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a  b  s  t  r  a  c  t

Homogeneous  charge  compression  ignition  (HCCI)  is  a futuristic  combustion  technology  that  operates
with  high  efficiency  and  reduced  emissions.  HCCI  combustion  is characterized  by complex  nonlinear
dynamics  which  necessitates  the  use  of a predictive  model  in  controller  design.  Developing  a  physics
based  model  for HCCI  involves  significant  development  times  and  associated  costs  arising  from  devel-
oping  simulation  models  and  calibration.  In  this  paper,  a neural  networks  (NN)  based  methodology
is  reported  where  black  box  type  models  are  developed  to predict  HCCI  combustion  behavior  during
transient  operation.  The  NN  based  approach  can  be  considered  a low  cost  and quick  alternative  to the
traditional  physics  based  modeling.  A  multi-input  single-output  model  was  developed  each  for  indi-
cated  net  mean  effective  pressure,  combustion  phasing,  maximum  in-cylinder  pressure  rise  rate  and
equivalent  air–fuel  ratio.  The  two  popular  architectures  namely  multi-layer  perceptron  (MLP)  and  radial
adial basis network
rincipal component analysis

basis network  (RBN)  models  were  compared  with  respect  to  design,  prediction  performance  and  overall
applicability  to the transient  HCCI modeling  problem.  A  principal  component  analysis  (PCA)  is done  as  a
pre-processing  step  to reduce  input  dimension  thereby  reducing  memory  requirements  of  the  models.
Also, PCA  reduces  the  cross-validation  time  required  to identify  optimal  model  hyper-parameters.  On
comparing  the  model  predictions  with  the  experimental  data,  it was shown  that  neural  networks  can  be
a powerful  approach  for  non-linear  identification  of a complex  combustion  system  like  the  HCCI  engine.
. Introduction

In recent years, the requirements on automotive performance,
missions and safety have become stringent. In spite of advanced
oncepts entering the industry, achieving fuel economy, emission
nd cost targets simultaneously still remain an arduous task. HCCI
ngines shifted the spotlight from traditional spark ignited (SI)
nd compression ignited (CI) engines owing to its ability to reduce
missions and fuel consumption significantly [1–3]. The fuel lean
ixtures allow HCCI to operate with a larger compression ratio

imilar to diesel engines resulting in high thermal efficiency [4].
lso, absence of throttle improves volumetric efficiency. The fuel

nd oxidizer are premixed which results in clean combustion
nd hence reduced emissions [4].  A characteristic feature of
CCI combustion is that the peak in-cylinder temperatures are

ow resulting in low nitrogen oxides (NOX) emissions [5].  The

∗ Corresponding author at: 2032 AL, 1231 Beal Ave, Ann Arbor, MI  48109-2133,
SA. Tel.: +1 734 358 6633.
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568-4946/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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© 2013  Elsevier  B.V.  All rights  reserved.

homogeneous mixtures result in reduced soot emissions [4].  In
spite of its known advantages, HCCI combustion poses several
challenges for implementation. These include the absence of a
direct trigger for combustion, narrow operating range and high
sensitivity to ambient conditions amongst others.

Control of HCCI combustion is a challenging problem and con-
trol decisions are often made using a predictive model of the engine
[6–8]. The quality of the predictive model in terms of its accuracy of
prediction and computational requirement for on-line application
are some of the important criteria that directly affects the control
performance for HCCI engines. HCCI combustion is characterized
by complex nonlinear chemical kinetics and thermal dynamics
and high-fidelity behavior can be assessed using numerical sim-
ulations [9–12]. Such models demand a large computational time
and effort and are not directly suitable for control. Control-oriented
reduced order models [13,8] can be developed by using simpli-
fying assumptions but require significant development time and
associated costs. To accelerate HCCI implementation on automotive

applications, a key requirement is to develop predictive dynamic
models quickly that can capture the required dynamics for con-
trol purposes and has the potential to be implemented on-board
having limited computation and memory resources. This forms the

dx.doi.org/10.1016/j.asoc.2013.01.006
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:vijai@umich.edu
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ain motivation for the interdisciplinary research considered in
his work.

For the HCCI identification problem, neural networks (NN) were
elected for their fast operation and sufficient approximation capa-
ilities to fit nonlinear systems [14–19].  Also, when NN is trained
n real-world data, it represents the real system and makes no sim-
lifying assumptions of the underlying phenomena. The dynamics
f sensors, actuators and other complex processes which are usu-
lly overlooked/hard to model using physics can be captured using
he identification method. In addition, for a system like the combus-
ion engine, prototype hardware is typically available and extensive
xperimental data can be collected making the identification
pproach more attractive. Several implementations of NN for non-
inear system modeling and control have been reported in the liter-
ture [19–21].  A diesel locomotive engine was identified using NN
22]. Recurrent neural network models were applied as virtual sen-
ors to predict specific quantities like NOX [23], air–fuel ratio [24].
ecently the authors have shown the applicability of support vector
achines [25,26] for modeling combustion dynamics for HCCI. The

dentification of HCCI combustion is not common owing to the com-
lex behavior and narrow operating range of HCCI [27,28]. Apart
rom the authors, the only other report on HCCI identification [7]
nvolved a subspace based identification where linear and polyno-

ial kernel models were developed for model predictive control.
In this paper, a framework for nonlinear system identification

sing neural networks and PCA is developed for gasoline HCCI com-
ustion. For the training process, transient engine data is required
ut data collection from a HCCI engine is very challenging dur-

ng transients as certain excitations can drive the engine unstable
r even misfire. Hence a methodology for design of experiments
s described considering the steady state experiments and filter-
ng unstable excitations. PCA is used to reduce the input (feature)
imension for the regression problem which makes neural network
raining efficient and fast. A multi-input single-output model was
eveloped for the primary indicators used to evaluate combus-
ion quality and performance of HCCI such as net mean effective
ressure (NMEP), combustion phasing indicated by crank angle at
0% mass fraction burned (CA50), maximum in-cylinder pressure
ise rate (Rmax) and equivalent air–fuel ratio (EAFR) in the cylinder.

 comparison study is conducted to evaluate two  different neu-
al network architectures – Multi-Layer Perceptron model and the
adial basis network models for suitability of application to the HCCI
dentification problem.
. Identification using neural networks

A generic nonlinear identification model using the nonlinear
uto regressive model with exogenous input (NARX) is considered
s follows

Input Neurons

Hidden Neurons

Output Neurons

(a) Series-Parallel Ar chitecture

Fig. 1. Recurrent neural ne
omputing 13 (2013) 2375–2389

y(k) = f [u(k − 1),  . . . , u(k − nu), y(k − 1),  . . . , y(k − ny)] (1)

where u(k) ∈ R
ud and y(k) ∈ R

yd represent the inputs and outputs
of the system, respectively, k represents the discrete time index,
f(.) represents the nonlinear function mapping specified by the
model, nu, ny represent the number of past input and output sam-
ples required (order of the system) for prediction while ud and yd
represent the dimension of inputs and outputs, respectively. Let x
represent the augmented input vector obtained by appending the
input and output measurements from the system.

x = [u(k − 1),  . . . , u(k − nu), y(k − 1),  . . . , y(k − ny)]T (2)

The measurement sequence can be converted to the form of
training data as required by neural networks

{(x1, y1), . . . , (xn, yn)} ∈ (X, Y)  (3)

where X  denotes the space of the input features (X  = R
udnu+ydny

and Y = R). The goal of neural networks is to approximate the
underlying input–output function mapping f(.) by minimizing a risk
function with respect to the model parameters

R(w) = 1
n

n∑
i=1

(yi − ŷi(x, w))2 (4)

where w represents the model parameters and ŷ(x, w) represents
the network predictions. It has to be noted from Eq. (1) that the
identification model represents a dynamic system and requires
previous samples of data for predictions. By presenting the past
samples of data to the neural models, a notion of memory is
incorporated into the networks and hence the networks are able
to capture the dynamics of the system. Such an architecture is
commonly referred to as a recurrent network. In this study, an
externally recurrent network where the network inputs take the
form as defined in (2).  Such a selection enables a simple architec-
ture (series-parallel architecture shown using Fig. 1(a)) and trained
can be done using available training algorithms. A series-parallel
network can only be used for a one-step-ahead prediction and can
be converted to a parallel architecture (shown using Fig. 1(b)) by
feeding back the output of the series-parallel network instead of
the actual system output. The parallel network [15] is capable of
performing multi-step-ahead predictions in a recurrent manner
required for this work. More complicated memory networks and
training procedures for recurrent networks are available for further
reference [29–31].
2.1. Multi-Layer Perceptron model

The Multi-Layer Perceptron (MLP) model is constructed using
several layers of interconnected nodes having one or more hidden

Input Neurons

Hidden Neurons

Output Neurons

(b) Parallel Ar chitecture

twork architecture.
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ayers and the nodes are connected in a feed-forward manner
etween the input and the output layer. MLPs are known as uni-
ersal function approximators as they can approximate any smooth
unction to an arbitrary accuracy [14,32].  The network considered
n this study consists of an input layer, an output layer and a hidden
ayer. The predicted output from the network can be expressed as

ˆMLP = f2[b2 + WT
2 f1{b1 + WT

1 (x)}] (5)

1(z) = 2
1 + e−2z

− 1 (6)

here f1 and f2 represent the activation functions of the hidden
nd output layers, respectively. The functions f1 and f2 returns out-
uts of the same dimension as that of their inputs. A tangential
igmoid function is used to represent f1 while a linear function is
sed to represent f2. The parameters b1 and b2 represent the bias
erms of the hidden and output layers while W1 and W2 represent
he weights of the connection between input-hidden layers and
idden-output layers, respectively. The number of input and output
eurons corresponds to the dimensions of X  and Y,  respectively.

The MLP  is trained using standard back-propagation via the
evenberg–Marquardt (LM) algorithm [33] which is more efficient
ompared to other available gradient based training algorithms
uch as the conjugate gradient and the variable learning rate
ack-propagation [34]. The sensitivity of the cost function (4)
ith respect to the network weights are determined and weights
pdated so that the cost (4) is minimized. Batch training is done
here the entire training data is repeatedly presented to the net-
ork. Batch training is more efficient compared to incremental

raining but requires all the data to be available for an off-line train-
ng. The activation functions (sigmoid and linear) take finite values
or the entire range of network operation and hence the MLP  model
equires a relatively less number of parameters to map  complex
unctions. However, training could become complicated involving
eavy computation making the process slow for large data sets.
he MLP  is a nonlinear regression problem and training with an
terative algorithm like the LM,  usually finds a local minima. Global
ptimization methods such as simulated annealing [35–37],  and
enetic algorithms [38,35,39] can be used in training but conver-
ence is usually slow and may  not suit problems with large input
imensions.

.2. Radial Basis Network model

The Radial Basis Network (RBN) model is a two layered net-
ork where the connections are feed-forward between the input

nd the output layers similar to the MLP  model. The nodes are con-
ected directly between the input and the hidden layers (i.e., with
nit weights). The hidden layer neurons have a Gaussian activa-
ion function f3 that determines the excitation level of the neurons
epending on how close the input data is located with respect to
he neuron’s center (�h) of the activation functions. Hence a notion
f location and similarity is introduced in the RBN model resulting
n local learning. The output layer is linear and hence the output is a

eighted linear combination of the activation levels of the hidden
eurons. Hence when the centers of the activation functions are
xed, the training reduces to determining the hidden-output layer
eights using linear least squares. This usually makes training in
BN models fast compared to MLP  and is an important distinction
etween the two models. The predicted output and the activation
unction of the RBN model can be expressed as

T
ˆRBN = b4 + W4 f3{x} (7)

3h
(z) = exp

(
−‖z − �h‖2

2�2
h

)
(8)
omputing 13 (2013) 2375–2389 2377

where �h ∈ R
udnu+ydny and �h ∈ R  are the center and the spread of

the Gaussian function for a given hidden neuron h. The spread �h
is constant for all hidden neurons and is considered as a hyper-
parameter and is not updated in the training process.

RBN models are also considered universal approximators
[40–42] and are popular in regression and classification applica-
tions. The training of RBN model involves two  tasks – identifying
the neuron parameters (�h) and determining the hidden to output
layer weights (W4). Several means of finding the neuron parameters
include randomly selecting locations from the input data, unsu-
pervised learning of the input structure using clustering [43–49],
orthogonal least squares [50–52] among others. The hidden-output
layer weights are determined using linear least squares. In this
paper, the RBN model is trained using the Matlab subroutine where
at every training pass, a new hidden neuron is created at the loca-
tion of the input vector that results in reducing the network error
the most. The above process is repeated until the error reaches a
specified goal or the limit for maximum number of hidden neurons
is reached. Such a simple training method is found sufficient for the
considered problem.

3. HCCI combustion system

3.1. HCCI background and model variables

A major difference between HCCI and traditional SI or CI com-
bustion is that the HCCI combustion do not have a direct trigger
for ignition. Hence the properties of the gas mixtures before
combustion dictates the combustion behavior. Several complex
phenomena such as gas transport, chemical kinetics, heat trans-
fer, and gas mixing makes the combustion very sensitive to the
mixture properties and physical conditions at which the engine
operates [12]. Fundamental HCCI research has proved that the tem-
perature and concentrations of mixture components at intake valve
closing (IVC) play a major role in determining the auto-ignition phe-
nomenon in HCCI combustion [1,53,54]. It is practically not feasible
to measure mixture concentrations and in-cylinder temperatures
dynamically. Hence these quantities are typically modeled using
simplified physics and experimental correlations [13]. Also there
exists a cycle-to-cycle coupling in residual affected HCCI as the
exhaust residuals from the previous cycle are reused [55,13,56,53].
Hence temperature and concentrations of the combustion products
from the previous cycle affect the combustion behavior during the
present cycle. The knowledge of combustion reactions, heat release,
heat transfer, flow dynamics are required to model the quantity,
temperature and concentrations of residuals. All the above men-
tioned phenomena are extremely complex and require complex
modeling, extensive validations, significant development time and
associated costs. Also, the resulting models are built from simpli-
fied physical and chemical relations with several assumptions and
approximations [57].

Identification based on sensor measurements is equally chal-
lenging as direct measurements of key quantities are not possible.
Dynamically measuring in-cylinder temperatures and mixture con-
centrations are infeasible or very expensive in the time scale as
required for transient engine operation [58]. Also, the system is
highly nonlinear and has a narrow region of stable operation
[27,28,59–61]. The sensitive nature of HCCI combustion coupled
with a narrow region of stable operation makes it extremely chal-
lenging to obtain dynamic data that contains rich information about
the system for identification. The measurements are very noisy
and with high variability which increases further complication in

selecting a robust identification method. However, if the identifi-
cation process is made systematic for the HCCI system and benefits
proved, it could be a powerful alternative for the physics based
modeling approach which is one of the objectives of this work. For
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Table 1
Specifications of the experimental HCCI engine.

Engine type 4-Stroke In-line
Fuel Gasoline
Displacement 2.0 L
Bore/stroke 86/86
Compression ratio 11.25:1
Injection type Direct injection
Valvetrain Variable valve timing with hydraulic cam phaser
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Fig. 2. HCCI engine pressure trace showing cycle definition, actuator ranges of intake
valve opening (IVO), exhaust valve closing (EVC), start of injection (SOI). The crank
angle at data recording is also shown.

Table 2
Actuator extremes for stable HCCI (from the steady state DOE model).

Input Min limit Max  limit

Fuel mass (mg/cyc) 7.0437 12.9161
having 119 constant duration defined at 0.25 mm lift,
3.5 mm peak lift and 50◦ crank angle phasing authority

HCCI strategy Exhaust recompression using negative valve overlap

he HCCI identification process, the following measurable quanti-
ies are considered as precursors or indicators for the previously

entioned key quantities that cannot be measured directly.

The temperature (Tin), pressure (Pin) and flow rate (ṁin) at intake
manifold

 The exhaust gas temperature (Tex)
Engine coolant temperature (Tc)

 Controllable quantities such as injected fuel mass (FM in mg/cyc),
crank angle at intake valve opening (IVO), crank angle at exhaust
valve closing (EVC), crank angle at start of fuel injection (SOI). The
valve events are measured in degrees after exhaust top dead cen-
ter (deg eTDC) while SOI is measured in degrees after combustion
top dead center (deg cTDC).

 Equivalent air to fuel ratio (EAFR) defined as

EAFR = (A/F)
(A/F)s

(9)

where A/F = mass of air per cycle/mass of fuel per cycle and
(A/F)s = (A/F) at stoichiometric condition.
Indicators of combustion behavior such as combustion phasing
indicated by the crank angle at 50% mass fraction burned (CA50),
combustion work output indicated by net mean effective pres-
sure (NMEP), combustion roughness indicated by maximum rate
of pressure rise (Rmax).

.2. Experiment design

The data for this study is collected on a gasoline HCCI engine
ith variable valve timing whose specifications are listed in Table 1.
CCI is achieved by auto-ignition (without spark initiation) of the
as mixture in the cylinder. A large fraction of internal exhaust gas
ecirculation (EGR) is trapped in the cylinder to maintain low com-
ustion temperatures for reduced emissions of oxides of nitrogen.
ariable valve timing allows adjustment of the timing of the clo-
ure of the exhaust valve and opening of the intake valve so as to
reate a negative valve overlap (NVO) to trap the desired quantity
f EGR in the cylinder. The fuel injection also happens during the
VO period. The EGR and fuel injected directly influences the tem-
erature and concentration of the gas mixture entering the next
ombustion cycle. The pressure trace during one combustion cycle
long with valve events and fuel injection events are shown in
ig. 2. An amplitude modulated pseudo-random binary sequence
A-PRBS) has been used to design input signals. The data is sam-
led using the AVL Indiset acquisition system where in-cylinder
ressure is sensed every crank angle while NMEP, CA50 and Rmax

re determined on a per-combustion cycle basis. The other quan-
ities like Tin, Pin, ṁin, Tex, Tc, EAFR, etc. are measured using the
n-board engine control unit.

As mentioned earlier, HCCI has a narrow operating region and

 large input excitation close to unstable regions tend to knock,
isfire the engine or operate on limit cycles. Hence it becomes

ery challenging to design excitation signals for HCCI combustion
o acquire data for identification. For this purpose, prior knowledge
IVO  (deg eTDC) 78 128
EVC  (deg eTDC) −119 −69
SOI  (deg cTDC) 270 380

about the system is used to eliminate excitation signals that lead
to instability. As a first check, a design of experiments model (DOE)
[62] using a set of steady state experiments is used to eliminate
the unstable input combinations. The feasible limits of inputs at a
speed of 3000 RPM as given by the DOE model are shown in Table 2.

The A-PRBS sequence is designed to excite the engine within this
stable HCCI region defined by the DOE model. It should be noted
that the DOE filtered input limits are valid only for steady state con-
ditions and a large step near the boundary of stable HCCI can lead
to instabilities. Hence as a means of precaution against running the
engine in an unstable manner and to avoid restarting the measure-
ments, a simple feedback was created, which attempts a particular
input combination and if found to be unstable, quickly skips to the
next combination in the A-PRBS sequence. As a first attempt, the
CA50 was  considered the feedback signal. During a small time win-
dow, any input combination that resulted in a CA50 above 11 (found
by observing the CA50 during misfires) is immediately skipped, and
the engine is run on the next combination in the sequence [25]. A
subset of the input signals and the recorded outputs from the engine
are shown in Fig. 3. Nearly 20000 cycles of data were collected at
a constant speed of 3000 RPM, which corresponds to about 25 min
of engine testing. About 25% of the data were found to be arising
from unstable operation and were removed (Section 4.1).

4. Neural network design

This section describes the neural network framework that is
developed in this paper. The framework includes appropriate data
pre-processing, model selection and training.

4.1. Data preprocessing

Data preprocessing is necessary for efficient machine learning.
This includes normalization of all data to lie between −1 and +1
which ensures the model parameters to be of the same order and
improves numerical stability. For the HCCI system, additional pre-
processing needs to be done before the data becomes meaningful

for learning. HCCI experiments discussed in Section 3.2 involves
running the engine at occasional misfires. The data obtained during
misfires and some post-misfire data must be removed so that the
models only capture the desired HCCI behavior. The misfire data
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Fig. 3. A subset of experimental data showing t

an be identified and removed by observing the allowable range
or actuators and combustion variables like EAFR, work output and
ombustion phasing [26].

.2. Model selection

For efficient neural network design, the models are required
o capture the underlying phenomena with a simple structure
nd minimum number of parameters. Also, the regressors need to
e appropriately selected so that the number of parameters and
torage requirements of the models are minimized. Assuming no
riori knowledge about the system, the model hyper-parameters
uch as number of hidden neurons, regularization coefficient (�
n MLP  and �h in RBN) and system order (nu and ny) are selected
ased on cross-validation [25]. The time sequence data set {(u1,
1), . . .,  (un, yn)} is first converted to a regression data set {(x1,
1), . . .,  (xn, yn)}. Among the 20,000 observations, about 8,000
bservations were randomly selected and used for training. If the
ata was not downsized randomly, then continuous time-sequence
ata would be used for training. Such a data set will have sev-
ral steady state observations which is redundant and slows down
raining process. The random sampling of data for training makes
he training fast and efficient as a small sample can be used to rep-
esent both steady state and transient data. The training data set
s further divided into a validation-training (4000 observations)
nd a validation-testing data sets (4000 observations). The models
re first trained using the validation-training data set and tested
n the validation-testing set for several combination of hyper-
arameters (a full grid search) and the combination that resulted in

he minimum validation-testing error was considered the optimal
yper-parameters. In some cases, if the minimum testing error is
ot very sensitive to the hyper-parameters, the simplest model is
icked.
x 10Combustion cycles

PRBS inputs and the measured engine outputs.

When the system order is increased, the number of input
dimensions for the network (ni) increases making the models com-
putationally expensive both during training and prediction. Also,
the input data itself may  be correlated adding redundancy in input
features which is undesirable from a training perspective. Hence a
systematic method of principal component analysis (PCA) was per-
formed to obtain a smaller set of uncorrelated feature components.
In the following subsection, input feature extraction is performed
using PCA where in the most significant subspace of transformed
features are identified.

4.2.1. Principal component analysis
PCA is a common unsupervised learning technique used to con-

vert a set of possibly correlated variables to a set of uncorrelated
variables. PCA has been used as a pre-processing step during neu-
ral network modeling to reduce dimensionality of training inputs
[63,64]. Consider the matrix of input features X = [x1x2 · · · xn] where
X ∈ R

m×n scaled to zero mean and unit co-variance. Let the scaled
feature matrix be X̃ = [x̃1x̃2· · ·x̃n]. The covariance matrix (�)  of the
scaled feature matrix (X̃) is given by

� = X̃X̃T ∈ R
m×m (10)

Let the eigen values and eigen vectors of the co-variance matrix
(�) be represented by

E� = {�1, �2, �3, . . . , �m} (11)

Ev =
[

v1 v2 v3 · · · vm

]
(12)

where �1 > �2 > �3 > · · · > �m represent the eigen values and vi
is the eigen vector corresponding to the eigen value �i, vi ∈ R
m

and E(x) is the expected value of x. Each eigen vector represents a
component of the input data while the corresponding eigen value
represents the variance. To capture the maximum variation within
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he input data, the first l components are selected that retains 99%
f the total variations. The percentage of total variation can be
xpressed as

V =
(

�1 + �2 + · · · + �l

�1 + �2 + · · · + �m

)
× 100 (13)

Fig. 4 shows the percentage total variation with addition of com-
onents for the EAFR model with nu = ny = 4. It can be seen that the
rst 12 components captures majority of the variance. Precisely,
he first 6 components capture 90% of TV while first 12 components

apture 99% of TV where the total number of components is about
4. Similar observations can be made for each model and for vary-

ng system order. A constant TV cutoff of 99% was used to obtain
rincipal components for both RBN and MLP  training for all models.

able 3
he optimal values of number of hidden neurons (nh), regularization coefficient (� in ML
ere  Errval represents the minimum validation error in the grid search and ni represents in

Architecture Hyper-parameter 

Linear regression With PCA nu = ny

No  PCA nu = ny

nh

�  

With PCA nu = ny

Errval

ni

np

MLP
nh

�  

No  PCA nu = ny

Errval

ni

np

nh

�h

With PCA nu = ny

Errval

ni

np

RBN
nh

�h

No  PCA nu = ny

Errval

ni

np
omputing 13 (2013) 2375–2389

It should be noted that the cutoff was chosen arbitrarily high and if
the cutoff is varied, the number of principal components obtained
would be different.

In order to quantify the benefits of PCA, separate models were
built with and without PCA and performance evaluated. Figs. 11–19
in the appendix shows the results of the full grid search for optimal
hyper-parameters and the optimal combination that gives mini-
mum  validation error is marked with red. Table 3 lists the optimal
hyper-parameters for the MLP  and RBN models with and without
PCA (the optimal hyper-parameter for the linear regression model
is also included). It can be seen from Table 3 that pre-processing
the input data using PCA is beneficial for both the MLP and RBN
models. Similar orders of validation errors were obtained in both
cases (with and without PCA) for all four models of NMEP, CA50,
Rmax and EAFR. However, the input layer dimensions (ni) are small
for the models with PCA indicating that a smaller subspace of input
data is sufficient to map  the underlying phenomena. Also, the train-
ing time required on a workstation having 3.47 GHz processor with
15 GB of RAM are compared for models with and without PCA. The
time consumed for training the CA50 MLP  model without PCA is
about 2 times higher compared to training with PCA resulting in the
same accuracy. For the NMEP RBN model, time consumed for train-
ing without PCA is 1.2 times higher compared to training with PCA
yielding same accuracy levels. Also, the number of model parame-
ters (defined in Section 5) are about 2–3 times lesser for the models
with PCA indicating a storage benefit for these models.

5. Prediction results and discussion

The models with the selected hyper-parameters is freshly
trained (along with PCA) using the complete training data set and
evaluated against the unseen testing data set. The trained networks

are simulated on the test data set in the same structure as used
for training (series parallel architecture). This would evaluate the
model for one-step-ahead prediction quality. The performance of
the models are measured using mean squared error (MSE) given

P  and �h in RBN) and system order (nu and ny) determined using cross-validation.
put layer dimension and np the number of parameters of the neural network model.

NMEP CA50 Rmax EAFR

5 5 5 1
5 5 5 5

10 10 10 10
0.01 0.1 1 0.0001
2 3 3 2
0.0011 0.0621 0.0502 0.0007
9 11 9 9
111 131 111 111

8 10 10 8
0.0001 1 0.01 0.01
2 3 2 4
0.001 0.0621 0.0493 0.0001
22 33 22 44
193 351 262 369

200 160 200 200
1 10 1 10
2 3 2 2
0.0012 0.063 0.0518 0.0006
9 11 12 9
2001 1921 2601 2001

200 200 200 120
10 1 1 10
3 2 2 4
0.0012 0.0617 0.0519 0.0001
33 22 22 44
6801 4601 4601 5401
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Table  4
Prediction performance of MLP  and RBN models with the PCA pre-processing. The results of linear regression model is also included as a benchmark. Here nm and np represents
the  number of memory units and number of model parameters required for prediction. The training and testing errors are for one-step ahead prediction while MSAP error
indicates the mean squared error for multiple-step ahead prediction. The minimum error among linear, MLP  and RBN models is highlighted in bold.

NMEP CA50 Rmax EAFR

Training error 0.0011 0.0545 0.0473 0.0013
Testing error 0.0014 0.0608 0.0529 0.0014

MLP  model nm 22 33 33 22
np  131 161 171 131
MSAP error 0.0045 0.0786 0.0696 0.0055

Training error 0.0012 0.0564 0.0430 0.0009
Testing error 0.0018 0.0651 0.0563 0.0013

RBN model nm 22 33 22 22
np  2401 1921 2401 2401
MSAP error 0.0172 0.1535 0.0946 0.0050

Training error 0.0016 0.0730 0.0587 0.0048
Testing error 0.0017 0.0772 0.0561 0.0047

b
m

M

a
f
m
i
n
e
e
i
r
t

Linear regression nm 55 

np  19 

MSAP error 0.0228 

y Eq. (14). The MSE  for the training and testing phases for all the
odels are compared in Table 4.

SE  = 1
n

n∑
i=1

yd∑
j=1

(yi
j − ŷi

j)
2 (14)

It can be observed from Table 4 that both MLP  and RBF networks
re able to learn the HCCI combustion dynamics to a good accuracy
or one-step-ahead prediction. As a baseline, a linear regression

odel is selected and trained using the data set after perform-
ng cross-validation based hyper-parameter selection similar to the
eural models. All three model structures – MLP, RBN and Lin-
ar regression have a similar order of accuracy for the considered

ngine variables. It can be seen that the minimum testing error
s consistently achieved by the MLP  models. Also, the MLP  model
esults in small system orders compared to the other two architec-
ures. The number of parameters are significantly less compared
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to RBN because RBN models store the centers of the radial basis
neurons. It should be noted that the linear regression surprisingly
performs well for one-step-ahead prediction for the considered
engine variables. However, a large system order is required for the
models indicating that even with PCA, the data has to remain in a
high dimension feature space in order for linear models to capture
the underlying behavior. More crucially, the linear models did not
perform well under multi-step-ahead predictions (see MSAP error
in Table 4 and Figs. 7–10) and hence linear models are found to be
unsatisfactory for identifying the combustion behavior of HCCI.

Even though the two networks are very different in construc-
tion and training, both MLP  and RBN networks are able to capture
the underlying phenomena equally well. The order of training and

testing errors also prove that the networks can generalize and
can predict well for unseen inputs. The combined effect of PCA
and cross-validation has resulted in models that are efficiently
trained and have good performance in terms of prediction MSE. The
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orrelations between model predictions and the actual data for all
odels are shown using Figs. 5 and 6 indicating that the models per-

orm well to unseen inputs over the entire range of network opera-
ion. It should be noted that the quantities NMEP, CA50 and Rmax are
nfiltered sensor signals and has a large variance while EAFR is a
ltered signal obtained from the engine control unit and thus hav-
ng smaller variance.
An important comparison between MLP  and RBN models can

e made with respect to the memory required (nm) and the total
umber of parameters (np) used to fit the data. Memory in this
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context is referred to as the space required to store the mea-
surement variables (like FM,  SOI, NMEP, CA50, etc.) for prediction
on-board in the engine control unit. The total number of param-
eters can be referred to as the parameters used to fit the data.
This quantifies to the number of parameters determined by the
training algorithm (a function of number of hidden neurons nh

and input feature dimension m). The memory requirement is given
by nm = udnu + ydny while the number of parameters is given by
np = ninh + nh + nhyd + yd for MLP  network and np = ninh + nhyd + yd
for RBN models. However, it should be noted that the number of
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 with actual engine data. (For interpretation of the references to color in this figure,
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idden neurons, nh is very large in case of RBN, i.e., to achieve sim-
lar performance levels of MLP  network, RBN requires extremely
arge number of parameters to fit the data. With further increase in
he dimension of the signals and the number of observations, the
ize of the RBN model can increase significantly which can limit
he RBN models from being implemented on an electronic con-
rol unit to perform real time predictions. It should be noted that
he RBN model is relatively faster to train. However, the training
ime is not considered as a metric for comparison as training can be

fforded to be done off-line for the application considered in this
aper. Hence the MLP  model is considered suitable for the HCCI

dentification problem both from prediction accuracy and storage
erspectives.
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5.1. Multi-step-ahead prediction

In order to observe the multi-step-ahead prediction capability
of the models, a completely separate data set is used where the NN
models are simulated with input of the form

[u(k − 1),  . . . , u(k − nu), ŷ(k − 1),  . . . , ŷ(k − ny)] (15)

where k indicates present time index. An output feedback is made
in the network to create a parallel architecture as shown in Fig. 1(b).

Figs. 7–10 compares the 200-cycle predictions of the MLP  and RBN
models for unseen input trajectories. In each plot, four different
input trajectories are presented and the networks’ predictions sum-
marized. The output quantities are plotted every combustion cycle
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BN and linear models with actual engine data. (For interpretation of the references
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nd each plot shows the predictions for about 8 seconds of engine
ata. The MSE  for the multi-step ahead predictions are included in
able 4.

It can be seen from Figs. 7–10 and Table 4 that the linear models
o not perform as well as they did for one-step-ahead predictions.
he reason could be that the nonlinear maps are approximated by
inear relationships that creates large bias errors at several operat-
ng conditions. Also, the model output is fed back for subsequent
redictions in a multi-step-ahead prediction. It is important that
he model possesses sufficient robustness and any poor predictions
ot affect the future predictions in a significant manner. The linear
odels appear to be lacking this feature compared to the nonlin-

ar models. One possible reason could be over-fitting as the linear
odels fits the data with a high order when low order models [7,8]
ere found sufficient for the HCCI variables. It is also surprising to

bserve that the RBN models do not perform well at several oper-
ting conditions including Fig. 7 (top left subplot between 100 and
00 cycles, top right subplot between 0 and 50 cycles), Fig. 8 (bot-
om left subplot between 50 and 120 cycles), etc. A possible reason
ould be the local nature of the approximation captured by RBN.
he local nature of RBNs might result in over-fitting (inability to
eneralize) if there are not enough training data in certain regions
f interest. MLP  models on the other hand perform reasonably well
ompared to the other two architectures. Both the steady-state and
ransient behavior is well captured. The good performance of MLP

odels may  be attributed to the global nature of the sigmoidal
ctivation function. Hence it is concluded that MLP  models are suf-
cient for the considered HCCI variables for both one-step-ahead
nd multi-step-ahead predictions. The developed network mimics

 dynamic model of the HCCI engine and can be used for further
nalysis and control purposes.

. Conclusions

Developing accurate dynamic models can accelerate practi-
al implementation of an advanced combustion technology like
he HCCI engine. Neural network based identification offers an
ttractive alternative to physics based modeling in terms of cost
nd development times. The engine variables used for controller

evelopment such as NMEP, CA50, Rmax and EAFR are modeled
sing available measurements from the engine. It is shown than
sing PCA, efficient recurrent neural network models can be built
ased on both MLP  and RBN architectures. An unbiased comparison
 with actual engine data. (For interpretation of the references to color in this figure,

between the two networks along with a linear regression baseline
show that all models are able to capture the one-step-ahead behav-
ior of HCCI engine dynamics to a good accuracy but the MLP  model
outperforms the RBN and linear models in multi-step-ahead pre-
diction which is the ultimate goal of this study. The MLP  model
also results in less memory and storage and has the potential to be
implemented on-board the engine ECU. Future work would focus
on capturing the effects of disturbance quantities such as engine
coolant temperature, ambient temperature, pressure and humid-
ity on HCCI combustion via an on-line learning framework using
neural networks and controls development.
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Appendix A.

For all the plots from Fig. 11,  the data for cross-validation is a

subset of the training data which is divided into validation train-
ing and validation testing. The shaded surface represents validation
training error while the unshaded surface represents validation
testing error (see Figs. 12–19).
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(a) With PCA (b) Without PCA

Fig. 11. Cross-validation for linear regression models using grid search showing training and validation error curves for different system order no .

(a) With PCA (b) Withou t PCA

Fig. 12. Cross-validation for NMEP (MLP) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and regularization coefficient �. The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader
is  referred to the web version of this article.)
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Fig. 13. Cross-validation for CA50 (MLP) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and regularization coefficient �. The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader
is  referred to the web version of this article.)
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Fig. 14. Cross-validation for Rmax (MLP) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and regularization coefficient �. The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader
is  referred to the web version of this article.)

Fig. 15. Cross-validation for EAFR (MLP) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and regularization coefficient �. The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader
is  referred to the web version of this article.)

Fig. 16. Cross-validation for NMEP (RBN) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons  nh and spread parameter �h . The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader is
referred to the web  version of this article.)
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Fig. 17. Cross-validation for CA50 (RBN) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and spread parameter �h . The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader is
referred to the web  version of this article.)

Fig. 18. Cross-validation for Rmax (RBN) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and spread parameter �h . The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader is
referred to the web  version of this article.)

Fig. 19. Cross-validation for EAFR (RBN) model grid search showing training and validation error surfaces for different combinations of system order no , number of hidden
neurons nh and spread parameter �h . The optimal hyper-parameter combination is marked in red. (For interpretation of the references to color in this figure, the reader is
referred to the web  version of this article.)
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