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Abstract

We consider the problem of network anomaly detection in large distributed systems. In this
setting, Principal Component Analysis (PCA) has been proposed as a method for discover-
ing anomalies by continuously tracking the projection of the data onto a residual subspace.
While successful empirically in small networks, this approach has serious scalability lim-
itations. To overcome these limitations, we develop a PCA-based anomaly detector in
which adaptive local data filters send to a coordinator just enough data to enable accurate
global detection. Our method is based on a stochastic matrixperturbation analysis that
characterizes the tradeoff between the accuracy of anomalydetection and the amount of
data communicated over the network.

1 Introduction

The area of distributed computing systems provides a promising domain for applications of machine
learning methods. One of the most interesting aspects of such applications is that learning algorithms
that are embedded in a distributed computing infrastructure are themselves part of that infrastructure
and must respect its inherent local computing constraints (e.g., constraints on bandwidth, latency,
reliability, etc.), while attempting to aggregate information across the infrastructure so as to improve
system performance (or availability) in a global sense.

Consider, for example, the problem of detecting anomalies in a wide-area network. While it is
straightforward to embed learning algorithms at local nodes to attempt to detect node-level anoma-
lies, these anomalies may not be indicative of network-level problems. Indeed, in recent work, [10]
demonstrated a useful role for Principal Component Analysis (PCA) to detect network anomalies.
They showed that the minor components of PCA (the subspace obtained after removing the compo-
nents with largest eigenvalues) revealed anomalies that were not detectable in any single node-level
trace. This work assumed an environment in which all the datais continuously pushed to a central
site for off-line analysis. Such a solution cannot scale either for networks with a large number of
monitors nor for networks seeking to track and detect anomalies at very small time scales.

Designing scalable solutions presents several challenges. Viable solutions need to process data “in-
network” to intelligently control the frequency and size ofdata communications. The key underlying
problem is that of developing a mathematical understandingof how to trade off quantization arising
from local data filtering against fidelity of the detection analysis. We also need to understand how
this tradeoff impacts overall detection accuracy. Finally, the implementation needs to be simple if it
is to have impact on developers.

In this paper, we present a simple algorithmic framework fornetwork-wide anomaly detection that
relies on distributed tracking combined with approximate PCA analysis, together with supporting
theoretical analysis. In brief, the architecture involvesa set of local monitors that maintain parame-
terized sliding filters. These sliding filters yield quantized data streams that are sent to a coordinator.
The coordinator makes global decisions based on these quantized data streams. We use stochastic
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Figure 1: (a) The distributed monitoring system; (b) Data sample (‖y‖2) collected over one week (top); its
projection in residual subspace (bottom). Dashed line represents a threshold for anomaly detection.

matrix perturbation theory to both assess the impact of quantization on the accuracy of anomaly
detection, and to design a method that selects filter parameters in a way that bounds the detection
error. The combination of our theoretical tools and local filtering strategies results in an in-network
tracking algorithm that can achieve high detection accuracy with low communication overhead; for
instance, our experiments show that, by choosing a relativeeigen-error of1.5% (yielding, approxi-
mately, a4% missed detection rate and a6% false alarm rate), we can filter out more than90% of
the traffic from the original signal.

Prior Work. The original work on a PCA-based method by Lakhina et al. [10]has been extended
by [18], who show how to infer network anomalies in both spatial and temporal domains. As with
[10], this work is completely centralized. [14] and [1] propose distributed PCA algorithms dis-
tributed across blocks of rows or columns of the data matrix;however, these methods are not ap-
plicable to our case. Furthermore, neither [14] nor [1] address the issue of continuously tracking
principal components within a given error tolerance or the issue of implementing a communica-
tion/accuracy tradeoff; issues which are the main focus of our work. Other initiatives in distributed
monitoring, profiling and anomaly detection aim to share information and foster collaboration be-
tween widely distributed monitoring boxes to offer improvements over isolated systems [13, 17].
Work in [2, 6] posits the need for scalable detection of network attacks and intrusions. In the setting
of simpler statistics such as sums and counts, in-network detection methods related to ours have
been explored by [8]. Finally, recent work in the machine learning literature considers distributed
constraints in learning algorithms such as kernel-based classification [12] and graphical model in-
ference [9]. (See [15] for a survey).

2 Problem description and background

We consider a monitoring system comprising a set oflocal monitor nodesM1, . . . , Mn, each of
which collects a locally-observed time-series data stream(Fig. 1(a)). For instance, the monitors
may collect information on the number of TCP connection requests per second, the number of
DNS transactions per minute, or the volume of traffic at port 80 per second. A centralcoordinator
nodeaims to continuously monitor the global collection of time series, and make global decisions
such as those concerning matters of network-wide health. Although our methodology is generally
applicable, in this paper we focus on the particular application of detectingvolume anomalies. A
volume anomaly refers to unusual traffic load levels in a network that are caused by anomalies such
as worms, distributed denial of service attacks, device failures, misconfigurations, and so on.

Each monitor collects a new data point at every time step and,assuming a naive, “continuous push”
protocol, sends the new point to the coordinator. Based on these updates, the coordinator keeps track
of a sliding time window of sizem (i.e., them most recent data points) for each monitor time series,
organized into a matrixY of sizem × n (where theith columnYi captures the data from monitor
i, see Fig. 1(a)). The coordinator then makes its decisions based solely on this (global)Y matrix.

In the network-wide volume anomaly detection algorithm of [10] the local monitors measure the
total volume of traffic (in bytes) on each network link, and periodically (e.g., every 5 minutes)
centralize the data by pushing all recent measurements to the coordinator. The coordinator then



performs PCA on the assembledY matrix to detect volume anomalies. This method has been
shown to work remarkably well, presumably due to the inherently low-dimensional nature of the
underlying data [11]. However, such a “periodic push” approach suffers from inherent limitations:
To ensure fast detection, the update periods should be relatively small; unfortunately, small periods
also imply increased monitoring communication overheads,which may very well be unnecessary
(e.g., if there are no significant local changes across periods). Instead, in our work, we study how
the monitors can effectively filter their time-series updates, sending as little data as possible, yet
enough so as to allow the coordinator to make global decisions accurately. We provide analytical
bounds on the errors that occur because decisions are made with incomplete data, and explore the
tradeoff between reducing data transmissions (communication overhead) and decision accuracy.

Using PCA for centralized volume anomaly detection.As observed by Lakhina et al. [10], due
to the high level of traffic aggregation on ISP backbone links, volume anomalies can often go unno-
ticed by being “buried” within normal traffic patterns (e.g., the circle dots shown in the top plot in
Fig 1(b)). On the other hand, they observe that, although, the measured data is of seemingly high
dimensionality (n = number of links), normal traffic patterns actually lie in a very low-dimensional
subspace; furthermore, separating out this normal traffic subspace using PCA (to find the principal
traffic components) makes it much easier to identify volume anomalies in the remaining subspace
(bottom plot of Fig. 1(b)).

As before, letY be the globalm × n time-series data matrix, centered to have zero mean, and let
y = y(t) denote an-dimensional vector of measurements (for all links) from a single time stept.
Formally, PCA is a projection method that maps a given set of data points onto principal compo-
nents ordered by the amount of data variance that they capture. The set ofn principal components,
{vi}n

i=1, are defined as:
vi = arg max

‖x‖=1

‖(Y −
i−1
∑

j=1

Yvjv
T
j )x‖

and are then eigenvectors of the estimated covariance matrixA := 1

m
YT Y. As shown in [11],

PCA reveals that the Origin-Destination (OD) flow matrices of ISP backbones have low intrinsic
dimensionality: For the Abilene network with41 links, most data variance can be captured by the
first k = 4 principal components. Thus, the underlying normal OD flows effectively reside in a
(low) k-dimensional subspace ofR

n. This subspace is referred to as thenormal traffic subspace
Sno. The remaining(n − k) principal components constitute theabnormaltraffic subspaceSab.

Detecting volume anomalies relies on the decomposition of link trafficy = y(t) at any time step into
normal and abnormal components,y = yno +yab, such that (a)yno corresponds to modeled normal
traffic (the projection ofy ontoSno), and (b)yab corresponds to residual traffic (the projection ofy
ontoSab). Mathematically,yno(t) andyab(t) can be computed as

yno(t) = PPT y(t) = Cnoy(t) and yab(t) = (I − PPT )y(t) = Caby(t)

whereP = [v1,v2, . . . ,vk] is formed by the firstk principal components which capture the dom-
inant variance in the data. The matrixCno = PPT represents the linear operator that performs
projection onto the normal subspaceSno, andCab projects onto the abnormal subspaceSab.

As observed in [10], a volume anomaly typically results in a large change toyab; thus, a useful
metric for detecting abnormal traffic patterns is the squared prediction error (SPE):

SPE ≡ ‖yab‖2 = ‖Caby‖2

(essentially, a quadratic residual function). More formally, their proposed algorithm signals a vol-
ume anomaly ifSPE > Qα, whereQα denotes the threshold statistic for theSPE residual function
at the1 − α confidence level. Such a statistical test for theSPE residual function, known as the
Q-statistic [4], can be computed as a functionQα = Qα(λk+1, . . . , λn) of the(n−k) non-principal
eigenvalues of the covariance matrixA.

3 In-network PCA for anomaly detection

We now describe our version of an anomaly detector that uses distributed tracking and approximate
PCA analysis. A key idea is to curtail the amount of data each monitor sends to the coordinator.
Because our job is to catch anomalies, rather than to track ongoing state, we point out that the
coordinator only needs to have a good approximation of the state when an anomaly is near. It need
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Figure 2:Our in-network tracking and detection framework.

not track global state very precisely when conditions are normal. This observation makes it intuitive
that a reduction in data sharing between monitors and the coordinator should be possible. We curtail
the amount of data flow from monitors to the coordinator by installing local filtersat each monitor.
These filters maintain alocal constraint, and a monitor only sends the coordinator an update of its
data when the constraint is violated. The coordinator thus receives an approximate, or “perturbed,”
view of the data stream at each monitor and hence of the globalstate. We use stochastic matrix
perturbation theory to analyze the effect on our PCA-based anomaly detector of using a perturbed
global matrix. Based on this, we can choose the filtering parameters (i.e., the local constraints) so as
to limit the effect of the perturbation on the PCA analysis and on any deterioration in the anomaly
detector’s performance. All of these ideas are combined into a simple, adaptive distributed protocol.

3.1 Overview of our approach

Fig. 2 illustrates the overall architecture of our system. We now describe the functionality at the
monitors and the coordinator. The goal of a monitor is to track its local raw time-series data, and to
decide when the coordinator needs an update. Intuitively, if the time series does not change much,
or doesn’t change in a way that affects the global condition being tracked, then the monitor does not
send anything to the coordinator. The coordinator assumes that the most recently received update
is still approximately valid. The update message can be either the current value of the time series,
or a summary of the most recent values, or any function of the time series. The update serves as a
predictionof the future data, because should the monitor send nothing in subsequent time intervals,
then the coordinator uses the most recently received updateto predict the missing values.

For our anomaly detection application, we filter as follows.Each monitori maintains a filtering
window Fi(t) of size2δi centered at a valueRi (i.e., Fi(t) = [Ri(t) − δi, Ri(t) + δi]). At each
time t, the monitor sends bothYi(t) andRi(t) to the coordinator only ifYi(t) /∈ Fi, otherwise it
sends nothing. The window parameterδi is called theslack; it captures the amount the time series
can drift before an update to the coordinator needs to be sent. The center parameterRi(t) denotes
the approximate representation, or summary, ofYi(t). In our implementation, we setRi(t) equal
to the average of last five signal values observed locally at monitor i. Let t∗ denote the time of the
most recent update sent to the coordinator from a monitor. For any subsequentt > t∗ when the
coordinator receives no update from that monitor, it will useRi(t

∗) as the prediction forRi(t). The
monitor needs to send bothYi(t) andRi(t

∗) when it does an update because the coordinator will
useYi(t) at timet∗ andRi(t

∗) for all t > t∗ until the next update arrives.

The role of the coordinator is twofold. First, it makes global anomaly-detection decisions based
upon the received updates from the monitors. Secondly, it computes the filtering parameters (i.e., the
slacksδi) for all the monitors based on its view of the global state andthe condition for triggering an
anomaly. It gives the monitors their slacks initially and updates the value of their slack parameters
when needed. Our protocol is thus adaptive. Due to lack of space we do not discuss here the
method for deciding when slack updates are needed. The global detection task is the same as in the
centralized scheme. In contrast to the centralized setting, however, the coordinator does not have
an exact version of the raw data matrixY; it has the approximation̂Y instead. The PCA analysis,
including the computation ofSab is done on theperturbedcovariance matrix̂A := A − ∆. The
magnitude of the perturbation matrix∆ is determined by the slack variablesδi (i = 1, . . . , M ).



3.2 Selection of filtering parameters

A key ingredient of our framework is a practical method for choosing the slack parametersδi. This
choice is critical because these parameters balance the tradeoff between the savings in data commu-
nication and the loss of detection accuracy. Clearly, the larger the slack, the less the monitor needs
to send, thus leading to both more reduction in communication overhead and potentially more in-
formation loss at the coordinator. We employstochastic matrix perturbation theoryto quantify the
effects of the perturbation of a matrix on key quantities such as eigenvalues and the eigen-subspaces,
which in turn affect the detection accuracy.

Our approach is as follows. We measure the size of a perturbation using a norm on∆. We derive
an upper bound on the changes to the eigenvaluesλi and the residual subspaceCab as a function of
‖∆‖. We chooseδi to ensure that an approximation to this upper bound on∆ is not exceeded. This
in turn ensures thatλi andCab do not exceed their upper bounds. Controlling these latter terms, we
are able to bound the false alarm probability.

Recall that the coordinator’s view of the global data matrixis the perturbed matrix̂Y = Y + W,
where all elements of the column vectorWi are bounded within the interval[−δi, δi]. Let λi and
λ̂i (i = 1, . . . , n) denote the eigenvalues of the covariance matrixA = 1

m
YT Y and its perturbed

versionÂ := 1

m
ŶT Ŷ. Applying the classical theorems of Mirsky and Weyl [16], weobtain bounds

on the eigenvalue perturbation in terms of the Frobenius norm ‖.‖F and the spectral norm‖.‖2 of
∆ := A − Â, respectively:

ǫeig :=

√

√

√

√

n
∑

i=1

1

n
(λ̂i − λi)2 ≤ ‖∆‖F /

√
n and max

i
|λ̂i − λi| ≤ ‖∆‖2 (1)

Applying the sin theorem and results on bounding the angle ofprojections to subspaces [16] (see [3]
for more details), we can bound the perturbation of the residual subspaceCab in terms of the Frobe-
nius norm of∆:

‖Cab − Ĉab‖F ≤
√

2‖∆‖F

ν
(2)

whereν denotes the eigengap between thekth and(k+1)th eigenvalues of the estimated covariance
matrix Â.

To obtain practical (i.e., computable) bound on the norms of∆, we derive expectation bounds
instead of worst case bounds. We make the following assumptions on the error matrixW:

1. The column vectorsW1, . . . ,Wn are independent and radially symmetricm-vectors.

2. For eachi = 1, . . . , n, all elements of column vectorWi are i.i.d. random variables with
mean 0, varianceσ2

i := σ2
i (δi) and fourth momentµ4

i := µ4
i (δi).

Note that the independence assumption is imposed only on theerror—this by no means implies that
the signals received by different monitors are statistically independent. Under the above assumption,
we can show that‖∆‖F /

√
n is upper bounded in expectation by the following quantity:

TolF = 2

√

√

√

√

1

mn

n
∑

i=1

λi ·
n
∑

i=1

σ2
i +

√

√

√

√

(

1

m
+

1

n

) n
∑

i=1

σ4
i +

1

mn

n
∑

i=1

(µ4
i − σ4

i ). (3)

Similar results can be obtained for the spectral norm as well. In practice, these upper bounds are
very tight becauseσ1, . . . , σn tend to be small compared to the top eigenvalues. Given the tolerable
perturbationTolF , we can use Eqn. (3) to select the slack variables. For example, we can divide the
overall tolerance across monitors either uniformly or in proportion to their observed local variance.

3.3 Guarantee on false alarm probability

Because our approximation perturbs the eigenvalues, it also impacts the accuracy with which the
trigger is fired. Since the trigger condition is‖Caby‖2 > Qα, we must assess the impact on both



of these terms. We can compute an upper bound on the perturbation of the SPE statistic,SPE =
‖Caby‖2, as follows. First, note that

|‖Ĉabŷ‖ − ‖Caby‖| ≤ ‖(Ĉab − Cab)ŷ‖ + ‖Cab(y − ŷ)‖ ≤
√

2‖∆‖F‖ŷ‖
ν

+ ‖Cab‖2

√

√

√

√

n
∑

i=1

δ2
i

≤
√

2‖∆‖F‖ŷ‖
ν

+

(

‖Ĉab‖ +

√
2‖∆‖F

ν

)

√

√

√

√

n
∑

i=1

δ2
i =: η1(ŷ).

|‖Ĉabŷ‖2 − ‖Caby‖2| ≤ η1(ŷ)(2‖Ĉabŷ‖ + η1(ŷ)) =: η2(ŷ). (4)

The dependency of the thresholdQα on the eigenvalues,λk+1, . . . , λn, can be expressed as [4]:

Qα = φ1

[

cα

√

2φ2h2
0

φ1

+ 1 +
φ2h0(h0 − 1)

φ2
1

]
1

h0

, (5)

wherecα is the (1 − α)-percentile of the standard normal distribution,h0 = 1 − 2φ1φ3

3φ2

2

, φi =
∑n

j=k+1
λi

j for i = 1, 2, 3.

To assess the perturbation in false alarm probability, we start by considering the following random
variablec derived from Eqn. (5):

c =
φ1[(SPE/φ1)

h0 − 1 − φ2h0(h0 − 1)/φ2
1]

√

2φ2h2
0

. (6)

The random variablec essentially normalizes the random quantity‖Caby‖2 and is known to ap-
proximately follow a standard normal distribution [5]. Thefalse alarm probability in the centralized
system is expressed as

Pr
[

‖Caby‖2 > Qα

]

= Pr [c > cα] = α,

where the lefthand term of this equation is conditioned uponthe SPE statistics being inside the
normal range. In our distributed setting, the anomaly detector fires a trigger if‖Ĉabŷ‖2 > Q̂α.
We thus only observe a perturbed versionĉ for the random variablec. Let ηc denote the bound on
|ĉ − c|. The deviation of the false alarm probability in our approximate detection scheme can then
be approximated asP (cα − ηc < U < cα + ηc), whereU is a standard normal random variable.

4 Evaluation

We implemented our algorithm and developed a trace-driven simulator to validate our methods. We
used a one-week trace collected from the Abilene network1. The traces contains per-link traffic
loads measured every 10 minutes, for all 41 links of the Abilene network. With a time unit of 10
minutes, data was collected for 1008 time units. This data was used to feed the simulator. There
are7 anomalies in the data that were detected by the centralized algorithm (and verified by hand
to be true anomalies). We also injected70 synthetic anomalies into this dataset using the method
described in [10], so that we would have sufficient data to compute error rates. We used a threshold
Qα corresponding to an1 − α = 99.5% confidence level. Due to space limitations, we present
results only for the case of uniform monitor slack,δi = δ.

The input parameter for our algorithm is the tolerable relative error of the eigenvalues (“relative

eigen-error” for short), which acts as a tuning knob. (Precisely, it isTolF /
√

1

n

∑

λ2
i , whereTolF

is defined in Eqn. (3).) Given this parameter and the input data we can compute the filtering slackδ
for the monitors using Eqn. (3). We then feed in the data to runour protocol in the simulator with the
computedδ. The simulator outputs a set of results including: 1) the actual relative eigen errors and
the relative errors on the detection thresholdQα; 2) the missed detection rate, false alarm rate and
communication cost achieved by our method. Themissed-detection rateis defined as the fraction of
missed detections over the total number of real anomalies, and thefalse-alarm rateas the fraction
of false alarms over the total number of detected anomalies by our protocol, which isα (defined in
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Figure 3: In all plots thex-axis is the relative eigen-error. (a) The filtering slack. (b) Actual accrued eigen-
error. (c) Relative error of detection threshold. (d) Falsealarm rates. (e) Missed detection rates. (f) Communi-
cation overhead.

Sec. 3.3) rescaled as a rate rather than a probability. The communication cost is computed as the
fraction of number of messages that actually get through thefiltering window to the coordinator.
The results are shown in Fig. 3. In all plots, thex-axis is the relative eigen-error. In Fig. 3(a) we plot
the relationship between the relative eigen-error and the filtering slackδ when assuming filtering
errors are uniformly distributed on interval[−δ, δ]. With this model, the relationship between the
relative eigen-error and the slack is determined by a simplified version of Eqn. (3) (with allσ2

i = δ2

3
).

The results make intuitive sense. As we increase our error tolerance, we can filter more at the monitor
and send less to the coordinator. The slack increases almostlinearly with the relative eigen-error
because the first term in the right hand side of Eqn. (3) dominates all other terms.

In Fig. 3(b) we compare the relative eigen-error to the actual accrued relative eigen-error (defined as

ǫeig/
√

1

n

∑

λ2
i , whereǫeig is defined in Eqn (1)). These were computed using the slack parameters

δ as computed by our coordinator. We can see that the real accrued eigen-errors are always less than
the tolerable eigen errors. The plot shows a tight upper bound, indicating that it is safe to use our
model’s derived filtering slackδ. In other words, the achieved eigen-error always remains below the
requested tolerable error specified as input, and the slack chosen given the tolerable error is close
to being optimal. Fig. 3(c) shows the relationship between the relative eigen-error and the relative
error of detection thresholdQα

2. We see that the threshold for detecting anomalies decreases as we
tolerate more and more eigen-errors. In these experiments,an error of 2% in the eigenvalues leads
to an error of approximately 6% in our estimate of the appropriate cutoff threshold.

We now examine the false alarm rates achieved. In Fig. 3(d) the curve with triangles represents
the upper bound on the false alarm rate as estimated by the coordinator. The curve with circles
is the actual accrued false alarm rate achieved by our scheme. Note that the upper bound on the
false alarm rate is fairly close to the true values, especially when the slack is small. The false alarm
rate increases with increasing eigen-error because as the eigen-error increases, the corresponding
detection thresholdQα will decrease, which in turn causes the protocol to raise an alarm more
often. (If we had plotted̂Q rather than the relative threshold difference, we would obviously see a
decreasinĝQ with increasing eigen-error.) We see in Fig. 3(e) that the missed detection rates remain
below 4% for various levels of communication overhead.

1Abilene is an Internet2 high-performance backbone networkthat interconnects a large number of universi-
ties as well as a few other research institutes.

2Precisely, it is1 − Q̂α/Qα, whereQ̂α is computed from̂λk+1, . . . , λ̂n.



The communication overhead is depicted in Fig. 3(f). Clearly, the larger the errors we can tolerate,
the more overhead can be reduced. Considering these last three plots (d,e,f) together, we observe
several tradeoffs. For example, when the relative eigen-error is1.5%, our algorithm reduces the data
sent through the network by more than 90%. This gain is achieved at the cost of approximately a
4% missed detection rate and a 6% false alarm rate. This is a large reduction in communication for
a small increase in detection error. These initial results illustrate that our in-network solution can
dramatically lower the communication overhead while stillachieving high detection accuracy.

5 Conclusion

We have presented a new algorithmic framework for network anomaly detection that combines dis-
tributed tracking with PCA analysis to detect anomalies with far less data than previous methods.
The distributed tracking consists of local filters, installed at each monitoring site, whose parameters
are selected based upon global criteria. The idea is to trackthe local monitoring data only enough so
as to enable accurate detection. The local filtering reducesthe amount of data transmitted through
the network but also means that anomaly detection must be done with limited or partial views of the
global state. Using methods from stochastic matrix perturbation theory, we provided an analysis for
the tradeoff between the detection accuracy and the data communication overhead. We were able
to control the amount of data overhead using the the relativeeigen-error as a tuning knob. To the
best of our knowledge, this is the first result in the literature that provides upper bounds on the false
alarm rate of network anomaly detection.
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