Message-passing sequential detection of multiple change points in networks

Long Nguyen, Arash Amini Ram Rajagopal University of Michigan Stanford University

ISIT, Boston, July 2012

Sequential change-point detection

- Quickest detection of change in distribution of a sequence of data
 - data collected sequentially over time
 - $-\,$ tradeoff between false alarm rate and detection delay time
 - extensions to decentralized network with a fusion center
 - classical setting involves only one single change point variable

Sequential change-point detection

- Quickest detection of change in distribution of a sequence of data
 - data collected sequentially over time
 - $-\,$ tradeoff between false alarm rate and detection delay time
 - extensions to decentralized network with a fusion center
 - classical setting involves only one single change point variable
- We study problems requiring detection of multiple change points in multiple sequences across network sites
 - multiple change points are statistically dependent
 - need to borrow information across network sites
 - no fusion center needs message-passing type algorithm
 - new elements of modeling and asymptotic theory

Example – Simultaneous traffic monitoring

Problem: detecting in real-time potential hotspots in a traffic network

- data are sequences of measurements of traffic volume at multiple sites
- sequential change point detection for each site

Sequential detection for single change point

- network site j collects sequence of data X_i^n for n = 1, 2, ...
- time $\lambda_j \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after

Sequential detection for single change point

- network site j collects sequence of data X_j^n for n = 1, 2, ...
- time $\lambda_j \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after
- a sequential change point detection procedure is a stopping time τ_j , i.e., $\{\tau_j \leq n\} \sim \sigma(X_j^{[n]})$

Sequential detection for single change point

- network site j collects sequence of data X_i^n for n = 1, 2, ...
- time $\lambda_j \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after
- a sequential change point detection procedure is a stopping time τ_j , i.e., $\{\tau_j \leq n\} \sim \sigma(X_j^{[n]})$
- Neyman-Pearson criterion:
 - constraint on false alarm error

$$PFA(\tau_j) = P(\tau_j < \lambda_j) \le \alpha$$
 for some small α

- minimum detection delay

$$\mathbb{E}[(\tau_j - \lambda_j) | \tau_j \ge \lambda_j].$$

Optimal rule for single change point detection

- taking a Bayesian approach, λ_j is endowed with a prior
- under some conditions, optimal sequential rule obtained by thresholding the posterior of λ_j : (Shiryaev, 1978)

$$\tau_j = \inf\{n : \Lambda_n \ge 1 - \alpha\},\$$

where

$$\Lambda_n = \mathbb{P}(\lambda_j \le n | X_j^{[n]}).$$

- well-established asymptotic properties (Tartakovsky & Veeravalli, 2006):
 - false alarm:

$$PFA(\tau_j) \leq \alpha.$$

- detection delay:

$$D(\tau_j) = \frac{|\log \alpha|}{I_j + d} \left(1 + o(1) \right) \text{ as } \alpha \to 0.$$

- here $I_j = KL(f_j||g_j)$, the Kullback-Leibler information, constant d depends on the prior

Extensions to network setting.

- survey paper by Tsitsiklis (1993)
- decentralized sequential detection: Veeravalli, Basar and Poor (1993), Mei (2008), Nguyen, Wainwright and Jordan (2008)
- sequential change diagnosis: Dayanik, Goulding and Poor (2008)
- multiple sequence change point detection: Xie and Siegmund (2010)
- sequential detection of a markov process: Raghavan and Veeravalli (2010)
- ...

Talk outline

- statistical formulation for sequential detection of *multiple* change points in a network setting
 - probabilistic graphical models
 - extension of sequential analysis to multiple change point variables
- sequential and "real-time" message-passing detection algorithms
 - decision procedures with limited data and computation
- asymptotic theory characterizing detection delay and algorithm convergence

 $-\,$ roles of graphical models in asymptotic analysis

Graphical models for multiple change points

- m network sites labeled by $U = \{1, \ldots, m\}$
- \bullet given a graph G=(U,E) that specifies the the connections among $u\in U$
- each site j experiences a change at time $\lambda_j \in \mathbb{N}$
 - $-\lambda_j$ is endowed with (independent) prior distribution π_j

Graphical models for multiple change points

- m network sites labeled by $U = \{1, \ldots, m\}$
- \bullet given a graph G=(U,E) that specifies the the connections among $u\in U$
- each site j experiences a change at time $\lambda_j \in \mathbb{N}$
 - $-\lambda_j$ is endowed with (independent) prior distribution π_j
- there may be private data sequence $(X_j^n)_{n\geq 1}$ for site j
 - private data sequence changes its distribution after λ_j

Graphical models for multiple change points

- m network sites labeled by $U = \{1, \ldots, m\}$
- given a graph G = (U, E) that specifies the the connections among $u \in U$
- each site j experiences a change at time $\lambda_j \in \mathbb{N}$
 - $-\lambda_j$ is endowed with (independent) prior distribution π_j
- there may be private data sequence $(X_j^n)_{n\geq 1}$ for site j
 - private data sequence changes its distribution after λ_j
- there is shared data sequence $(X_{ij}^n)_{n\geq 1}$ for each edge e = (i, j) connecting *neighboring pair* of sites j and i:

$$\begin{array}{rcl} X_{ij}^n & \stackrel{iid}{\sim} & g_{ij}(\cdot), & \text{for } n < \lambda_{ij} := \min(\lambda_i, \lambda_j) \\ & \stackrel{iid}{\sim} & f_{ij}(\cdot), & \text{for } n \ge \lambda_{ij} = \min(\lambda_i, \lambda_j) \end{array}$$

Graphical model of change points and data sequences

(a) Topology of sensor network (b) Graphical model of random variables

Joint distribution of change points and observed network data at time n:

$$P(\lambda_*, \boldsymbol{X}^n_*) = \prod_{j \in V} \pi_j(\lambda_j) \prod_{j \in V} P(\boldsymbol{X}^n_j | \lambda_j) \prod_{(ij) \in E} P(\boldsymbol{X}^n_{ij} | \lambda_i \wedge \lambda_j)$$

Star notations: $\lambda_* := (\lambda_1, \ldots, \lambda_m)$, $\boldsymbol{X}^n_* = (X^n_1, \ldots, X^n_m)$.

• Change point variables are statistically dependent a posteriori!

Min-functional of change points

Let S be a subset of network sites. Define the earliest change point among any sites in S:

$$\lambda_S := \min_{u \in S} \lambda_j.$$

Question: what is the optimal stopping rule τ_S for estimating λ_S ?

$$\tau_S \sim \sigma(X_*^{[n]}).$$

A natural rule is by thresholding the posterior probability:

$$\tau_S = \inf\{n : \mathbb{P}(\min_{u \in S} \lambda_j \le n | X_*^{[n]}) \ge 1 - \alpha\},\$$

for small $\alpha > 0$.

A natural rule is by thresholding the posterior probability:

$$\tau_S = \inf\{n : \mathbb{P}(\min_{u \in S} \lambda_j \le n | X_*^{[n]}) \ge 1 - \alpha\},\$$

for small $\alpha > 0$.

This rule is sub-optimal (unlike the single change point case, which is optimal under some conditions on the prior).

But it will be shown to be asymptotically optimal and computationally tractable.

Message-passing distributed computation via sum-product algorithm: the issue to compute posterior probabilities, assuming that data and statistical messages can be only be passed through the graphical structure:

(a) Topology of sensor network

(b) Message-passing in network

Simple to implement via an adaptation of the sum-product algorithm **Computational complexity**. When G is a tree, the computational complexity of the message passing algorithm at each time step n is O((|V| + |E|)n), but linearity in n is not desirable.

Mean-field approximation.

- Define latent binary variables $Z_j^n = \mathbb{I}(\lambda_j \leq n)$.
- Compute $P(Z^n_*|X^{[n]}_*)$ in terms of $P(Z^n_*|X^{[n-1]}_*)$ by Bayes rule.
- Decoupling approximation: As n gets large, due to concentration, the variables Z_i^n become decoupled across the graph. So, approximate:

$$\tilde{P}(Z_*^n | \boldsymbol{X}_*^{[n-1]}) \approx \prod_{j \in V} P(Z_j^n | \boldsymbol{X}_*^{[n-1]})$$

• In effect, we have avoided marginalization over time at every time step, resulting in O(1) computational complexity in n.

Theorem 1. Both exact message-passing algorithm and mean-field approximation algorithm construct a Markov sequence of posterior probabilities that obey a contraction map. This entails that both sequences converge to 1 almost surely.

Approximation of posterior paths, $n \mapsto P(\lambda_j \leq n | X_*^{[n]})$.

Main Theorem (optimal delay theorem).

Assume that

- (a) The change points λ_j are endowed with independent geometric priors.
- (b) The likelihood ratio functions are bounded from above.

Then the proposed stopping rule τ_S satisfies:

(i) False alarm rate: $\mathbb{P}(\tau_S \leq \lambda_S) \leq \alpha$.

(ii) The expected delay is asymptotically optimal, and takes the form:

$$\mathbb{E}[(\tau_S - \min_{u \in S} \lambda_j) | \tau_S \ge \min_{u \in S} \lambda_j] = \frac{|\log \alpha| (1 + o(1))}{d + \sum_{j \in S} I_j + \sum_{(ij) \in E \cap S} I_{ij}}.$$

Here, $I_j = \int f_i \log(f_j/g_j)$, and $I_{ij} = \int f_{ij} \log(f_{ij}/g_{ij})$.

Graph-based Kullback-Leibler information ...

If
$$S = \{1\}$$
, then $I_{\lambda_S} = I_1$
If $S = \{1, 2\}$, then $I_{\lambda_S} = I_1 + I_2 + I_{12}$
If $S = \{1, 2, 3\}$, then $I_{\lambda_S} = I_1 + I_2 + I_3 + I_{12} + I_{23}$.

Concentration inequalities for marginal LRs

For $\phi = \min_{u \in S} \lambda_j$, define marginal likelihood ratio

$$D_{\phi}^{k,n} := D_{\phi}^{k}(\mathbf{X}_{*}^{n}) := \frac{\mathbb{P}_{\phi}^{k}(\mathbf{X}_{*}^{n})}{\mathbb{P}_{\phi}^{\infty}(\mathbf{X}_{*}^{n})},$$

where \mathbb{P}_{ϕ}^k denotes $\mathbb{P}(\cdot | \phi = k)$.

Define conditional prior probability $\pi_{\phi}^{k}(m_{*}) := \mathbb{P}(\lambda_{*} = m_{*} \mid \phi = k).$

By a general result of Tartakovski & Veeravalli (2006), if

$$\mathbb{P}_{\phi}^{k} \left[\frac{1}{N} \max_{1 \le n \le N} \log D_{\phi}^{k}(\mathbf{X}_{*}^{k+n}) \ge (1+\varepsilon)I_{\phi} \right] \xrightarrow{N \to \infty} 0 \tag{1}$$

for all (small) $\varepsilon > 0$ and all $k \in \mathbb{N}$, then the "lower bound" follows, $\inf_{\widetilde{\tau}\in\Delta_{\phi}(\alpha)} \mathbb{E}[\widetilde{\tau}-\phi \mid \widetilde{\tau} \ge \phi] \ge \frac{|\log \alpha|}{q_{\phi}+I_{\phi}}(1+o(1)).$ Furthermore, let

$$T_{\varepsilon}^{k} := \sup \left\{ n \in \mathbb{N} : \frac{1}{n} \log D_{\phi}^{k}(\mathbf{X}_{*}^{k+n-1}) < I_{\phi} - \varepsilon \right\}.$$

By Tartakovski-Veeravalli (2006), if one has

$$\mathbb{E} T_{\varepsilon}^{\phi} := \sum_{k=1}^{\infty} \mathbb{P}(\phi = k) \mathbb{E}_{\phi}^{k}(T_{\varepsilon}^{k}) < \infty,$$
(2)

for all (small) $\varepsilon > 0$, then the "upper bound" follows, that is, $\mathbb{E}[\tau_{\mathcal{S}} - \phi \mid \tau_{\mathcal{S}} \ge \phi] \le \frac{|\log \alpha|}{q_{\phi} + I_{\phi}} (1 + o(1)).$

Both conditions (1) and (2) can be deduced from an elaborate form of concentration inequality for the marginal likelihood ratio.

Key concentration lemma. Denote by $\mathbb{P}_{\lambda_*}^{m_*}$ the conditional probability $\mathbb{P}(\cdot|\lambda_* = m_*)$. Assume that for all $m_* \in \mathbb{N}^d$ in the support of $\pi_{\phi}^k(\cdot)$,

$$\mathbb{P}_{\lambda_*}^{m_*}\left\{ \left| \frac{1}{n} \log D_{\phi}^k(\mathbf{X}_*^n) - I_{\phi} \right| > \varepsilon \right\} \le q(n) \exp(-c_1 n \varepsilon^2)$$
(3)

for all $n \in \mathbb{N}$ and $\varepsilon \in (0, \varepsilon_0)$ such that $n \ge \frac{1}{\varepsilon^2} p^2(m_*, k)$, where

- $p(\cdot)$ and $q(\cdot)$ are polynomials with nonnegative coefficients,
- both $\mathbb{P}(\phi = \cdot)$ and $\mathbb{P}(\lambda_j | \phi = k)$ have finite polynomial moments.

Then the optimal delay Theorem holds.

Probabilistic calculus of ϵ **-equivalence**

Definition. Consider two sequences $\{a_n\}$ and $\{b_n\}$ of random variables, where $a_n = a_n(k)$ and $b_n = b_n(k)$ could depend on a common parameter $k \in \mathbb{N}$. The two sequences are called "asymptotically ε -equivalent" as $n \to \infty$, under $\{\mathbb{P}^{m_*}_{\lambda_*} : m_* \in \operatorname{supp}(\pi^k_{\phi})\}$, and denoted

$a_n \stackrel{\varepsilon}{\asymp} b_n,$

if there exist polynomials $p(\cdot)$ and $q(\cdot)$ (with constant nonnegative coefficients), and $\varepsilon_0 > 0$, such that for all $m_* \in \text{supp}(\pi_{\phi}^k)$, we have

$$\mathbb{P}_{\lambda_*}^{m_*}(|a_n - b_n| \le \varepsilon) \ge 1 - q(n)e^{-c_1 n\varepsilon^2}$$

for all $n \in \mathbb{N}$ and $\varepsilon \in (0, \varepsilon_0)$ satisfying $\sqrt{n}\varepsilon \ge p(m_*, k)$.

By union bound and algebraic manipulation, we obtain the following rules:

1.
$$a_n \stackrel{\varepsilon}{\asymp} b_n$$
 implies $a_n \stackrel{C\varepsilon}{\asymp} b_n$ for $C > 0$ and $\alpha a_n \stackrel{\varepsilon}{\asymp} \alpha b_n$ for $\alpha \in \mathbb{R}$.
2. $a_n \stackrel{\varepsilon}{\asymp} b_n$ and $b_n \stackrel{\varepsilon}{\asymp} c_n$ implies $a_n \stackrel{\varepsilon}{\asymp} c_n$. (Transitivity)
3. $a_n \stackrel{\varepsilon}{\asymp} b_n$ and $c_n \stackrel{\varepsilon}{\asymp} d_n$ implies $a_n \pm c_n \stackrel{\varepsilon}{\asymp} b_n \pm d_n$.
4. $a_n \stackrel{\varepsilon}{\asymp} b_n$ implies $\max\{a_n, c_n\} \stackrel{\varepsilon}{\asymp} \max\{b_n, c_n\}$.
5. $a_n \stackrel{\varepsilon}{\asymp} b_n$, $c_n \stackrel{\varepsilon}{\asymp} 1$ and $\{b_n\}$ bounded implies $a_n |c_n| \stackrel{\varepsilon}{\asymp} b_n$.
6. $a_n \stackrel{\varepsilon}{\asymp} a > 0$ and $b_n \stackrel{\varepsilon}{\preccurlyeq} -b < 0$ implies $\max\{a_n, b_n\} \stackrel{\varepsilon}{\asymp} a$.
7. "log-sum-max" inequality for positive sequences $\{a_n\}$ and $\{b_n\}$

$$n^{-1}\log(a_n+b_n) \stackrel{\varepsilon}{\asymp} \max\{n^{-1}\log a_n, n^{-1}\log b_n\}.$$

Based on this calculus we can deduce the ϵ -equivalence of the marginal likelihood ratio from the ϵ -equivalence of the likelihood ratios defined on individual sites and edges of neighboring sites.

Plots of the slope $\frac{1}{|\log \alpha|} \mathbb{E}[\tau_S - \phi_S | \tau_S \ge \phi_S]$ for star network of (1,2,3,4) centering at 2

Summary

- decentralized sequential detection of multiple change points
 - model, algorithm and asymptotic theory needed to go beyond single change point setting
- new statistical formulation drawing from:
 - classical sequential analysis
 - probabilistic graphical models (Bayes nets)
- introduced a "message-passing" sequential detection algorithm, exploiting the benefit of "network information"
- asymptotic theory for analyzing false alarm rates and detection delay

- for more detail, see
 - A. Amini and X. Nguyen.
 Sequential detection of multiple change points: A graphical models approach. Technical report, Department of Statistics, Univ of Michigan, 2012.
 - See also: R. Rajagopal, X. Nguyen, S.C. Ergen and P. Varaiya.
 Simultaneous sequential detection of multiple interacting faults. http://arxiv.org/abs/1012.1258