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CONVERGENCE OF LATENT MIXING MEASURES IN FINITE
AND INFINITE MIXTURE MODELS

BY XUANLONG NGUYEN1

University of Michigan

This paper studies convergence behavior of latent mixing measures that
arise in finite and infinite mixture models, using transportation distances (i.e.,
Wasserstein metrics). The relationship between Wasserstein distances on the
space of mixing measures and f -divergence functionals such as Hellinger
and Kullback–Leibler distances on the space of mixture distributions is in-
vestigated in detail using various identifiability conditions. Convergence in
Wasserstein metrics for discrete measures implies convergence of individual
atoms that provide support for the measures, thereby providing a natural inter-
pretation of convergence of clusters in clustering applications where mixture
models are typically employed. Convergence rates of posterior distributions
for latent mixing measures are established, for both finite mixtures of multi-
variate distributions and infinite mixtures based on the Dirichlet process.

1. Introduction. A notable feature in the development of hierarchical and
Bayesian nonparametric models is the role of mixing measures, which help to
combine relatively simple models into richer classes of statistical models [24, 26].
In recent years the mixture modeling methodology has been significantly extended
by many authors taking the mixing measure to be random and infinite-dimensional
via suitable priors constructed in a nested, hierarchical and nonparametric manner.
This results in rich models that can fit more complex and high-dimensional data
(see, e.g., [13, 27, 29, 30, 33] for several examples of such models, as well as a
recent book [19]).

The focus of this paper is to analyze convergence behavior of the posterior dis-
tribution of latent mixing measures as they arise in several mixture models, includ-
ing finite mixtures and the infinite Dirichlet process mixtures. Let G = ∑k

i=1 piδθi

denote a discrete probability measure. Atoms θi ’s are elements in space �, while
vector of probabilities p = (p1, . . . , pk) lies in a k − 1-dimensional probability
simplex. In a mixture setting, G is combined with a likelihood density f (·|θ)

with respect to a dominating measure μ on X , to yield the mixture density:
pG(x) = ∫

f (x|θ) dG(θ) = ∑k
i=1 pif (x|θi). In a clustering application, atoms
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θi’s represent distinct behaviors in a heterogeneous data population, while mix-
ing probabilities pi ’s are the associated proportions of such behaviors. Under this
interpretation, there is a need for comparing and assessing the quality of mixing
measure Ĝ estimated on the basis of available data. An important work in this
direction is by Chen [7], who used the L1 metric on the cumulative distribution
functions on the real line to study convergence rates of the mixing measure G.
Chen’s results were subsequently extended to a Bayesian estimation setting for a
univariate mixture model [20]. These works were limited to only univariate and
finite mixture models, with k bounded by a known constant, while our interest is
when k may be unbounded and � is multidimensional or even an abstract space.

The analysis of consistency and convergence rates of posterior distributions for
Bayesian estimation has seen much progress in the past decade. Key recent ref-
erences include [2, 16, 17, 32, 38, 39]. Analysis of specific mixture models in a
Bayesian setting has also been studied [14, 15, 18, 21]. All these works primarily
focus on the convergence behavior of the posterior distribution of the data den-
sity pG. On the other hand, results concerned with the convergence behavior of
latent mixing measures G are quite rare. Notably, the analysis of convergence for
mixing (smooth) densities often arises in the context of frequentist estimation for
deconvolution problems, mainly within the kernel density estimation method (e.g.,
[6, 11, 40]). We also note recent progress on consistent parameter estimation for
certain finite mixture models, for example, in an overfitted setting [31] or with an
emphasis on computational efficiency [3, 22].

The primary contribution of this paper is to show that the Wasserstein distances
provide a natural and useful metric for the analysis of convergence for latent mix-
ing measures in mixture models, and to establish convergence rates of posterior
distributions in a number of well-known Bayesian nonparametric and mixture
models. Wasserstein distances originally arose in the problem of optimal trans-
portation [36]. Although not as popular as well-known divergence functionals such
as Kullback–Leibler, total variation and Hellinger distances, Wasserstein distances
have been utilized in a number of statistical contexts (e.g., [4, 9, 10, 25]). For
discrete probability measures, they can be obtained by a minimum matching (or
moving) procedure between the sets of atoms that provide support for the mea-
sures under comparison, and consequentially are simple to compute. Suppose that
� is equipped with a metric ρ. Let G′ = ∑k′

j=1 p′
j δθ ′

j
. Then, for a given r ≥ 1 the

Lr Wasserstein metric on the space of discrete probability measures with support
in �, namely, Ḡ(�), is

Wr

(
G,G′) =

[
inf
q

∑
i,j

qij ρ
r(θi, θ

′
j

)]1/r

,

where the infimum is taken over all joint probability distributions on [1, . . . , k] ×
[1, . . . , k′] such that

∑
j qij = pi and

∑
i qij = p′

j .
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As clearly seen from this definition, Wasserstein distances inherit directly the
metric of the space of atomic support �, suggesting that they can be useful for
assessing estimation procedures for discrete measures in hierarchical models. It is
worth noting that if (Gn)n≥1 is a sequence of discrete probability measures with k

distinct atoms and Gn tends to some discrete measure G0 in the Wr metric, then
Gn’s ordered set of atoms must converge to G0’s atoms in ρ after some permu-
tation of atom labels. Thus, in the clustering application illustrated above, con-
vergence of mixing measure G may be interpreted as the convergence of distinct
typical behavior θi’s that characterize the heterogeneous data population. A hint
for the relevance of the Wasserstein distances can be drawn from an observation
that the L1 distance for the CDFs of univariate random variables, as studied by
Chen [7], is in fact a special case of the W1 metric when � = R.

The plan for the paper is as follows. Section 2 investigates the relationship
between Wasserstein distances for mixing measures and well-known divergence
functionals for mixture densities in a mixture model. We produce a simple lemma
which gives an upper bound on f -divergences between mixture densities by cer-
tain Wasserstein distances between mixing measures. This implies that Wr topol-
ogy can be stronger than those induced by divergences between mixture densities.
Next, we consider various identifiability conditions under which convergence of
mixture densities entails convergence of mixing measures in a Wasserstein metric.
We present two key theorems, which provide upper bounds on W2(G,G′) in terms
of divergences between pG and pG′ . Theorem 1 is applicable to mixing measures
with a bounded number of atomic support, generalizing a result from [7]. The-
orem 2 is applicable to mixing measures with an unbounded number of support
points, but is restricted to only convolution mixture models.

Section 3 focuses on the convergence of posterior distributions of latent mix-
ing measures in a Bayesian nonparametric setting. Here, the mixing measure G

is endowed with a prior distribution �. Assuming an n-sample X1, . . . ,Xn that is
generated according to pG0 , we study conditions under which the postetrior distri-
bution of G, namely, �(·|X1, . . . ,Xn), contracts to the “truth” G0 under the W2
metric, and provide the contraction rates. In Theorems 3 and 4 of Section 3, we es-
tablish the convergence rates for the posterior distribution for G in terms of the W2
metric. These results are proved using the standard approach of Ghosal, Ghosh and
van der Vaart [16]. Our convergence theorems have several notable features. They
rely on separate conditions for the prior � and likelihood function f , which are
typically simpler to verify than conditions formulated in terms of mixture densi-
ties. The claim of convergence in Wasserstein metrics is typically stronger than the
weak convergence induced by the Hellinger metric in the existing work mentioned
above.

In Section 4 posterior consistency and convergence rates of latent mixing mea-
sures are derived, possibly for the first time, for a number of well-known mixture
models in the literature, including finite mixtures of multivariate distributions and
infinite mixtures based on Dirichlet processes. For finite mixtures with a bounded
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number of atomic support in R
d , the posterior convergence rate for mixing mea-

sures is (logn)1/4n−1/4 under suitable identifiability conditions. This rate is opti-
mal up to a logarithmic factor in the minimax sense. For Dirichlet process mixtures
defined on R

d , specific rates are established under smoothness conditions of the
likelihood density function f . In particular, for ordinary smooth likelihood den-
sities with smoothness β (e.g., Laplace), the rate achieved is (logn/n)γ for any
γ < 2

(d+2)(4+(2β+1)d)
. For supersmooth likelihood densities with smoothness β

(e.g., normal), the rate achieved is (logn)−1/β .

Notation. For ease of notation, we also use fi in place of f (·|θi) and f ′
j in

place of f (·|θ ′
j ) for likelihood density functions. Divergences (distances) stud-

ied in the paper include the total variational distance: V (pG,pG′) = 1
2

∫ |pG(x) −
pG′(x)|dμ(x), Hellinger distance:

h2(pG,pG′) = 1

2

∫ (√
pG(x) −

√
pG′(x)

)2
dμ(x)

and Kullback–Leibler divergence:

K(pG,pG′) =
∫

pG(x) log
(
pG(x)/pG′(x)

)
dμ(x).

These divergences are related by V 2/2 ≤ h2 ≤ V and h2 ≤ K/2. N(ε,�,ρ) de-
notes the covering number of the metric space (�,ρ), that is, the minimum num-
ber of ε-balls needed to cover the entire space �. D(ε,�,ρ) denotes the packing
number of (�,ρ), that is, the maximum number of points that are mutually sep-
arated by at least ε in distance. They are related by N(ε,�,ρ) ≤ D(ε,�,ρ) ≤
N(ε/2,�,ρ). Diam(�) denotes the diameter of �.

2. Transportation distances for mixing measures.

2.1. Definition and a basic inequality. Let (�,ρ) be a space equipped with
a nonnegative distance function ρ :� × � → R+, that is, a function that sat-
isfies ρ(θ1, θ2) = 0 if and only if θ1 = θ2. If, in addition, ρ is symmetric
(ρ(θ1, θ2) = ρ(θ2, θ1)) and satisfies the triangle inequality, then it is a proper met-
ric. A discrete probability measure G on a measure space equipped with the Borel
sigma algebra takes the form G = ∑k

i=1 piδθi
for some k ∈ N ∪ {+∞}, where

p = (p1,p2, . . . , pk) denotes the proportion vector, while θ = (θ1, . . . , θk) are the
associated atoms in �. p has to satisfy 0 ≤ pi ≤ 1 and

∑k
i=1 pk = 1. [With a bit

abuse of notation, we write k = ∞ when G = ∑∞
i=1 piδθi

has countably infinite
support points represented by the infinite sequence of atoms θ = (θ1, . . .) and the
associated sequence of probability mass p.] Likewise, G′ = ∑k′

j=1 p′
j δθ ′

j
is another

discrete probability measure that has at most k′ distinct atoms.
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Let Gk(�) denote the space of all discrete probability measures with at most
k atoms. Let G(�) = ⋃

k∈N+ Gk(�), the set of all discrete measures with finite
support. Finally, Ḡ(�) denotes the space of all discrete measures (including those
with countably infinite support).

Let q = (qij )i≤k;j≤k′ ∈ [0,1]k×k′
denote a joint probability distribution on N+×

N+ that satisfies the marginal constraints:
∑k

i=1 qij = p′
j and

∑k′
j=1 qij = pi for

any i = 1, . . . , k; j = 1, . . . , k′. We also call q a coupling of p and p′. Let Q(p,p′)
denote the space of all such couplings. We start with the general transportation
distance:

DEFINITION 1. Let ρ be a distance function on �. The transportation distance
for two discrete measures G(p, θ) and G′(p′, θ ′) is

dρ

(
G,G′) = inf

q∈Q(p,p′)

∑
i,j

qij ρ
(
θi, θ

′
j

)
.(1)

When � is a metric space (e.g., R
d ) and ρ is taken to be its metric, we revert

to the more standard notation of Wasserstein metrics, W1(G,G′) ≡ dρ(G,G′) and
W 2

2 (G,G′) ≡ dρ2(G,G′). However, dρ will be employed when ρ may be a general
or a nonstandard distance function or metric.

From here on, probability measure G ∈ Ḡ(�) plays the role of the mixing dis-
tribution in a mixture model. Let f (x|θ) denote the density (with respect to a
dominating measure μ) of a random variable X taking values in X , given param-
eter θ ∈ �. For the ease of notation, we also use fi(x) for f (x|θi). Combining G

with the likelihood function f yields a mixture distribution for X that takes the
following density:

pG(x) =
∫

f (x|θ) dG(θ) =
k∑

i=1

pifi(x).

A central theme in this paper is to explore the relationship between Wasserstein
distances of mixing measures G,G′, for example, dρ(G,G′), and divergences of
mixture densities pG,pG′ . Divergences that play important roles in this paper are
the total variational distance, the Hellinger distance and the Kullback–Leibler dis-
tance. All these are in fact instances of a broader class of divergences known as
the f -divergences (Csiszár [8]; Ali and Silvey [1]):

DEFINITION 2. Let φ : R → R denote a convex function. An f -divergence
(or Ali–Silvey distance) between two probability densities fi and f ′

j is defined as
ρφ(fi, f

′
j ) = ∫

φ(f ′
j /fi)fi dμ. Likewise, the f -divergence between pG and pG′ is

ρφ(pG,pG′) = ∫
φ(pG′/pG)pG dμ.
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f -divergences can be used as a distance function or metric on �. When ρ is
taken to be an f -divergence, ρ(θi, θ

′
j ) := ρφ(fi, f

′
j ), for a convex function φ, we

call the corresponding transportation distance a composite transportation distance:

dρφ

(
G,G′) := inf

q∈Q(p,p′)

∑
ij

qij ρφ

(
fi, f

′
j

)
.

For φ(u) = 1
2(

√
u− 1)2 we obtain the squared Hellinger (ρ2

h ≡ h2), which induces
the composite transportation distance dρ2

h
. For φ(u) = 1

2 |u− 1| we obtain the vari-
ational distance (ρV ≡ V ), which induces dρV

. For φ(u) = − logu, we obtain the
Kullback–Leiber divergence (ρK ≡ K), which induces dρK

.

LEMMA 1. Let G,G′ ∈ Ḡ(�) such that both ρφ(pG,pG′) and dρφ (G,G′) are
finite for some convex function φ. Then, ρφ(pG,pG′) ≤ dρφ (G,G′).

This lemma highlights a simple direction in the aforementioned relationship:
any f -divergence between mixture distributions pG and pG′ is dominated by a
transportation distance between mixing measures G and G′. As will be evident
in the sequel, this basic inequality is also handy in enabling us to obtain upper
bounds on the power of tests. It also proves useful for establishing lower bounds
on small Kullback–Leibler ball probabilities in the space of mixture densities pG

in terms of small ball probabilities in the metric space (�,ρ). The latter quantities
are typically easier to obtain estimates for than the former.

EXAMPLE 1. Suppose that � = R
d , ρ is the Euclidean metric, f (x|θ) is the

multivariate normal density N(θ, Id×d) with mean θ and identity covariance ma-
trix, then h2(fi, f

′
j ) = 1 − exp−1

8‖θi − θ ′
j‖2 ≤ 1

8‖θi − θ ′
j‖2 = ρ2(θi, θ

′
j )

2/8. So,

dρ2
h
(G,G′) ≤ dρ2(G,G′)/8. The above lemma then entails that h2(pG,pG′) ≤

dρ2(G,G′)/8 = W 2
2 (G,G′)/8.

Similarly, for the Kullback–Leibler divergence, since K(fi, f
′
j ) = 1

2‖θi − θ ′
j‖2,

by Lemma 1, K(pG,pG′) ≤ dρK
(G,G′) = 1

2dρ2(G,G′) = W2(G,G′)2/2.
For another example, if f (x|θ) is a Gamma density with location parameter θ ,

� is a compact subset of R that is bounded away from 0. Then K(fi, f
′
j ) =

O(|θi − θj |). This entails that K(pG,pG′) ≤ dρK
(G,G′) ≤ O(W1(G,G′)).

2.2. Wasserstein metric identifiability in finite mixture models. Lemma 1
shows that for many choices of ρ, dρ yields a stronger topology on Ḡ(�) than
the topology induced by f -divergences on the space of mixture distributions pG.
In other words, convergence of pG may not imply convergence of G in transporta-
tion distances. To ensure this property, additional conditions are needed on the
space of probability measures Ḡ(�), along with identifiability conditions for the
family of likelihood functions {f (·|θ), θ ∈ �}.
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The classical definition of Teicher [35] specifies the family {f (·|θ), θ ∈ �} to be
identifiable if for any G,G′ ∈ G(�), ‖pG − pG′‖∞ = 0 implies that G = G′. We
need a slightly stronger version, allowing for the inclusion for discrete measures
with infinite support:

DEFINITION 3. The family {f (·|θ), θ ∈ �} is finitely identifiable if for any
G ∈ G� and G′ ∈ Ḡ�, |pG(x) − pG′(x)| = 0 for almost all x ∈ X implies that
G = G′.

To obtain convergence rates, we also need the notion of strong identifiability
of [7], herein adapted to a multivariate setting.

DEFINITION 4. Assume that � ⊆ R
d and ρ is the Euclidean metric. The fam-

ily {f (·|θ), θ ∈ �} is strongly identifiable if f (x|θ) is twice differentiable in θ and
for any finite k and k different θ1, . . . , θk , the equality

ess sup
x∈X

∣∣∣∣∣
k∑

i=1

αif (x|θi) + βT
i Df (x|θi) + γ T

i D2f (x|θi)γi

∣∣∣∣∣ = 0(2)

implies that αi = 0, βi = γi = 0 ∈ R
d for i = 1, . . . , k. Here, for each x, Df (x|θi)

and D2f (x|θi) denote the gradient and the Hessian at θi of function f (x|·), re-
spectively.

Finite identifiability is satisfied for the family of Gaussian distributions for both
mean and variance parameters [34]; see also Theorem 1 of [21]. Chen identified a
broad class of families, including the Gaussian family, for which the strong iden-
tifiability condition holds [7].

Define ψ(G,G′) = supx |pG(x) − pG′(x)|/W 2
2 (G,G′) if G = G′ and ∞ oth-

erwise. Also define ψ1(G,G′) = V (pG,pG′)/W 2
2 (G,G′) if G = G′ and ∞ oth-

erwise. The notion of strong identifiability is useful via the following key result,
which generalizes Chen’s result to � of arbitrary dimensions.

THEOREM 1 (Strong identifiability). Suppose that � is a compact subset
of R

d , the family {f (·|θ), θ ∈ �} is strongly identifiable, and for all x ∈ X , the
Hessian matrix D2f (x|θ) satisfies a uniform Lipschitz condition∣∣γ T (

D2f (x|θ1) − D2f (x|θ2)
)
γ

∣∣ ≤ C‖θ1 − θ2‖δ‖γ ‖2(3)

for all x, θ1, θ2 and some fixed C and δ > 0. Then, for fixed G0 ∈ Gk(�), where
k < ∞,

lim
ε→0

inf
G,G′∈Gk(�)

{
ψ

(
G,G′) :W2(G0,G) ∨ W2

(
G0,G

′) ≤ ε
}
> 0.(4)

The assertion also holds with ψ being replaced by ψ1.
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REMARK. Suppose that G0 has exactly k distinct support points in � (i.e.,
G = ∑k

i=1 piδθi
where pi > 0 for all i = 1, . . . , k). Then, an examination of the

proof reveals that the requirement that � be compact is not needed. Indeed, if there
is a sequence of Gn ∈ Gk(�) such that W2(G0,Gn) → 0, then it is simple to show
that there is a subsequence of Gn that also has k distinct atoms, which converge
in the ρ metric to the set of k atoms of G0 (up to some permutation of the labels).
The proof of the theorem proceeds as before.

For the rest of this paper, by strong identifiability we always mean conditions
specified in Theorem 1 so that equation (4) can be deduced. This practically means
that the conditions specified by (2) and (3) be given, while the compactness of �

may sometimes be required.

2.3. Wasserstein metric identifiability in infinite mixture models. Next, we
state a counterpart of Theorem 1 for G,G′ ∈ Ḡ(�), that is, mixing measures
with a potentially unbounded number of support points. We restrict our atten-
tion to convolution mixture models on R

d . That is, the likelihood density function
f (x|θ), with respect to Lebesgue, takes the form f (x − θ) for some multivari-
ate density function f on R

d . Thus, pG(x) = G ∗ f (x) = ∑k
i=1 pif (x − θi) and

pG′(x) = G′ ∗ f (x) = ∑k′
j=1 p′

j f (x − θ ′
j ).

The key assumption is concerned with the smoothness of density function f .
This is characterized in terms of the tail behavior of the Fourier transform f̃ of
f : f̃ (ω) = ∫

Rd e−i〈ω,x〉f (x) dx. We consider both ordinary smooth densities (e.g.,
Laplace and Gamma) and supersmooth densities (e.g., normal).

THEOREM 2. Suppose that G,G′ are probability measures that place full sup-
port on a bounded subset � ⊂ R

d . f is a density function on R
d that is symmetric

(around 0), that is,
∫
A f dx = ∫

−A f dx for any Borel set A ⊂ R
d . Moreover, as-

sume that f̃ (ω) = 0 for all ω ∈ R
d .

(1) Ordinary smooth likelihood. Suppose that |f̃ (ω)
∏d

j=1 |ωj |β | ≥ d0 as ωj →
∞ (j = 1, . . . , d) for some positive constants d0 and β . Then for any m < 4/(4 +
(2β + 1)d), there is some constant C(d,β,m) dependent only on d,β and m such
that

W 2
2
(
G,G′) ≤ C(d,β,m)V (pG,pG′)m

as V (pG,pG′) → 0.
(2) Supersmooth likelihood. Suppose that |f̃ (ω)

∏d
j=1 exp(|ωj |β/γ )| ≥ d0 as

ωj → ∞ (j = 1, . . . , d) for some positive constants β,γ, d0. Then there is some
constant C(d,β) dependent only on d and β such that

W 2
2
(
G,G′) ≤ C(d,β)

(− logV (pG,pG′)
)−2/β

as V (pG,pG′) → 0.
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REMARK. The theorem does not actually require that mixing measures G,G′
be discrete. Moreover, from the proof of the theorem, the condition that the support
points of G and G′ lie in a bounded subset of R

d can be removed and replaced by
the boundedness of a given moment of the mixing measures. The upper bound
remains the same for the supersmooth likelihood case. For the ordinary smooth
case, we obtain a slightly weaker upper bound for W2(G,G′).

EXAMPLE 2. For the standard normal density on R
d , f̃ (ω) = ∏d

j=1 exp−ω2
i /

2, we obtain that W 2
2 (G,G′) � (− logV (pG,pG′))−1 as W2(G,G′) → 0 [so that

V (pG,pG′) → 0, by Lemma 1]. For a Laplace density on R, for example, f̃ (ω) =
1

1+ω2 , then W 2
2 (G,G′) � V (pG,pG′)m for any m < 4/9, as W2(G,G′) → 0.

3. Convergence of posterior distributions of mixing measures. We turn to
a study of convergence of mixing measures in a Bayesian setting. Let X1, . . . ,Xn

be an i.i.d. sample according to the mixture density pG(x) = ∫
f (x|θ) dG(θ),

where f is known, while G = G0 for some unknown mixing measure in Gk(�).
The true number of support points for G may be unknown (and/or unbounded). In
the Bayesian estimation framework, G is endowed with a prior distribution � on
a suitable measure space of discrete probability measures in Ḡ(�). The posterior
distribution of G is given by, for any measurable set B ,

�(B|X1, . . . ,Xn) =
∫
B

n∏
i=1

pG(Xi) d�(G)
/∫ n∏

i=1

pG(Xi) d�(G).

We shall study conditions under which the posterior distribution is consistent,
that is, it concentrates on arbitrarily small W2 neighborhoods of G0, and establish
the rates of the convergence. We follow the general framework of Ghosal, Ghosh
and van der Vaart [16], who analyzed convergence behavior of posterior distri-
butions in terms of f -divergences such as Hellinger and variational distances on
the mixture densities of the data. In the following we formulate two convergence
theorems for the mixture model setting (which can be viewed as counterparts of
Theorems 2.1 and 2.4 of [16]). A notable feature of our theorems is that conditions
(e.g., entropy and prior concentration) are stated directly in terms of the Wasser-
stein metric, as opposed to f -divergences on the mixture densities. They may be
typically separated into independent conditions for the prior for G and the likeli-
hood family and are simpler to verify for mixture models.

The following notion plays a central role in our general results.

DEFINITION 5. Fix G0 ∈ Ḡ(�). Let G ⊂ Ḡ(�). Define the Hellinger infor-
mation of the W2 metric for subset G as a real-valued function on the real line
�G : R → R:

�G (r) = inf
G∈G:W2(G0,G)≥r/2

h2(pG0,pG).(5)
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Note the dependence of �G on the (fixed) G0, but this is suppressed for ease of
notation. It is obvious that �G is a nonnegative and nondecreasing function. The
following characterizations of �G are simple consequences of Theorems 1 and 2:

PROPOSITION 1. (a) Suppose that G0 ∈ Gk(�), and both Gk(�) and G are
compact in the Wasserstein topology. In addition, assume that the family of likeli-
hood functions is finitely identifiable. Then, �G (r) > 0 for all r > 0.

(b) Suppose that � ⊂ R
d is compact, and the family of likelihood functions is

strongly identifiable as specified in Theorem 1. Then, for each k there is a constant
c(k,G0) > 0 such that �Gk(�)(r) ≥ c(k,G0)r

4 for all r > 0.
(c) Suppose that � ⊂ R

d is bounded, and the family of likelihood functions
is ordinary smooth with parameter β , as specified in Theorem 2. Then, for any
d ′ > d there is some constant c(d,β) such that �Ḡ(�)(r) ≥ c(d,β)r4+(2β+1)d ′

for all r > 0. For the supersmooth likelihood family, we have �Ḡ(�)(r) ≥
exp[−c(d,β)r−β] for all r > 0.

A main ingredient in the analysis of convergence of posterior distributions is
through proving the existence of tests for subsets of parameters of interest. A test
ϕn is a measurable indicator function of the i.i.d. sample X1, . . . ,Xn. For a fixed
pair of measures (G0,G1) such that G1 ∈ G , where G is a given subset of Ḡ(�),
consider tests for discriminating G0 against a closed Wasserstein ball centered
at G1. Write

BW(G1, r) = {
G ∈ Ḡ(�) :W2(G1,G) ≤ r

}
.

The following lemma highlights the role of the Hellinger information:

LEMMA 2. Suppose that (�,ρ) is a metric space. Fix G0 ∈ Ḡ(�) and con-
sider G ⊂ Ḡ(�). Given G1 ∈ G , let r = W2(G0,G1). Suppose that either one of
the following two sets of conditions holds:

(I) G is a convex set, in which case, let M(G,G1, r) = 1.
(II) G is nonconvex, while � is a totally bounded and bounded set. In addi-

tion, for some constants C1 > 0, α ≥ 1, h(fi, f
′
j ) ≤ C1ρ

α(θi, θ
′
j ) for any likelihood

functions fi, f
′
j in the family. In this case, define

M(G,G1, r) = D

(
�G (r)1/2

2 Diam(�)α−1
√

C1
, G ∩ BW(G1, r/2),W2

)
.(6)

Then, there exist tests {ϕn} that have the following properties:

PG0ϕn ≤ M(G,G1, r) exp
[−n�G (r)/8

]
,(7)

sup
G∈G∩BW (G1,r/2)

PG(1 − ϕn) ≤ exp
[−n�G (r)/8

]
.(8)

Here, PG denotes the expectation under the mixture distribution given by den-
sity pG.
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REMARK. The set of conditions (II) is needed when G is not convex, an ex-
ample of which is G = Gk(�), the space of measures with at most k support points
in �. It is interesting to note that the loss in test power due to the lack of convexity
is captured by the local entropy term logM(G,G1, r). This quantity is defined in
terms of the packing by small W2 balls whose radii are specified by the Hellinger
information. Hence, this packing number can be upper bounded by exploiting a
lower bound of the Hellinger information.

Next, the existence of the test can be shown for discriminating G0 against the
complement of a closed Wasserstein ball:

LEMMA 3. Assume that conditions of Lemma 2 hold and define M(G,G1, r)

as in Lemma 2. Suppose that for some nonincreasing function D(ε), some εn ≥ 0
and every ε > εn,

sup
G1∈G

M(G,G1, ε) × D
(
ε/2, G ∩ BW(G0,2ε) \ BW(G0, ε),W2

) ≤ D(ε).(9)

Then, for every ε > εn, for any t0 ∈ N, there exist tests ϕn (depending on ε > 0)
such that

PG0ϕn ≤ D(ε)

�Diam(�)/ε�∑
t=t0

exp
[−n�G (tε)/8

]
,(10)

sup
G∈G : W2(G0,G)>t0ε

PG(1 − ϕn) ≤ exp
[−n�G (t0ε)/8

]
.(11)

REMARK. It is interesting to observe that function D(ε) is used to control
the packing number of thin layers of Wasserstein balls (a similar quantity that
also arises via the peeling argument in [16] (Theorem 7.1)), in addition to the
packing number M of small Wasserstein balls in terms of smaller Wasserstein
balls whose radii are specified in terms of the Hellinger information function. As
in the previous lemma, the latter packing number appears intrinsic to the analysis
of convergence for mixing measures.

The preceeding two lemmas provide the core argument for establishing the fol-
lowing general posterior contraction theorems for latent mixing measures in a mix-
ture model. The following two theorems have three types of conditions. The first
is concerned with the size of support of �, often quantified in terms of its en-
tropy number. Estimates of the entropy number defined in terms of Wasserstein
metrics for several measure classes of interest are given in Lemma 4. The second
condition is on the Kullback–Leibler support of �, which is related to both the
space of discrete measures Ḡ(�) and the family of likelihood functions f (x|θ).
The Kullback–Leibler neighborhood is defined as

BK(ε) =
{
G ∈ Ḡ(�) :−PG0

(
log

pG

pG0

)
≤ ε2,PG0

(
log

pG

pG0

)2

≤ ε2
}
.(12)
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The third type of condition is on the Hellinger information of the W2 metric, func-
tion �G (r), a characterization of which is given above.

THEOREM 3. Fix G0 ∈ Ḡ(�), and assume that the family of likelihood func-
tions is finitely identifiable. Suppose that for a sequence (εn)n≥1 that tends to
a constant (or 0) such that nε2

n → ∞, and a constant C > 0, and convex sets
Gn ⊂ Ḡ(�), we have

logD(εn, Gn,W2) ≤ nε2
n,(13)

�
(

Ḡ(�) \ Gn

) ≤ exp
[−nε2

n(C + 4)
]
,(14)

�
(
BK(εn)

) ≥ exp
(−nε2

nC
)
.(15)

Moreover, suppose Mn is a sequence such that

�Gn(Mnεn) ≥ 8ε2
n(C + 4),(16)

exp
(
2nε2

n

) ∑
j≥Mn

exp
[−n�Gn(jεn)/8

] → 0.(17)

Then, �(G :W2(G0,G) ≥ Mnεn|X1, . . . ,Xn) → 0 in PG0-probability.

The following theorem uses a weaker condition on the covering number, but it
contains an additional condition on the likelihood functions which may be useful
for handling the case of nonconvex sieves Gn.

THEOREM 4. Fix G0 ∈ Ḡ(�). Assume the following:

(a) The family of likelihood functions is finitely identifiable and satisfies
h(fi, f

′
j ) ≤ C1ρ

α(θi, θ
′
j ) for any likelihood functions fi, f

′
j in the family, for some

constants C1 > 0, α ≥ 1.
(b) There is a sequence of sets Gn ⊂ Ḡ(�) for which M(Gn,G1, ε) is defined

by (6).
(c) There is a sequence εn → 0 such that nε2

n is bounded away from 0 or tend-
ing to infinity, and a sequence Mn such that

logD
(
ε/2, Gn ∩ BW(G0,2ε) \ BW(G0, ε),W2

)
(18)

+ sup
G1∈Gn

logM(Gn,G1, ε) ≤ nε2
n ∀ε ≥ εn,

�(Ḡ(�) \ Gn)

�(BK(εn))
= o

(
exp

(−2nε2
n

))
,(19)

�(BW(G0,2jεn) \ BW(G0, jεn))

�(BK(εn))
≤ exp

[
n�Gn(jεn)/16

] ∀j ≥ Mn,(20)

exp
(
2nε2

n

) ∑
j≥Mn

exp
[−n�Gn(jεn)/16

] → 0.(21)
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Then, we have that �(G :W2(G0,G) ≥ Mnεn|X1, . . . ,Xn) → 0 in PG0-
probability.

REMARK. (i) From the theorem’s proof, the above statement continues to hold
if conditions (20) and (21) are replaced by the following condition:

exp
(
2nε2

n

)
/�

(
BK(εn)

) ∑
j≥Mn

exp
[−n�Gn(jεn)/16

] → 0.(22)

(ii) In Theorem 4 and in Theorem 3 augmented with condition (a) of Theorem 4,
it is simple to deduce the posterior convergence rates for the mixture density pG.
We obtain that for a sufficiently large constant M > 0,

�
(
G :h(pG0,pG) ≥ Mεn|X1, . . . ,Xn

) → 0

in PG0 -probability.

Before moving to specific examples, we state a simple lemma which provides
estimates of the entropy under the Wr metric for a number of classes of discrete
measures of interest. Because Wr inherits directly the ρ metric in �, the entropy
for classes in (Ḡ(�),Wr) can typically be bounded in terms of the covering num-
ber for subsets of (�,ρ).

LEMMA 4. Suppose that � is bounded. Let r ≥ 1.

(a) logN(2ε, Gk(�),Wr) ≤ k(logN(ε,�,ρ) + log(e + e Diam(�)r/εr)).
(b) logN(2ε, Ḡ(�),Wr) ≤ N(ε,�,ρ) log(e + e Diam(�)r/εr).
(c) Let G0 = ∑k

i=1 p∗
i δθ∗

i
∈ Gk(�). Assume that M = maxk

i=1 1/p∗
i < ∞ and

m = mini,j≤k ρ(θ∗
i , θ∗

j ) > 0. Then,

logN
(
ε/2,

{
G ∈ Gk(�) :Wr(G0,G) ≤ 2ε

}
,Wr

)
≤ k

(
sup
�′

logN
(
ε/4,�′, ρ

) + log
(
22+3rk Diam(�)/m

))
,

where the supremum in the right-hand side is taken over all bounded subsets
�′ ⊆ � such that Diam(�′) ≤ 4M1/rε.

4. Examples. In this section we derive posterior contraction rates for two
classes of mixture models, for example, finite mixtures of multivariate distribu-
tions and infinite mixtures based on the Dirichlet process.

4.1. Finite mixtures of multivariate distributions. Let � be a subset of R
d ,

ρ be the Euclidean metric, and � is a prior distribution for discrete measures
in Gk(�), where k < ∞ is known. Suppose that the “truth” G0 = ∑k

i=1 p∗
i δθ∗

i
∈

Gk(�). To obtain the convergence rate of the posterior distribution of G, we need
the following:
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Assumptions A. (A1) � is compact and the family of likelihood functions
f (·|θ) is strongly identifiable.

(A2) For some positive constant C1, K(fi, f
′
j ) ≤ C1‖θi − θ ′

j‖2 for any

θi, θ
′
j ∈ �. For any G ∈ supp(�),

∫
pG0(log(pG0/pG))2 < C2K(pG0,pG) for

some constant C2 > 0.
(A3) Under prior �, for small δ > 0, c3δ

k ≤ �(|pi − p∗
i | ≤ δ, i = 1, . . . , k) ≤

C3δ
k and c3δ

kd ≤ �(‖θi − θ∗
i ‖ ≤ δ, i = 1, . . . , k) ≤ C3δ

kd for some constants
c3,C3 > 0.

(A4) Under prior �, all pi are bounded away from 0, and all pairwise distances
‖θi − θj‖ are bounded away from 0.

REMARK. Assumptions (A1) and (A2) hold for the family of Gaussian densi-
ties with mean parameter θ . Assumption (A3) holds when the prior distribution on
the relevant parameters behaves like a uniform distribution, up to a multiplicative
constant.

THEOREM 5. Under assumptions (A1)–(A4), the contraction rate in the L2
Wasserstein distance metric of the posterior distribution of G is (logn)1/2n−1/4.

PROOF. Let G = ∑k
i=1 piδθi

. Combining Lemma 1 with assumption (A2),
if ‖θi − θ∗

i ‖ ≤ ε and |pi − p∗
i | ≤ ε2/(k Diam(�)2) for i = 1, . . . , k, then

K(pG0,pG) ≤ dρK
(G0,G) ≤ C1

∑
1≤i,j≤k qij‖θ∗

i − θj‖2, for any q ∈ Q. Thus,

K(pG0,pG) ≤ C1W
2
2 (G0,G) ≤ C1

∑k
i=1(p

∗
i ∧ pi)‖θ∗

i − θi‖2 + C1
∑k

i=1 |pi −
p∗

i |Diam(�)2 ≤ 2C1ε
2. Hence, under prior �,

�
(
G :K(pG0,pG) ≤ ε2)

≥ �
(
G :

∥∥θi − θ∗
i

∥∥ ≤ ε,
∣∣pi − p∗

i

∣∣ ≤ ε2/
(
k Diam(�)2)

, i = 1, . . . , k
)
.

In view of assumptions (A2) and (A3), we have �(BK(ε)) � εk(d+2). Conversely,
for sufficiently small ε, if W2(G0,G) ≤ ε, then by reordering the index of the
atoms, we must have ‖θi − θ∗

i ‖ = O(ε) and |pi − p∗
i | = O(ε2) for all i = 1, . . . , k

[see the argument in the proof of Lemma 4(c)]. This entails that under the prior �,

�
(
G :W 2

2 (G0,G) ≤ ε2) ≤ �
(
G :

∥∥θi − θ∗
i

∥∥ ≤ O(ε),
∣∣pi − p∗

i

∣∣ ≤ O
(
ε2)

,∀i
)

� εk(d+2).

Let εn be a sufficiently large multiple of (logn/n)1/2. We proceed by verifying
conditions of Theorem 4. Let Gn := Gk(�). Then �(Ḡ(�) \ Gn) = 0, so equation
(19) trivially holds.

Next, we provide upper bounds for D(ε/2, S,W2), where S = {G ∈ Gn :W2(G0,

G) ≤ 2ε}, and M(Gn,G1, ε) so that (18) is satisfied. Indeed, for any ε > 0,
logD(ε/2, S,W2) ≤ logN(ε/4, S,W2). By Lemma 4(c) and assumption (A4),
N(ε/4, S,W1) is bounded in terms of sup�′ logN(ε/8,�′, ρ), which is bounded



384 X. NGUYEN

above by a constant when �′’s are subsets of � whose diameter is bounded by
a multiple of ε. Turning to M(Gn,G1, ε), due to strong identifiability and as-
sumption (A2), �Gn(ε) ≥ cε4 for some constant c > 0. By Lemma 4(a), for some
constant c1 > 0, logM(Gn,G1, ε) ≤ logN(c1ε

2, Gk(�) ∩ BW(G1, ε/2),W2) ≤
k(logN(c1ε

2/2,�,ρ) + log(e + 4e Diam(�)2/c2
1ε

4)) ≤ nε2
n/2. Thus, equation

(18) holds.
By Proposition 1(b) and assumption (A4), we have

�Gn(jεn) = inf
W2(G0,G)≥jε/2

h2(pG0,pG) ≥ c(jεn)
4

for some constant c > 0. To ensure condition (21), note that (constants c change
after each bounding step)

exp
(
2nε2

n

) ∑
j≥Mn

exp
[−n�Gn(jεn)/16

]
� exp

(
2nε2

n

) ∑
j≥Mn

exp
[−nc(jεn)

4]

� exp
(
2nε2

n − ncM4
nε4

n

)
.

This upper bound goes to zero if ncM4
nε4

n ≥ 4nε2
n, which is satisfied by taking Mn

to be a large multiple of ε
−1/2
n . Thus, we need Mnεn � ε

1/2
n � (logn)1/4n−1/4.

Under the assumptions specified above,

�
(
G : jεn < W2(G,G0) ≤ 2jεn

)
/�

(
BK(εn)

) = O(1).

On the other hand, for j ≥ Mn, we have exp[n�Gn(jεn)/16] ≥ exp[nc(jεn)
4/16]

which is bounded below by an arbitrarily large constant by choosing Mn to be a
large multiple of ε

−1/2
n , thereby ensuring (20).

Thus, by Theorem 4, rate of contraction for the posterior distribution of G under
the W2 distance metric is (logn)1/4n−1/4, which is up to a logarithmic factor the
minimax optimal rate n−1/4 as proved for the univariate finite mixtures by [7]. �

4.2. Dirichlet process mixtures. Given the “true” discrete mixing measure,
G0 = ∑k

i=1 p∗
i δθ∗

i
∈ Gk(�), where � is a metric space but k ≤ ∞ is unknown.

To estimate G0, the prior distribution � on discrete measure G ∈ Ḡ(�) is taken
to be a Dirichlet process DP(ν,P0) that centers at P0 with concentration parame-
ter ν > 0 [12]. Here, parameter P0 is a probability measure on �. For any r ≥ 1,
the following lemma provides a lower bound of small ball probabilities of metric
space (Ḡ(�),Wr) in terms of small ball P0-probabilities of metric space (�,ρ).

LEMMA 5. Let G ∼ DP(ν,P0), where P0 is a nonatomic base probability
measure on a compact set �. For a small ε > 0, let D = D(ε,�,ρ) denote the
ε-packing number of � under the ρ metric. Then, under the Dirichlet process
distribution,

�
(
G :Wr

r (G0,G) ≤ (
2r + 1

)
εr)

≥ �(ν)νD

(2D)D−1

(
ε

Diam(�)

)r(D−1)

sup
S

D∏
i=1

P0(Si).
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Here, S := (S1, . . . , SD) denotes the D disjoint ε/2-balls that form a maximal ε-
packing of �. The supremum is taken over all such packings. �(·) is the gamma
function.

PROOF. Since every point in � is of distance at most ε to one of the cen-
ters of S1, . . . , SD , there is a D-partition (S′

1, . . . , S
′
D) of �, such that Si ⊆ S′

i ,
and Diam(S′

i ) ≤ 2ε for each i = 1, . . . ,D. Let mi = G(S′
i ), μi = P0(S

′
i ), and

p̂i = G0(S
′
i ). From the definition of Dirichlet processes, m = (m1, . . . ,mD) ∼

Dir(νμ1, . . . , νμD). To obtain an upper bound for dρr (G0,G), consider a cou-
pling between G0 and G, by associating mi ∧ p̂i probability mass of supporting
atoms for G0 contained in subset S′

i with the same probability mass of supporting
atoms for G contained in the same subset, for each i = 1, . . . ,D. The remaining
mass (of probability ‖m − p̂‖) for both measures are coupled in an arbitrary way.
The expectation under this coupling of the ρr distance provides one such upper
bound, that is,

dρr (G0,G) ≤ (2ε)r + ‖m − p̂‖1
[
Diam(�)

]r
.

Due to the nonatomicity of P0, for ε sufficiently small, νμi ≤ 1 for all i =
1, . . . ,D. Let δ = ε/Diam(�). Then, under �,

Pr
(
dρr (G0,G) ≤ (

2r + 1
)
εr)

≥ Pr
(‖m − p̂‖1 ≤ δr)

≥ Pr
(|mi − p̂i | ≤ δr/2D, i = 1, . . . ,D − 1

)

= �(ν)∏D
i=1 �(νμi)

∫
�D−1∩|mi−p̂i |≤δr/2D

D−1∏
i=1

m
νμi−1
i

(
1 −

D−1∑
i=1

mi

)νμD−1

dmi

≥ �(ν)∏D
i=1 �(νμi)

D−1∏
i=1

∫ min(p̂i+δr/2D,1)

max(p̂i−δr/2D,0)
m

νμi−1
i dmi

≥ �(ν)
(
δr/2D

)D−1
D∏

i=1

(νμi).

The second inequality in the previous display is due to the fact that ‖m −
p̂‖1 ≤ 2

∑D−1
i=1 |mi − p̂i |. The third inequality is due to (1 − ∑D−1

i=1 mi)
νμD−1 =

m
νμD−1
D ≥ 1, since νμD ≤ 1 and 0 < mD < 1 almost surely. The last inequality is

due to the fact that �(α) ≤ 1/α for 0 < α ≤ 1. This gives the desired claim. �

Assumptions B. (B1) The nonatomic base measure P0 places full support on a
bounded set � ⊂ R

d . Moreover, P0 has a Lebesgue density that is bounded away
from zero.
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(B2) For some constants C1,m1 > 0, K(fi, f
′
j ) ≤ C1ρ

m1(θi, θ
′
j ) for any

θi, θ
′
j ∈ �.

For any G ∈ supp(�),
∫

pG0(log(pG0/pG))2 ≤ C2K(pG0,pG)m2 for some
constants C2,m2 > 0.

THEOREM 6. Given assumptions (B1) and (B2) and the smoothness condi-
tions for the likelihood family as specified in Theorem 2, there is a sequence βn ↘ 0
such that �(W2(G0,G) ≥ βn|X1, . . . ,Xn) → 0 in PG0 probability. Specifically:

(1) For ordinary smooth likelihood functions, take

βn � (logn/n)2/((d+2)(4+(2β+1)d ′))

for any constant d ′ > d .
(2) For supersmooth likelihood functions, take βn � (logn)−1/β .

PROOF. The proof consists of two main steps. First, we shall prove that under
assumptions (B1)–(B2), conditions specified by (13), (14) and (15) in Theorem 3
are satisfied by taking Gn = Ḡ(�), which is a convex set, and εn to be a large
multiple of (logn/n)1/(d+2). The second step involves constructing a sequence of
Mn and βn = Mnεn for which Theorem 3 can be applied.

Step 1: By Lemma 1 and (B2), K(pG0,pG) ≤ dρK
(G0,G) ≤ C1dρm1 (G0,G).

Also,
∫

pG0[log(pG0/pG)]2 � C2dρm1 (G0,G)m2 . Assume without loss of gen-
erality that m1 ≤ m2 (the other direction is handled similarly). We obtain that
�(G ∈ BK(εn)) ≥ �(G :dρm1 (G0,G) ≤ C3ε

2∨2/m2
n ) for some constant C3 > 0.

From (B1), there is a universal constant c3 > 0 such that for any ε and any
D-partition (S1, . . . , SD) specified in Lemma 5, there holds

log
D∏

i=1

P0(Si) ≥ c3D log(1/D).

Moreover, the packing number satisfies D � [Diam(�)/εn]d . Combining these
facts with Lemma 5, we have log�(G ∈ BK(εn)) � (D − 1) log(εn/Diam(�)) +
(2D − 1) log(1/D) + D logν, where the approximation constant is dependent on
m1,m2. It is simple to check that condition (15) holds, log�(G ∈ BK(εn)) ≥
−Cnε2

n, by the given rate of εn, for any constant C > 0.
Since Gn = Ḡ(�), (14) trivially holds. Turning to condition (13), by Lem-

ma 4(b), we have logN(2εn, Ḡ(�),W2) ≤ N(εn,�,ρ) log(e+e Diam(�)2/ε2
n) ≤

(Diam(�)/εn)
d log(e + e Diam(�)2/ε2

n) ≤ nε2
n by the specified rate of εn.

Step 2: For any G ⊆ Ḡ(�), let RG (r) be the inverse of the Hellinger information
function of the W2 metric. Specifically, for any t ≥ 0,

RG (t) = inf
{
r ≥ 0|�G (r) ≥ t

}
.

Note that RG (0) = 0. RG (·) is nondecreasing because �G (·) is.
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Let (εn)n≥1 be the sequence determined in the previous step of the proof. Let
Mn = RḠ(�)(8ε2

n(C + 4))/εn, and βn = Mnεn = RḠ(�)(8ε2
n(C + 4)). Condition

(16) holds by definition of RḠ(�), that is, �G(�)(Mnεn) ≥ 8ε2
n(C + 4). To ver-

ify (17), note that the running sum with respect to j cannot have more than
Diam(�)/εn terms, and, due to the monotonicity of �G , we have

exp
(
2nε2

n

) ∑
j≥Mn

exp
[−n�Gn(jεn)/8

]

≤ Diam(�)/εn exp
(
2nε2

n − n�Gn(Mnεn)/8
) → 0.

Hence, Theorem 3 can be applied to conclude that

�
(
W2(G0,G) ≥ βn|X1, . . . ,Xn

) → 0

in PG0 -probability. Under the ordinary smoothness condition (as specified in The-
orem 2), RḠ(�)(t) = t1/(4+(2β+1)d+δ), where δ is an arbitrarily positive constant.
So,

βn � ε2/(4+(2β+1)d+δ)
n = (logn/n)2/((d+2)(4+(2β+1)d+δ)).

On the other hand, under the supersmoothness condition, RḠ(�)(t) = (1/ log(1/

t))1/β . So, βn � (log(1/εn))
−1/β � (logn)−1/β . �

5. Proofs.

5.1. Proofs of Wasserstein identifiability results.

PROOF OF THEOREM 1. Suppose that equation (4) is not true, then there
will be sequences of Gn and G′

n tending to G0 in the W2 metric, and that
ψ(Gn,G

′
n) → 0. We write Gn = ∑∞

i=1 pn,iδθn,i
, where pn,i = 0 for indices i

greater than kn, the number of atoms of Gn. Similar notation is applied to G′
n.

Since both Gn and G′
n have a finite number of atoms, there is q(n) ∈ Q(pn,p′

n) so
that W 2

2 (Gn,G
′
n) = ∑

ij q
(n)
ij ‖θn,i − θ ′

n,j‖2.
Let On = {(i, j) :‖θn,i −θ ′

n,j‖ ≤ W2(Gn,G
′
n)}. This set exists because there are

pairs of atoms θn,i, θ
′
n,j such that ‖θn,i − θ ′

n,j‖ is bounded away from zero in the

limit. Since q(n) ∈ Q(pn,p′
n), we can express

ψ
(
Gn,G

′
n

) = sup
x

∣∣∣∣∣
kn∑

i=1

pn,if (x|θn,i) −
k′
n∑

j=1

p′
n,jf

(
x|θ ′

n,j

)∣∣∣∣∣
/

W 2
2
(
Gn,G

′
n

)

= sup
x

∣∣∣∣∑
ij

q
(n)
ij

(
f (x|θn,i) − f

(
x|θ ′

n,j

))∣∣∣∣/W 2
2
(
Gn,G

′
n

)
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and, by Taylor’s expansion,

ψ
(
Gn,G

′
n

)
= sup

x

∣∣∣∣ ∑
(i,j)/∈On

q
(n)
ij

(
f

(
x|θ ′

n,j

) − f (x|θn,i)
)

+ ∑
(i,j)∈On

q
(n)
ij

(
θ ′
n,j − θn,i

)T
Df (x|θn,i)

+ ∑
(i,j)∈On

q
(n)
ij

(
θ ′
n,j − θn,i

)T
D2f (x|θn,i)

(
θ ′
n,j − θn,i

) + Rn(x)

∣∣∣∣
/

W 2
2
(
Gn,G

′
n

)
=: sup

x

∣∣An(x) + Bn(x) + Cn(x) + Rn(x)
∣∣/Dn,

where

Rn(x) = O

( ∑
(i,j)∈On

q
(n)
ij

∥∥θn,i − θ ′
n,j

∥∥2+δ
)

= o

( ∑
(i,j)∈On

q
(n)
ij

∥∥θn,i − θ ′
n,j

∥∥2
)

due to (3) and the definition of On. So Rn(x)/W 2
2 (Gn,G

′
n) → 0.

The quantities An(x),Bn(x) and Cn(x) are linear combinations of elements of
f (x|θ), Df (x|θ) and D2f (x|θ) for different θ ’s, respectively. Since � is compact,
subsequences of Gn and G′

n can be chosen so that each of their support points
converges to a fixed atom θ∗

l , for l = 1, . . . , k∗ ≤ k. After being rescaled, the limits
of An(x)/Dn,Bn(x)/Dn and Cn(x)/Dn are still linear combinations with constant
coefficients not depending on x.

We shall now argue that not all such coefficients vanish to zero. Suppose this is
not the case. It follows that for the coefficients of Cn(x)/Dn we have∑

(i,j)∈On

q
(n)
ij

∥∥θ ′
n,j − θn,i

∥∥2
/W 2

2
(
Gn,G

′
n

) → 0.

This implies that
∑

(i,j)/∈On
q

(n)
ij ‖θ ′

n,j − θn,i‖2/W 2
2 (Gn,G

′
n) → 1. Since � is

bounded, there exists a pair (i, j) /∈ On such that qn
ij /W 2

2 (Gn,G
′
n) does not vanish

to zero. But then, one of the coefficients of An(x)/Dn does not vanish to zero,
which contradicts the hypothesis.

Next, we observe that some of the coefficients of An(x)/Dn,Bn(x)/Dn and
Cn(x)/Dn may tend to infinity. For each n, let dn be the inverse of the max-
imum coefficient of An(x)/Dn, Bn(x)/Dn, and Cn(x)/Dn. From the conclu-
sion in the preceding paragraph, |dn| is uniformly bounded from above by a
constant for all n. Moreover, dnAn(x)/Dn converges to

∑k∗
j=1 αjf (x|θ∗

j ) and

dnBn(x)/Dn converges to
∑k∗

j=1 βT
j Df (x|θ∗

j ), and dnCn(x)/Dn converges to
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∑k∗
j=1 γjD

2f (x|θ∗
j )γj , for some finite αj ,βj and γj , not all of them vanishing

(in fact, at least one of them is 1). We have

dn

∣∣pGn(x) − pG′
n
(x)

∣∣/W 2
2
(
Gn,G

′
n

)
(23)

→
∣∣∣∣∣

k∗∑
j=1

αjf
(
x|θ∗

j

) + βT
j Df

(
x|θ∗

j

) + γ T
j D2f

(
x|θ∗

j

)
γj

∣∣∣∣∣
for all x. This entails that the right-hand side of the preceding display must be 0
for almost all x. By strong identifiability, all coefficients must be 0, which leads to
contradiction.

With respect to ψ1(G,G′), suppose that the claim is not true, which implies the
existence of a subsequence Gn,G

′
n such that that ψ1(Gn,G

′
n) → 0. Going through

the same argument as above, we have αj ,βj , γj , not all of which are zero, such that
equation (23) holds. An application of Fatou’s lemma yields

∫ |∑k∗
j=1 αjf (x|θj )+

βT
j Df (x|θj )+γ T

j D2f (x|θj )γj |dμ = 0. Thus, the integrand must be 0 for almost
all x, leading to contradiction. �

PROOF OF THEOREM 2. To obtain an upper bound of W 2
2 (G,G′) = dρ2(G,

G′) in terms of V (pG,pG′) under the condition that V (pG,pG′) → 0, our strategy
is approximate G and G′ by convolving these with some mollifier Kδ . By the
triangular inequality, W2(G,G′) ≤ W2(G,G ∗ Kδ) + W2(G

′,G′ ∗ Kδ) + W2(G ∗
Kδ,G

′ ∗ Kδ). The first two terms are simple to bound, while the last term can be
handled by expressing G ∗ Kδ as the convolution of the mixture density pG with
another function. We also need the following elementary lemma (whose proof is
given Section 5.3).

LEMMA 6. Assume that p and p′ are two probability density functions on R
d

with bounded s-moments.

(a) For t such that 0 < t < s,∫ ∣∣p(x) − p′(x)
∣∣‖x‖t dx ≤ 2

∥∥p − p′∥∥(s−t)/s
L1

(
Ep‖X‖s + Ep′‖X‖s)t/s .

(b) Let Vd = πd/2�(d/2 + 1) denote the volume of the d-dimensional unit
sphere. Then,∥∥p − p′∥∥

L1
≤ 2V

s/(d+2s)
d

(
Ep‖X‖s + Ep′‖X‖s)d/(d+2s)∥∥p − p′∥∥2s/(d+2s)

L2
.

Take any s > 0, and let K : Rd → (0,∞) be a symmetric density function on
R

d whose Fourier transform K̃ is a continuous function whose support is bounded
in [−1,1]d . Moreover, K has bounded moments up to order s. Consider mollifiers
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Kδ(x) = 1
δd K(x/δ) for δ > 0. Let K̃δ and f̃ be the Fourier transforms for Kδ

and f , respectively. Define gδ to be the inverse Fourier transform of K̃δ/f̃ :

gδ(x) = 1

(2π)d

∫
Rd

ei〈ω,x〉 K̃δ(ω)

f̃ (ω)
dω.

Note that function K̃δ(ω)/f̃ (ω) has bounded support. So, gδ ∈ L1(R), and
g̃δ := K̃δ(ω)/f̃ (ω) is the Fourier transform of gδ . By the convolution theorem,
f ∗ gδ = Kδ . As a result,

G ∗ Kδ = G ∗ f ∗ gδ = pG ∗ gδ.

From the definition of Kδ , the second moment under Kδ is O(δ2). Consider a
coupling G and G ∗ Kδ under which we have a pair of random variables (θ, θ +
ε) where ε is independent of θ , the marginal distributions of θ and ε are G Kδ ,
respectively. Under this coupling, E‖(θ + ε) − θ‖2 = O(δ2), which entails that
W 2

2 (G,G ∗ Kδ) = O(δ2).
By the triangular inequality, W2(G,G′) ≤ W2(G ∗ Kδ,G

′ ∗ Kδ) + O(δ), so for
some constant C(K) > 0 dependent only on kernel K ,

W 2
2
(
G,G′) ≤ 2W 2

2
(
G ∗ Kδ,G

′ ∗ Kδ

) + C(K)δ2.(24)

Theorem 6.15 of [37] provides an upper bound for the Wasserstein distance: for
any two probability measures μ and ν, W 2

2 (μ, ν) ≤ 2
∫ ‖x‖2 d|μ − ν|(x), where

|μ − ν| is the total variation of measure |μ − ν|. Thus,

W 2
2
(
G ∗ Kδ,G

′ ∗ Kδ

) ≤ 2
∫

‖x‖2∣∣G ∗ Kδ(x) − G′ ∗ Kδ(x)
∣∣dx.(25)

We note that since density function K has a bounded sth moment,∫
‖x‖sG ∗ Kδ(dx) ≤ 2s

[∫
‖θ‖s dG(θ) +

∫
‖x‖sKδ(x) dx

]

= 2s

[∫
‖θ‖s dG(θ) + δs

∫
‖x‖sK(x) dx

]
< ∞,

because G’s support points lie in a bounded subset of R
d . Applying Lemma 6

to (25), we obtain that for δ < 1,

W 2
2
(
G ∗ Kδ,G

′ ∗ Kδ

) ≤ C(d,K, s)
∥∥G ∗ Kδ − G′ ∗ Kδ

∥∥(s−2)/s
L1

(26)
≤ C(d,K, s)

∥∥G ∗ Kδ − G′ ∗ Kδ

∥∥2(s−2)/(d+2s)
L2

.

Here, constants C(d,K, s) are different in each line, and they are dependent only
on d, s and the sth moment of density function K .
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Next, we use a known fact that for an arbitrary (signed) measure μ on R
d and

function g ∈ L2(R
d), there holds ‖μ ∗ g‖L2 ≤ |μ|‖g‖L2 , where |μ| denotes the

total variation of μ:∥∥G ∗ Kδ − G′ ∗ Kδ

∥∥
L2

= ‖pG ∗ gδ − pG′ ∗ gδ‖L2

= ∥∥(pG − pG′) ∗ gδ

∥∥
L2

(27)

≤ 2V (pG,pG′)‖gδ‖L2 .

By Plancherel’s identity,

‖gδ‖2
L2

= 1

(2π)d

∫
K̃δ(ω)2

f̃ (ω)2
dω = 1

(2π)d

∫
Rd

K̃(ωδ)2

f̃ (ω)2
dω

≤ C

∫
[−1/δ,1/δ]d

f̃ (ω)−2 dω.

The last bound holds because K̃ has support in [−1,1]d and is bounded by a
constant.

Collecting equations (24), (25), (26) and (27) and the preceding display, we
have

W 2
2
(
G,G′)
≤ C(d,K, s)

{
inf

δ∈(0,1)
δ2

+ V (pG,pG′)2(s−2)/(d+2s)

×
[∫

[−1/δ,1/δ]d
f̃ (ω)−2 dω

](s−2)/(d+2s)}
.

If |f̃ (ω)
∏d

j=1 |ωj |β | ≥ d0 as ωj → ∞ (j = 1, . . . , d) for some positive con-
stant d0, then

W 2
2
(
G,G′)
≤ C(d,K, s,β)

{
inf

δ∈(0,1)
δ2

+ V (pG,pG′)2(s−2)/(d+2s)(1/δ)(2β+1)d(s−2)/(d+2s)
}

≤ C(d,K, s,β)V (pG,pG′)4(s−2)/(2(d+2s)+(2β+1)d(s−2)).

The exponent tends to 4/(4 + (2β + 1)d) as s → ∞, so we obtain that
W 2

2 (G,G′) ≤ C(d,β, r)V (pG,pG′)r , for any constant r < 4/(4 + (2β + 1)d),
as V (pG,pG′) → 0.
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If |f̃ (ω)
∏d

j=1 exp(|ωj |β)| ≥ d0 as ωj → ∞ (j = 1, . . . , d) for some positive
constants β,d0, then

W 2
2
(
G,G′)
≤ C(d,K, s,β)

{
inf

δ∈(0,1)
δ2 + V (pG,pG′)2(s−2)/(d+2s) exp−2dδ−β s − 2

d + 2s

}
.

Taking δ−β = − 1
d

logV (pG,pG′), we obtain that

dρ2
(
G,G′) ≤ C(d,β)

(− logV (pG,pG′)
)−2/β

. �

PROOF OF LEMMA 1. We exploit the variational characterization of f -
divergences (e.g., [28]),

ρφ

(
fi, f

′
j

) = sup
ϕij

∫
ϕijf

′
j − φ∗(ϕij )fi dμ,

where the infimum is taken over all measurable functions defined on X . φ∗ denotes
the Legendre–Fenchel conjugate dual of convex function φ [φ∗ is again a convex
function on R and is defined by φ∗(v) = supu∈R(uv − φ(u))].

By the variational characterization, ρφ is a convex functional (jointly of its
two arguments). Thus, for any coupling Q of two mixing measures G and G′,
ρφ(pG,pG′) = ρφ(

∫
f (·|θ) dG,

∫
f (·|θ ′) dG′) = ρφ(

∫
f (·|θ) dQ,

∫
f (·|θ ′) dQ) ≤∫

ρφ(f (·|θ), f (·|θ ′)) dQ, where the inequality is obtained via Jensen’s inequality.
Since this holds for any Q, the desired bound follows. �

PROOF OF PROPOSITION 1. (a) Suppose that the claim is not true, and there is
a sequence of (G0,G) ∈ Gk(�)× G such that W2(G0,G2) ≥ r/2 > 0 always holds
and that converges in W2 metric to G∗

0 ∈ Gk and G∗ ∈ G , respectively. This is due
to the compactness of both Gk(�) and G . We must have W2(G

∗
0,G

∗) ≥ r/2 > 0,
so G∗

0 = G∗. At the same time, h(pG∗
0
,pG∗) = 0, which implies that pG∗

0
= pG∗

for almost all x ∈ X . By the finite identifiability condition, G∗
0 = G∗, which is a

contradiction.
(b) is an immediate consequence of Theorem 1, by noting that under the given

hypothesis, there is c(k) > 0 depending on k, such that

d2
h(pG0,pG) ≥ V 2(pG0,pG)/2

≥ c(k,G0)W
4
2 (G0,G)

for sufficiently small W2(G0,G). The boundedness of � implies the bounded-
ness of W2(G0,G), thereby extending the claim for the entire admissible range of
W2(G0,G). (c) is obtained in a similar way to Theorem 2. �
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5.2. Proofs of posterior contraction theorems. We outline in this section the
proofs of Theorems 3 and 4. Our proof follows the same steps as in [16], with
suitable modifications for the inclusion of the Hellinger information function and
the conditions involving latent mixing measures. The proof consists of results on
the existence of tests, which are turned into probability bounds on the posterior
contraction.

PROOF OF LEMMA 2. We first consider case (I). Define P1 = {pG|G ∈
G ∩ BW(G1, r/2)}. Since ρ is a metric in �, it is a standard fact of Wasserstein
metrics that BW(G1, r/2) is a convex set. Since G is also convex, so is the set
G ∩ BW(G1, r/2). It follows that P1 is a convex set of mixture distributions. Now,
applying a result from Birgé [5] and Le Cam ([23], Lemma 4, page 478), there
exist tests ϕn that discriminate between PG0 and convex set P1 such that

PG0ϕn ≤ exp
[−n infh2(PG0,P1)/2

]
,(28)

sup
G∈G∩BW (G1,r/2)

PG(1 − ϕn) ≤ exp
[−n infh2(PG0,P1)/2

]
,(29)

where the exponent in the upper bounds are given by the infimum Hellinger dis-
tance among all P1 ∈ conv P1 = P1. Due to the triangle inequality, if W2(G0,

G1) = r and W2(G1,G) ≤ r/2, then W2(G0,G) ≥ r/2. So,

�G (r) = inf
G∈G : W2(G0,G)≥r/2

h2(pG0,pG) ≤ infh2(pG0,P1).

This completes the proof of case (I).
Turning to case (II), for a constant c0 > 0 to be determined, consider a

maximal c0r-packing in the W2 metric in set G ∩ BW(G1, r/2). This yields a
set of M(G,G1, r) = D(cor, G ∩ BW(G1, r/2),W2) points G̃1, . . . , G̃M in G ∩
BW(G1, r/2). [In the following we drop the subscripts of M(·).]

We note the following fact: For any t = 1, . . . ,M , if G ∈ G ∩ BW(G1, r/2)

and W2(G, G̃t ) ≤ c0r , by Lemma 1 we have h2(pG,p
G̃t

) ≤ dρ2
h
(G, G̃t ) ≤

C1dρ2α (G, G̃t ) ≤ C1 Diam(�)2(α−1)W 2
2 (G, G̃t ) ≤ C1 Diam(�)2(α−1)c2

0r
2 (the

second inequality is due to the condition on the likelihood functions); and so it
follows that

h(pG0,pG) ≥ h(pG0,pG̃t
) − h(pG,p

G̃t
) ≥ �G (r)1/2 − C

1/2
1 Diam(�)α−1c0r.

Choose c0 = �G (r)1/2

2r Diam(�)α−1C
1/2
1

so that the previous bounds become h(pG,p
G̃t

) ≤
�G (r)1/2/2 ≤ h(pG0,pG̃t

)/2 and h(pG0,pG) ≥ �G (r)1/2/2.

For each pair of G0, G̃t , there exist tests ω
(t)
n of pG0 versus the closed Hellinger

ball {pG :h(pG,p
G̃t

) ≤ h(pG0,pG̃t
)/2} such that

PG0ω
(t)
n ≤ exp

[−nh2(PG0,PG̃t
)/8

]
,

sup
G∈Ḡ(�):h(pG,p

G̃t
)≤h(pG0 ,p

G̃t
)/2

PG

(
1 − ω(t)

n

) ≤ exp
[−nh2(PG0,PG̃t

)/8
]
.
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Consider the test ϕn = maxt≤M ω
(t)
n , then

PG0ϕn ≤ M exp
[−n�G (r)/8

]
,

sup
G∈G∩BW (G1,r/2)

PG(1 − ϕn) ≤ exp
[−n�G (r)/8

]
.

The first inequality is due to ϕn ≤ ∑M
t=1 ω

(t)
n , and the second is due to the fact that

for any G ∈ G ∩ BW(G1, r/2) there is some t ≤ M such that W2(G, G̃t ) ≤ c0r , so
that h(pG,p

G̃t
) ≤ h(pG0,pG̃t

)/2. �

PROOF OF LEMMA 3. For a given t ∈ N choose a maximal tε/2-packing
for set St = {G : tε < W2(G0,G) ≤ (t + 1)ε}. This yields a set S′

t of at most
D(tε/2, St ,W2) points. Moreover, every G ∈ St is within distance tε/2 of at least
one of the points in S′

t . For every such point G1 ∈ S′
t , there exists a test ωn satis-

fying equations (7) and (8). Take ϕn to be the maximum of all tests attached this
way to some point G1 ∈ S′

t for some t ≥ t0. Then, by the union bound and the fact
that D(ε) is nonincreasing,

PG0ϕn ≤ ∑
t≥t0

∑
G1∈S′

t

M(G,G1, tε) exp
[−n�G (tε)/8

]

≤ D(ε)
∑
t≥t0

exp
[−n�G (tε)/8

]
,

sup
G∈⋃

u≥t0
Su

PG(1 − ϕn) ≤ sup
u≥t0

exp
[−n�G (uε)/8

] ≤ exp
[−n�G (t0ε)/8

]
,

where the last inequality is due the monotonicity of �G (·). �

PROOF OF THEOREMS 3 AND 4. The proof for Theorem 3 proceeds in a sim-
ilar way to Theorem 2.1 of [16], while the proof for Theorem 4 is similar to their
Theorem 2.4. The main difference is that the posterior distribution statements are
made with respect to mixing measure G rather than mixture density pG. By a re-
sult of Ghosal et al. [16] (Lemma 8.1, page 524), for every ε > 0 and probability
measure � on the set BK(ε) defined by (12), we have, for every C > 0,

PG0

(∫ n∏
i=1

pG(Xi)

pG0(Xi)
d�(G) ≤ exp

(−(1 + C)nε2)) ≤ 1

C2nε2 .

This entails that, for a fixed C ≥ 1, there is an event An with PG0 -probability at
least 1 − (C2nε2

n)
−1, for which there holds

∫ n∏
i=1

pG(Xi)/pG0(Xi) d�(G) ≥ exp
(−2Cnε2

n

)
�

(
BK(εn)

)
.(30)
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Let On = {G ∈ Ḡ(�) :W2(G0,G) ≥ Mnεn}, Sn,j = {G ∈ Gn :W2(G0,G) ∈
[jεn, (j + 1)εn)} for each j ≥ 1. The conditions specified by Lemma 3 are sat-
isfied by setting D(ε) = exp(nε2

n) (constant in ε). Thus, there exist tests ϕn for
which equations (10) and (11) hold. Then,

PG0�(G ∈ On|X1, . . . ,Xn)

= PG0

[
ϕn�(G ∈ On|X1, . . . ,Xn)

] + PG0

[
(1 − ϕn)�(G ∈ On|X1, . . . ,Xn)

]
≤ PG0

[
ϕn�(G ∈ On|X1, . . . ,Xn)

] + PG0I
(
Ac

n

)
+ PG0

[
(1 − ϕn)�(G ∈ On|X1, . . . ,Xn)I(An)

]
.

Due to Lemma 3, the first term in the preceding display is bounded above
by PG0ϕn ≤ D(εn)

∑
j≥Mn

exp[−n�Gn(jεn)/8] → 0, thanks to (21). The second
term in the above display is bounded by (C2nε2

n)
−1 by the definition of An. If

nε2
n → ∞, let C = 1. If nε2

n tends to a positive constant away from 0, we let C be
arbitrarily large so that this probability in the second term vanishes to 0. To show
that the third term in the display also vanishes as n → ∞, we exploit the following
expression:

�(G ∈ On|X1, . . . ,Xn)

=
∫

On

n∏
i=1

pG(Xi)/pG0(Xi) d�(G)
/∫ n∏

i=1

pG(Xi)/pG0(Xi) d�(G),

and then obtain a lower bound for the denominator by (30). For the nominator, by
Fubini’s theorem,

PG0

∫
On∩Gn

(1 − ϕn)

n∏
i=1

pG(Xi)/pG0(Xi) d�(G)

= PG0

∑
j≥Mn

∫
Sn,j

(1 − ϕn)

n∏
i=1

pG(Xi)/pG0(Xi) d�(G)(31)

= ∑
j≥Mn

∫
Sn,j

PG(1 − ϕn)d�(G) ≤ ∑
j≥Mn

�(Sn,j ) exp
[−n�Gn(jεn)/8

]
,

where the last inequality is due to (11). In addition, by (19),

PG0

∫
On\Gn

(1 − ϕn)

n∏
i=1

pG(Xi)/pG0(Xi) d�(G)

=
∫

On\Gn

PG(1 − ϕn)d�(G)(32)

≤ �
(

Ḡ(�) \ Gn

) = o
(
exp

(−2nε2
n

)
�

(
BK(εn)

))
.
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Combining bounds (31) and (32) and condition (20), we obtain

PG0(1 − ϕn)�(G ∈ On|X1, . . . ,Xn)I(An)

≤ o(exp(−2nε2
n)�(BK(εn))) + ∑

j≥Mn
�(Sn,j ) exp[−n�Gn(jεn)/8]

exp(−2nε2
n)�(BK(εn))

≤ o(1) + exp
(
2nε2

n

) ∑
j≥Mn

exp
[−n�Gn(jεn)/16

]
.

The upper bound in the preceding display converges to 0 by (21), thereby conclud-
ing the proof of Theorem 4. The proof of Theorem 3 proceeds similarly. �

5.3. Proof of other auxiliary lemmas.

PROOF OF LEMMA 4. To simplify notation, we give a proof for W1 ≡ dρ . The
general case for Wr

r ≡ dρr can be carried out in the same way.
(a) Suppose that (η1, . . . , ηT ) forms an ε-covering for � under metric ρ, where

T = N(ε,�,ρ) denotes the (minimum) covering number. Take any discrete mea-
sure G = ∑k

i=1 piδθi
. For each θi there is an approximating θ ′

i among the ηj ’s
such that ρ(θi, θ

′
i ) < ε. Let p′ = (p′

1, . . . , p
′
k) be a k-dim vector in the probability

simplex that deviates from p by less than δ in l1 distance: ‖p′ − p‖1 ≤ δ. Define
G′ = ∑k

i=1 p′
iδθ ′

i
. We shall argue that

dρ

(
G,G′) ≤

k∑
i=1

(
pi ∧ p′

i

)
ρ

(
θi, θ

′
i

) + ∥∥p − p′∥∥
1 Diam(�) ≤ ε + δ Diam(�).

[To see this, consider the following coupling between G and G′: associating pi ∧
p′

i probability mass of θi (from G) with the same probability mass of θ ′
i (from G′),

while the remaining mass from G and G′ (of probability ‖p − p′‖1) are coupled in
an arbitrary way. The right-hand side of the previous display is an upper bound
of the expectation of the ρ distance between two random variables distributed
according to the described coupling.]

It follows that a (ε + δ Diam(�))-covering for Gk(�) can be constructed by
combining each element of a δ-covering in the l1 metric of the k − 1-probability
simplex and k ε-coverings of �. Now, the covering number of the k−1-probability
simplex is less than the number of cubes of length δ/k covering [0,1]k times the
volume of {(p′

1, . . . , p
′
k) :p′

j ≥ 0,
∑

j p′
j ≤ 1 + δ}, that is, (k/δ)k(1 + δ)k/k! ∼

(1 + 1/δ)kek/
√

2πk. It follows that N(ε + δ Diam(�), Gk(�), dρ) ≤ T k(1 +
1/δ)kek/

√
2πk. Take δ = ε/Diam(�) to achieve the claim.

(b) As before, let (η1, . . . , ηT ) be an ε-covering of �. Take any G =∑k
i=1 piδθi

∈ Ḡ(�), where k may be infinity. The collection of atoms θ1, . . . , θk

can be subdivided into disjoint subsets S1, . . . , ST , some of which may be
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empty, so that for each t = 1, . . . , T , ρ(θi, ηt ) ≤ ε for any θi ∈ St . Define
p′

t = ∑k
i=1 piI(θi ∈ St ), and let G′ = ∑T

t=1 p′
t δηt , then we are guaranteed that

dρ

(
G,G′) ≤

k∑
i=1

T∑
t=1

piI(θi ∈ St )ρ(θi, ηt ) ≤ ε

by using a similar coupling argument as in part (a).
Let p′′ = (p′′

1 , . . . , p′′
T ) be a T -dim vector in the probability simplex that de-

viates from p′ by less than δ in the l1 distance: ‖p′′ − p′‖1 ≤ δ. Take G′′ =∑T
t=1 p′′

t δηt . It is simple to observe that dρ(G′,G′′) ≤ Diam(�)δ. By the triangle
inequality,

dρ

(
G,G′′) ≤ dρ

(
G,G′) + dρ

(
G′,G′′) ≤ ε + δ Diam(�).

The foregoing arguments establish that an (ε + δ Diam(�))-covering in the
Wasserstein metric for Ḡ(�) can be constructed by combining each element of
the δ-covering in l1 of the T − 1 simplex and a single covering of �. From
the proof of part (a), N(ε + δ Diam(�), Ḡ(�), dρ) ≤ (1 + 1/δ)T eT /

√
2πT . Take

δ = ε/Diam(�) to conclude.
(c) Consider a G = ∑k

i=1 piδθi
such that dρ(G0,G) ≤ 2ε. By definition, there

is a coupling q ∈ Q(p,p∗) so that
∑

ij qij ρ(θ∗
i , θj ) ≤ 2ε. Since

∑
j qij = p∗

i ,

this implies that 2ε ≥ ∑k
i=1 p∗

i minj ρ(θ∗
i , θj ). Thus, for each i = 1, . . . , k there

is a j such that ρ(θ∗
i , θj ) ≤ 2ε/p∗

i ≤ 2Mε. Without loss of generality, assume
that ρ(θ∗

i , θi) ≤ 2Mε for all i = 1, . . . , k. For sufficiently small ε, for any i,
it is simple to observe that dρ(G0,G) ≥ |p∗

i − pi |minj =i ρ(θ∗
i , θj ) ≥ |p∗

i −
pi |minj ρ(θ∗

i , θ∗
j )/2. Thus, |p∗

i − pi | ≤ 4ε/m.
Now, an ε/4 + δ Diam(�) covering in dρ for {G ∈ Gk(�) :dρ(G0,G) ≤ 2ε}

can be constructed by combining the ε/4-covering for each of the k sets {θ ∈
� :ρ(θ, θ∗

i ) ≤ 2Mε} and the δ/k-covering for each of the k sets [p∗
i −4ε/m,p∗

i +
4ε/m]. This entails that N(ε/4 + δ Diam(�), {G ∈ Gk(�) :dρ(G0,G) ≤ 2ε},
dρ) ≤ [sup�′ N(ε/4,�′, ρ)]k(8εk/mδ)k . Take δ = ε/(4 Diam(�)) to conclude the
proof. �

PROOF OF LEMMA 6. (a) For arbitrary constant R > 0, we have
∫ |p(x) −

p′(x)|‖x‖t dx ≤ ∫
‖x‖≤R |p − p′|‖x‖t + ∫

‖x‖≥R(p + p′)‖x‖t ≤ Rt‖p − p′‖L1 +
R−(s−t)(Ep‖X‖s + Ep′‖X‖s), choosing

R = [(
Ep‖X‖s + Ep′‖X‖s)/∣∣p − p′∣∣

L1

]1/s

to conclude.
(b) For any R > 0, we have∫

‖x‖≤R

∣∣p(x) − p′(x)
∣∣dx ≤ V

1/2
d Rd/2

[∫
‖x‖≤R

(
p(x) − p′(x)

)2
dx

]1/2

≤ V
1/2
d Rd/2∥∥p − p′∥∥

L2
.
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We also have∫
‖x‖≥R

∣∣p(x) − p′(x)
∣∣dx ≤

∫
‖x‖≥R

p(x) + p′(x) dx ≤ R−s(
Ep‖X‖s + Ep′‖X‖s).

Thus,∥∥p − p′∥∥
L1

≤ inf
R>0

V
1/2
d Rd/2∥∥p − p′∥∥

L2
+ R−s(

Ep‖X‖s + Ep′‖X‖s),
which gives the desired bound. �
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