Message-passing sequential detection of multiple change points in networks

Long Nguyen, Arash Amini University of Michigan
Ram Rajagopal
Stanford University

ISIT, Boston, July 2012

Sequential change-point detection

- Quickest detection of change in distribution of a sequence of data
- data collected sequentially over time
- tradeoff between false alarm rate and detection delay time
- extensions to decentralized network with a fusion center
- classical setting involves only one single change point variable

Sequential change-point detection

- Quickest detection of change in distribution of a sequence of data
- data collected sequentially over time
- tradeoff between false alarm rate and detection delay time
- extensions to decentralized network with a fusion center
- classical setting involves only one single change point variable
- We study problems requiring detection of multiple change points in multiple sequences across network sites
- multiple change points are statistically dependent
- need to borrow information across network sites
- no fusion center - needs message-passing type algorithm
- new elements of modeling and asymptotic theory

Example - Simultaneous traffic monitoring

Problem: detecting in real-time potential hotspots in a traffic network

- data are sequences of measurements of traffic volume at multiple sites
- sequential change point detection for each site

Sequential detection for single change point

- network site j collects sequence of data X_{j}^{n} for $n=1,2, \ldots$
- time $\lambda_{j} \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after

Sequential detection for single change point

- network site j collects sequence of data X_{j}^{n} for $n=1,2, \ldots$
- time $\lambda_{j} \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after
- a sequential change point detection procedure is a stopping time τ_{j}, i.e., $\left\{\tau_{j} \leq n\right\} \sim \sigma\left(X_{j}^{[n]}\right)$

Sequential detection for single change point

- network site j collects sequence of data X_{j}^{n} for $n=1,2, \ldots$
- time $\lambda_{j} \in \mathbb{N}$ is change point variable for site j
- data are i.i.d. according to density g before the change point; and i.i.d. according to f after
- a sequential change point detection procedure is a stopping time τ_{j}, i.e., $\left\{\tau_{j} \leq n\right\} \sim \sigma\left(X_{j}^{[n]}\right)$
- Neyman-Pearson criterion:
- constraint on false alarm error

$$
P F A\left(\tau_{j}\right)=P\left(\tau_{j}<\lambda_{j}\right) \leq \alpha \text { for some small } \alpha
$$

- minimum detection delay

$$
\mathbb{E}\left[\left(\tau_{j}-\lambda_{j}\right) \mid \tau_{j} \geq \lambda_{j}\right]
$$

Optimal rule for single change point detection

- taking a Bayesian approach, λ_{j} is endowed with a prior
- under some conditions, optimal sequential rule obtained by thresholding the posterior of λ_{j} :
(Shiryaev, 1978)

$$
\tau_{j}=\inf \left\{n: \Lambda_{n} \geq 1-\alpha\right\},
$$

where

$$
\Lambda_{n}=\mathbb{P}\left(\lambda_{j} \leq n \mid X_{j}^{[n]}\right)
$$

- well-established asymptotic properties (Tartakovsky \& Veeravalli, 2006):
- false alarm:

$$
P F A\left(\tau_{j}\right) \leq \alpha .
$$

- detection delay:

$$
D\left(\tau_{j}\right)=\frac{|\log \alpha|}{I_{j}+d}(1+o(1)) \text { as } \alpha \rightarrow 0
$$

- here $I_{j}=K L\left(f_{j} \| g_{j}\right)$, the Kullback-Leibler information, constant d depends on the prior

Extensions to network setting.

- survey paper by Tsitsiklis (1993)
- decentralized sequential detection: Veeravalli, Basar and Poor (1993), Mei (2008), Nguyen, Wainwright and Jordan (2008)
- sequential change diagnosis: Dayanik, Goulding and Poor (2008)
- multiple sequence change point detection: Xie and Siegmund (2010)
- sequential detection of a markov process: Raghavan and Veeravalli (2010)

Talk outline

- statistical formulation for sequential detection of multiple change points in a network setting
- probabilistic graphical models
- extension of sequential analysis to multiple change point variables
- sequential and "real-time" message-passing detection algorithms
- decision procedures with limited data and computation
- asymptotic theory characterizing detection delay and algorithm convergence
- roles of graphical models in asymptotic analysis

Graphical models for multiple change points

- m network sites labeled by $U=\{1, \ldots, m\}$
- given a graph $G=(U, E)$ that specifies the the connections among $u \in U$
- each site j experiences a change at time $\lambda_{j} \in \mathbb{N}$
- λ_{j} is endowed with (independent) prior distribution π_{j}

Graphical models for multiple change points

- m network sites labeled by $U=\{1, \ldots, m\}$
- given a graph $G=(U, E)$ that specifies the the connections among $u \in U$
- each site j experiences a change at time $\lambda_{j} \in \mathbb{N}$
- λ_{j} is endowed with (independent) prior distribution π_{j}
- there may be private data sequence $\left(X_{j}^{n}\right)_{n \geq 1}$ for site j
- private data sequence changes its distribution after λ_{j}

Graphical models for multiple change points

- m network sites labeled by $U=\{1, \ldots, m\}$
- given a graph $G=(U, E)$ that specifies the the connections among $u \in U$
- each site j experiences a change at time $\lambda_{j} \in \mathbb{N}$
- λ_{j} is endowed with (independent) prior distribution π_{j}
- there may be private data sequence $\left(X_{j}^{n}\right)_{n \geq 1}$ for site j
- private data sequence changes its distribution after λ_{j}
- there is shared data sequence $\left(X_{i j}^{n}\right)_{n \geq 1}$ for each edge $e=(i, j)$ connecting neighboring pair of sites j and i :

$$
\begin{aligned}
X_{i j}^{n} & \stackrel{i i d}{\sim} g_{i j}(\cdot), \text { for } n<\lambda_{i j}:=\min \left(\lambda_{i}, \lambda_{j}\right) \\
& \stackrel{i i d}{\sim} f_{i j}(\cdot), \text { for } n \geq \lambda_{i j}=\min \left(\lambda_{i}, \lambda_{j}\right)
\end{aligned}
$$

Graphical model of change points and data sequences

(a) Topology of sensor network

(b) Graphical model of random variables

Joint distribution of change points and observed network data at time n :

$$
P\left(\lambda_{*}, \boldsymbol{X}_{*}^{n}\right)=\prod_{j \in V} \pi_{j}\left(\lambda_{j}\right) \prod_{j \in V} P\left(\boldsymbol{X}_{j}^{n} \mid \lambda_{j}\right) \prod_{(i j) \in E} P\left(\boldsymbol{X}_{i j}^{n} \mid \lambda_{i} \wedge \lambda_{j}\right)
$$

Star notations: $\lambda_{*}:=\left(\lambda_{1}, \ldots, \lambda_{m}\right), \boldsymbol{X}_{*}^{n}=\left(X_{1}^{n}, \ldots, X_{m}^{n}\right)$.

- Change point variables are statistically dependent a posteriori!

Min-functional of change points

Let S be a subset of network sites. Define the earliest change point among any sites in S :

$$
\lambda_{S}:=\min _{u \in S} \lambda_{j} .
$$

Question: what is the optimal stopping rule τ_{S} for estimating λ_{S} ?

$$
\tau_{S} \sim \sigma\left(X_{*}^{[n]}\right)
$$

A natural rule is by thresholding the posterior probability:

$$
\tau_{S}=\inf \left\{n: \mathbb{P}\left(\min _{u \in S} \lambda_{j} \leq n \mid X_{*}^{[n]}\right) \geq 1-\alpha\right\}
$$

for small $\alpha>0$.

A natural rule is by thresholding the posterior probability:

$$
\tau_{S}=\inf \left\{n: \mathbb{P}\left(\min _{u \in S} \lambda_{j} \leq n \mid X_{*}^{[n]}\right) \geq 1-\alpha\right\}
$$

for small $\alpha>0$.
This rule is sub-optimal (unlike the single change point case, which is optimal under some conditions on the prior).

But it will be shown to be asymptotically optimal and computationally tractable.

Message-passing distributed computation via sum-product algorithm: the issue to compute posterior probabilities, assuming that data and statistical messages can be only be passed through the graphical structure:

$$
\left.P\left(\lambda_{S} \leq n \mid \boldsymbol{X}_{*}^{[n]}\right) \geq 1-\alpha\right\}
$$

(a) Topology of sensor network

(b) Message-passing in network

Simple to implement via an adaptation of the sum-product algorithm Computational complexity. When G is a tree, the computational complexity of the message passing algorithm at each time step n is $O((|V|+|E|) n)$, but linearity in n is not desirable.

Mean-field approximation.

- Define latent binary variables $Z_{j}^{n}=\mathbb{I}\left(\lambda_{j} \leq n\right)$.
- Compute $P\left(Z_{*}^{n} \mid \boldsymbol{X}_{*}^{[n]}\right)$ in terms of $P\left(Z_{*}^{n} \mid \boldsymbol{X}_{*}^{[n-1]}\right)$ by Bayes rule.
- Decoupling approximation: As n gets large, due to concentration, the variables Z_{j}^{n} become decoupled across the graph. So, approximate:

$$
\tilde{P}\left(Z_{*}^{n} \mid \boldsymbol{X}_{*}^{[n-1]}\right) \approx \prod_{j \in V} P\left(Z_{j}^{n} \mid \boldsymbol{X}_{*}^{[n-1]}\right)
$$

- In effect, we have avoided marginalization over time at every time step, resulting in $\mathrm{O}(1)$ computational complexity in n.

Theorem 1. Both exact message-passing algorithm and mean-field approximation algorithm construct a Markov sequence of posterior probabilities that obey a contraction map. This entails that both sequences converge to 1 almost surely.

Approximation of posterior paths, $n \mapsto P\left(\lambda_{j} \leq n \mid X_{*}^{[n]}\right)$.

Main Theorem (optimal delay theorem).

Assume that

(a) The change points λ_{j} are endowed with independent geometric priors.
(b) The likelihood ratio functions are bounded from above.

Then the proposed stopping rule τ_{S} satisfies:
(i) False alarm rate: $\mathbb{P}\left(\tau_{S} \leq \lambda_{S}\right) \leq \alpha$.
(ii) The expected delay is asymptotically optimal, and takes the form:

$$
\mathbb{E}\left[\left(\tau_{S}-\min _{u \in S} \lambda_{j}\right) \mid \tau_{S} \geq \min _{u \in S} \lambda_{j}\right]=\frac{|\log \alpha|(1+o(1))}{d+\underbrace{\sum_{j \in S} I_{j}+\sum_{(i j) \in E \cap S} I_{i j}}_{I_{\lambda_{S}}}}
$$

Here, $I_{j}=\int f_{i} \log \left(f_{j} / g_{j}\right)$, and $I_{i j}=\int f_{i j} \log \left(f_{i j} / g_{i j}\right)$.

Graph-based Kullback-Leibler information ...

$$
\begin{gathered}
\text { If } S=\{1\} \text {, then } I_{\lambda_{S}}=I_{1} \\
\text { If } S=\{1,2\} \text {, then } I_{\lambda_{S}}=I_{1}+I_{2}+I_{12} \\
\text { If } S=\{1,2,3\} \text {, then } I_{\lambda_{S}}=I_{1}+I_{2}+I_{3}+I_{12}+I_{23} .
\end{gathered}
$$

Concentration inequalities for marginal LRs

For $\phi=\min _{u \in S} \lambda_{j}$, define marginal likelihood ratio

$$
D_{\phi}^{k, n}:=D_{\phi}^{k}\left(\mathbf{X}_{*}^{n}\right):=\frac{\mathbb{P}_{\phi}^{k}\left(\mathbf{X}_{*}^{n}\right)}{\mathbb{P}_{\phi}^{\infty}\left(\mathbf{X}_{*}^{n}\right)}
$$

where \mathbb{P}_{ϕ}^{k} denotes $\mathbb{P}(\cdot \mid \phi=k)$.
Define conditional prior probability $\pi_{\phi}^{k}\left(m_{*}\right):=\mathbb{P}\left(\lambda_{*}=m_{*} \mid \phi=k\right)$.

By a general result of Tartakovski \& Veeravalli (2006), if

$$
\begin{equation*}
\mathbb{P}_{\phi}^{k}\left[\frac{1}{N} \max _{1 \leq n \leq N} \log D_{\phi}^{k}\left(\mathbf{X}_{*}^{k+n}\right) \geq(1+\varepsilon) I_{\phi}\right] \xrightarrow{N \rightarrow \infty} 0 \tag{1}
\end{equation*}
$$

for all (small) $\varepsilon>0$ and all $k \in \mathbb{N}$, then the "lower bound" follows, $\inf _{\widetilde{\tau} \in \Delta_{\phi}(\alpha)} \mathbb{E}[\widetilde{\tau}-\phi \mid \widetilde{\tau} \geq \phi] \geq \frac{|\log \alpha|}{q_{\phi}+I_{\phi}}(1+o(1))$.

Furthermore, let

$$
T_{\varepsilon}^{k}:=\sup \left\{n \in \mathbb{N}: \frac{1}{n} \log D_{\phi}^{k}\left(\mathbf{X}_{*}^{k+n-1}\right)<I_{\phi}-\varepsilon\right\} .
$$

By Tartakovski-Veeravalli (2006), if one has

$$
\begin{equation*}
\mathbb{E} T_{\varepsilon}^{\phi}:=\sum_{k=1}^{\infty} \mathbb{P}(\phi=k) \mathbb{E}_{\phi}^{k}\left(T_{\varepsilon}^{k}\right)<\infty, \tag{2}
\end{equation*}
$$

for all (small) $\varepsilon>0$, then the "upper bound" follows, that is, $\mathbb{E}\left[\tau_{\mathcal{S}}-\phi \mid\right.$ $\left.\tau_{\mathcal{S}} \geq \phi\right] \leq \frac{\lfloor\log \alpha \mid}{q_{\phi}+I_{\phi}}(1+o(1))$.

Both conditions (1) and (2) can be deduced from an elaborate form of concentration inequality for the marginal likelihood ratio.

Key concentration lemma. Denote by $\mathbb{P}_{\lambda_{*}}^{m_{*}}$ the conditional probability $\mathbb{P}\left(\cdot \mid \lambda_{*}=m_{*}\right)$. Assume that for all $m_{*} \in \mathbb{N}^{d}$ in the support of $\pi_{\phi}^{k}(\cdot)$,

$$
\begin{equation*}
\mathbb{P}_{\lambda_{*}}^{m_{*}}\left\{\left|\frac{1}{n} \log D_{\phi}^{k}\left(\mathbf{X}_{*}^{n}\right)-I_{\phi}\right|>\varepsilon\right\} \leq q(n) \exp \left(-c_{1} n \varepsilon^{2}\right) \tag{3}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$ such that $n \geq \frac{1}{\varepsilon^{2}} p^{2}\left(m_{*}, k\right)$, where

- $p(\cdot)$ and $q(\cdot)$ are polynomials with nonnegative coefficients,
- both $\mathbb{P}(\phi=\cdot)$ and $\mathbb{P}\left(\lambda_{j} \mid \phi=k\right)$ have finite polynomial moments.

Then the optimal delay Theorem holds.

Probabilistic calculus of ϵ-equivalence

Definition. Consider two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of random variables, where $a_{n}=a_{n}(k)$ and $b_{n}=b_{n}(k)$ could depend on a common parameter $k \in \mathbb{N}$. The two sequences are called "asymptotically ε-equivalent" as $n \rightarrow \infty$, under $\left\{\mathbb{P}_{\lambda_{*}}^{m_{*}}: m_{*} \in \operatorname{supp}\left(\pi_{\phi}^{k}\right)\right\}$, and denoted

$$
a_{n} \stackrel{\varepsilon}{\leftrightharpoons} b_{n}
$$

if there exist polynomials $p(\cdot)$ and $q(\cdot)$ (with constant nonnegative coefficients), and $\varepsilon_{0}>0$, such that for all $m_{*} \in \operatorname{supp}\left(\pi_{\phi}^{k}\right)$, we have

$$
\mathbb{P}_{\lambda_{*}}^{m_{*}}\left(\left|a_{n}-b_{n}\right| \leq \varepsilon\right) \geq 1-q(n) e^{-c_{1} n \varepsilon^{2}}
$$

for all $n \in \mathbb{N}$ and $\varepsilon \in\left(0, \varepsilon_{0}\right)$ satisfying $\sqrt{n} \varepsilon \geq p\left(m_{*}, k\right)$.

By union bound and algebraic manipulation, we obtain the following rules:

1. $a_{n} \xlongequal{\asymp} b_{n}$ implies $a_{n} \stackrel{C \varepsilon}{\asymp} b_{n}$ for $C>0$ and $\alpha a_{n} \xlongequal{\ominus} \alpha b_{n}$ for $\alpha \in \mathbb{R}$.
2. $a_{n} \xlongequal{\varepsilon} b_{n}$ and $b_{n} \xlongequal{〔} c_{n}$ implies $a_{n} \xlongequal{\varepsilon} c_{n}$. (Transitivity)
3. $a_{n} \xlongequal{\varepsilon} b_{n}$ and $c_{n} \asymp d_{n}$ implies $a_{n} \pm c_{n} \asymp b_{n} \pm d_{n}$.
4. $a_{n} \xlongequal{\varepsilon} b_{n}$ implies $\max \left\{a_{n}, c_{n}\right\} \xlongequal{\varepsilon} \max \left\{b_{n}, c_{n}\right\}$.
5. $a_{n} \xlongequal{\varepsilon} b_{n}, c_{n} \xlongequal{\varepsilon} 1$ and $\left\{b_{n}\right\}$ bounded implies $a_{n}\left|c_{n}\right| \xlongequal{\ominus} b_{n}$.
6. $a_{n} \xlongequal{\varepsilon} a>0$ and $b_{n} \stackrel{\varepsilon}{\preccurlyeq}-b<0$ implies $\max \left\{a_{n}, b_{n}\right\} \stackrel{\varepsilon}{\asymp} a$.
7. "log-sum-max" inequality for positive sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$:

Based on this calculus we can deduce the ϵ-equivalence of the marginal likelihood ratio from the ϵ-equivalence of the likelihood ratios defined on individual sites and edges of neighboring sites.

Plots of the slope $\frac{1}{|\log \alpha|} \mathbb{E}\left[\tau_{S}-\phi_{S} \mid \tau_{S} \geq \phi_{S}\right]$ for star network of $(1,2,3,4)$ centering at 2

Summary

- decentralized sequential detection of multiple change points
- model, algorithm and asymptotic theory needed to go beyond single change point setting
- new statistical formulation drawing from:
- classical sequential analysis
- probabilistic graphical models (Bayes nets)
- introduced a "message-passing" sequential detection algorithm, exploiting the benefit of "network information"
- asymptotic theory for analyzing false alarm rates and detection delay
- for more detail, see
- A. Amini and X. Nguyen. Sequential detection of multiple change points: A graphical models approach. Technical report, Department of Statistics, Univ of Michigan, 2012.
- See also: R. Rajagopal, X. Nguyen, S.C. Ergen and P. Varaiya. Simultaneous sequential detection of multiple interacting faults. http://arxiv.org/abs/1012.1258

