a regular parametric model. Under {Pn

θ0
} we have,

√
n(θ̂n − θ0) =

1√
n

I(θ0)−1
n∑

i=1

l̇(Xi, θ0) + op(1) .

Also, by the LAN expansion established in the previous notes, the local log–likelihood ratio is,

log Ln ≡ log
Πn

i=1 f(Xi, θ0 + h/
√

n)
Πn

i=1 f(Xi, θ0)
=

1√
n

n∑

i=1

hT l̇(Xi, θ0)− 1
2

hT I(θ0) h + op(1) .

Thus, under {Pn
θ0
} we have the representation,

( √
n (θ̂n − θ0)
log Ln

)
=

[
1√
n

∑n
i=1 I(θ0)−1 l̇(Xi, θ0)

1√
n

∑n
i=1 hT l̇(Xi, θ0)

]
+

(
op(1)

−1
2 hT I(θ0) h

)
.
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To handle the first term on the right-side of the above display we need a multivariate central limit
theorem. The one that is suitable for our purposes can be stated as follows.

Multivariate CLT: Let W1,W2, . . . , be a sequence of i.i.d. random vectors with E(W1) = η and
Cov(W1) = Γ. Then,

√
n (Wn − η) ≡ 1√

n

n∑

i=1

(Wi − η) →d Np(0, Γ) .

Here p is the dimensionality of the Wi’s.

We apply this theorem with Wi = (l̇(Xi, θ0)T , hT l̇(Xi, θ0))T . Check that η = 0. Also,
check that

Γ =
(

I(θ0)−1 hp×1

hT hT I(θ0) h

)
,

where
h = Cov

[
I(θ0)−1 l̇(X1, θ0), hT l̇(X1, θ0)

]

since
E

[
I(θ0)−1 l̇(X1, θ0) l̇(X1, θ0)T h

]
= I(θ0)−1 I(θ0) h = h .

Thus, [
1√
n

∑n
i=1 l̇(Xi, θ0)

1√
n

∑n
i=1 hT l̇(Xi, θ0)

]
→d N(p+1)× 1(0(p+1)×1,Γ)

under Pn. Consequently, under Pn,
( √

n (θ̂n − θ0)
log Ln

)
→ N(p+1)× 1

((
0T

p×1,−
1
2

hT I(θ0) h

)T

,Γ

)
.

So, the hypotheses of Le Cam’s third lemma are satisfied with σ2 = hT I(θ0)h and γ = h and we
conclude that under the sequence Qn,

( √
n (θ̂n − θ0)
log Ln

)
→ N(p+1)× 1

((
hT

p×1,
1
2

hT I(θ0) h

)T

, Γ

)
.

Thus, √
n (θ̂n − θ0) →d Np(h, I(θ0)−1)

under Qn.

Now, recall the three different statistics for testing the null hypothesis H0 : θ = θ0. These are, (i)
The likelihood ratio statistic, LRS = 2 log λn (ii) The Wald statistic, Wn = n (θ̂n−θ0)T În (θ̂n−θ0)
and (iii) The Score statistic,

Rn =

[
1√
n

n∑

i=1

l̇(Xi, θ0)

]T

Î−1
n

[
1√
n

n∑

i=1

l̇(Xi, θ0)

]
.
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In the above expressions, În is an estimate of the information matrix based on X1, X2, . . . , Xn. If
we explicitly know the form of the information matrix I(θ) and I(θ) is continuous in θ we can take
În to be I(θ̂n) (or even I(θ0)!!); otherwise, we can also estimate I(θ0) by

1
n

n∑

i=1

l̇(Xi, θ0) l̇T (Xi, θ0) or − 1
n

n∑

i=1

l̈(Xi, θ0) .

We know that Wn and LRS are asymptotically equivalent; i.e.

2 log λn −Wn →p 0 under Pn
θ0

;

in fact,
2 log λn = n (θ̂ − θ0)T I(θ0) (θ̂ − θ0) + oP n

θ0
(1) .

We seek to compute the limit distributions of these three statistics under the sequence Pn
θn

where
θn = θ0 + h n−1/2. By contiguity, oP n

θ0
(1) is also oP n

θn
(1); thus, under Pn

θn
we still have the

representation,
2 log λn =

√
n(θ̂ − θ0)T I(θ0)

√
n (θ̂ − θ0) + op(1) .

Under Pn
θn

,
√

n (θ̂ − θ0) →d Zh where Zh ∼ N(h, I(θ0)−1). It follows that

√
n(θ̂ − θ0)T I(θ0)

√
n (θ̂ − θ0) →d ZT

h I(θ0) Zh ,

and consequently that, 2 log λn →d ZT
h I(θ0) Zh. Noting that,

Wn =
√

n(θ̂ − θ0)T I(θ0)
√

n (θ̂ − θ0) + op(1)

under Pn
θ0

and arguing as above, we conclude that under Pn
θn

, Wn →d ZT
h I(θ0) Zh as well.

The limit distribution of Rn can be similarly derived. To this end, first establish that
under Pn

θ0
,

(
1√
n

∑n
i=1 l̇(Xi, θ0)
log Ln

)
→d Np+1

[(
0p×1

−1
2 hT I(θ0) h

)
,

(
I(θ0) I(θ0) h

hT I(θ0)T hT I(θ0) h

)]
.

This is left as an exercise (and follows on using the multivariate CLT as before). Thus, under Pn
θn

,

(
1√
n

∑n
i=1 l̇(Xi, θ0)
log Ln

)
→d Np+1

[(
I(θ0) h

1
2 hT I(θ0) h

)
,

(
I(θ0) I(θ0) h

hT I(θ0)T hT I(θ0) h

)]
.

Thus, under Pn
θn

,
1√
n

n∑

i=1

l̇(Xi, θ0) →d Np(I(θ0) h, I(θ0)) . (? ?)
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Also, under Pn
θn

,

Rn =

[
1√
n

n∑

i=1

l̇(Xi, θ0)

]T

I(θ0)−1

[
1√
n

n∑

i=1

l̇(Xi, θ0)

]
+ op(1) .

As before, using contiguity and the fact (? ?) deduce that

Rn →d Z̃T
h I(θ0)−1 Z̃h ≡d ZT

h I(θ0) Zh ,

where Z̃h ∼ Np(I(θ0) h, I(θ0)). The last equality in distribution needs justification. To this end,
we briefly discuss the non-central χ2 distribution.

Non-central χ2: Let Z1, Z2, . . . , Zp be independent normal random variables each with unit
variance and Zi having mean µi. So, Z = (Z1, Z2, . . . , Zp)T ∼ Np(µ, Ip) where µ = (µ1, µ2, . . . , µp)
and Ip is the identity matrix. Then, the distribution of ‖Z‖2 = ZT Z = Z2

1 + Z2
2 + . . . + Z2

p

depends on µ only through ‖µ‖2 and ‖Z‖2 is said to follow a non–central χ2
p distribution with

non–centrality parameter ∆ = ‖µ‖2. We write this distribution as χ2
p(‖µ‖2).

Now, consider the expression

ZT
h I(θ0) Zh = (I(θ0)1/2 Zh)T I(θ0)1/2 Zh

where I(θ0)1/2 is the symmetric square root of I(θ0). Check that I(θ0)1/2 Zh ∼ Np(I(θ0)1/2 h, Ip);
hence,

ZT
h I(θ0) Zh ∼ χ2

p(∆ = ‖I(θ0)1/2 h‖2 = hT I(θ0) h) .

Check that Z̃T
h I(θ0)−1 Z̃h is also distributed as χ2

p(h
T I(θ0) h).

We next turn our attention to composite hypothesis of the form H0,ν : ν = ν0 where ν is a
k–dimensional sub–parameter of θ with k < p; thus we write θ = (ν, η). Let θ̂0

n = (ν0, η̂
0
n) denote

the MLE of θ computed under H0 and let (ν̂n, η̂n) denote the unrestricted MLE of θ. Let,

Zn(θ) =
1√
n

n∑

i=1

l̇(Xi, θ) =

(
1√
n

∑n
i=1 l̇ν(Xi, ν, η)

1√
n

∑n
i=1 l̇η(Xi, ν, η)

)
.

For testing H0,ν we can once again consider three different statistics:

(i)

2 log λn = 2 log
sup(ν,η)∈Θ Πn

i=1 f(Xi, ν, η)
sup(ν0,η)∈Θ Πn

i=1 f(Xi, ν0, η)
;

this is the likelihood ratio statistic.

21



(ii)

Wn =
√

n (ν̂n − ν0)T Î11.2

√
n (ν̂n − ν0) ;

this is the Wald statistic. In the above expression Î11.2 is an (consistent) estimate of I11.2 =
I11 − I12 I−1

22 I21; these symbols carrying their usual meanings.

(iii)

Rn = Zn(θ̂0
n)T Î−1 Zn(θ̂0

n) ;

this being the score statistic. In the above expression Î is an estimate of the information
matrix I; if I(θ) is known explicitly as a function of θ, one can use I(θ̂0

n) as an estimate;
otherwise one can prescribe n−1

∑n
i=1 l̈(Xi, ν0, η̂

0
n) as an estimate.

We have the following proposition.

Proposition: Under the sequence Pn
θ0

, where θ0 = (ν0, η0) ∈ Hν,0, each of the above three
statistics converges in distribution to χ2

k. Under the sequence of contiguous alternatives Pn
θn

where
θn = (νn, ηn) = (ν0 + n−1/2 h1, η0 + n−1/2 h2), each of the above statistics converges in distribution
to χ2

k(h
T
1 I11.2 h1).

We will not give a complete proof of this proposition but will sketch a derivation (the details of
which can be filled in) for the likelihood ratio and the Wald statistics. In Homework 2, we’ve
established that under {Pn

θ0
},

2 log λ̂n =
√

n (ν̂n − ν0)T I11.2

√
n (ν̂n − ν0) + op(1) .

Also,
Wn =

√
n (ν̂n − ν0)T Î11.2

√
n (ν̂n − ν0) + op(1) .

To deduce the limit distributions of the above two statistics under Pn
θn

, it suffices to find the limit
distribution of

√
n(ν̂n − ν0). Recall that under Pn

θ0
,

√
n (ν̂n − ν0) =

1√
n

n∑

i=1

I−1
11.2 l̇?(Xi, θ0) + op(1) ,

with
l̇?(x, θ0) = l̇ν(x, θ0)− I12 I−1

22 l̇η(x, θ0)

being the efficient score function for the estimation of ν when the true parameter is θ0. Apply the
multivariate CLT as before, to conclude that,

( √
n (ν̂n − ν0)
log Ln

)
→d Np+1

[(
0p×1

−1
2 hT I(θ0) h

)
,

(
I−1
11.2 γ
γT hT I(θ0) h

)]
,
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where

γ = Cov
[
I−1
11.2 l̇?(X1, θ0), hT l̇(X1, θ0)

]

= I−1
11.2 Cov

[
l̇?(X1, θ0), l̇(X1, θ0)

]
h

= I−1
11.2

{
Cov

[
l̇?(X1, θ0), l̇ν(X1, θ0)

]
, Cov

[
l̇?(X1, θ0), l̇η(X1, θ0)

]}(
h1

h2

)

= I−1
11.2

[
I11.2k×k

, 0k×(p−k)

] (
h1k×1

h2(p−k)×1

)

= h1 .

In the above we have used the facts that

Cov [l̇?(X1, θ0), l̇η(X1, θ0)] = 0

and that

Cov
[
l̇?(X1, θ0), l̇ν(X1, θ0)

]
= Cov

[
l̇?(X1, θ0), l̇?(X1, θ0)

]
+ Cov

[
l̇?(X1, θ0), l̇ν(X1, θ0)− l̇?(X1, θ0)

]

= I11.2 + 0 .

These can be obtained through direct computations or by using the fact that l̇?(x, θ0) is the
(orthogonal) projection of l̇ν(x, θ0) into the orthocomplement of the linear span of l̇η(x, θ0) in the
(Hilbert/inner product) space of all square integrable functions with respect to Pθ0 .

It follows that under Pn
θn

, √
n (ν̂n − ν0) → N(h1, I

−1
11.2)

as a direct application of LeCam’s third lemma. Since any estimate Î11.2 that is consistent under
Pn

θ0
is also consistent under Pn

θn
, conclued that 2 log λn and Wn both converge in distribution to

ST
h I11.2 Sh with Sh ∼ Nk(h1, I

−1
11.2). But this has the χ2

k(h
T
1 I11.2 h) distribution.

4 Convolution Theorem

See Sections 4 and 5 of Chapter 3 of Wellner’s notes.
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