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Sequential change-point detection

• Quickest detection of change in distribution of a sequence of data

– data collected sequentially over time

– tradeoff between false alarm rate and detection delay time

– extensions to decentralized network with a fusion center

– classical setting involves only one single change point variable
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Sequential change-point detection

• Quickest detection of change in distribution of a sequence of data

– data collected sequentially over time

– tradeoff between false alarm rate and detection delay time

– extensions to decentralized network with a fusion center

– classical setting involves only one single change point variable

• We study problems requiring detection of multiple change points in

multiple sequences across network sites

– multiple change points are statistically dependent

– need to borrow information across network sites

– no fusion center – needs message-passing type algorithm

– new elements of modeling and asymptotic theory

Nguyen/Amini/Rajagopal 2-a



Example – Simultaneous traffic monitoring

Problem: detecting in real-time potential hotspots in a traffic network

• data are sequences of measurements of traffic volume at multiple sites

• sequential change point detection for each site
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Sequential detection for single change point

• network site j collects sequence of data Xn
j for n = 1, 2, . . .

• time λj ∈ N is change point variable for site j

• data are i.i.d. according to density g before the change point;

and i.i.d. according to f after
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Sequential detection for single change point

• network site j collects sequence of data Xn
j for n = 1, 2, . . .

• time λj ∈ N is change point variable for site j

• data are i.i.d. according to density g before the change point;

and i.i.d. according to f after

• a sequential change point detection procedure is a stopping time τj ,

i.e., {τj ≤ n} ∼ σ(X
[n]
j )

• Neyman-Pearson criterion:

– constraint on false alarm error

PFA(τj) = P (τj < λj) ≤ α for some small α

– minimum detection delay

E[(τj − λj)|τj ≥ λj ].
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Optimal rule for single change point detection

• taking a Bayesian approach, λj is endowed with a prior

• under some conditions, optimal sequential rule obtained by thresholding

the posterior of λj : (Shiryaev, 1978)

τj = inf{n : Λn ≥ 1 − α},

where

Λn = P(λj ≤ n|X [n]
j ).

• well-established asymptotic properties (Tartakovsky & Veeravalli, 2006):

– false alarm:

PFA(τj) ≤ α.

– detection delay:

D(τj) =
| log α|

Ij + d

„

1 + o(1)

«

as α → 0.

– here Ij = KL(fj ||gj), the Kullback-Leibler information,

constant d depends on the prior
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Extensions to network setting.

• survey paper by Tsitsiklis (1993)

• decentralized sequential detection: Veeravalli, Basar and Poor (1993),

Mei (2008), Nguyen, Wainwright and Jordan (2008)

• sequential change diagnosis: Dayanik, Goulding and Poor (2008)

• multiple sequence change point detection: Xie and Siegmund (2010)

• sequential detection of a markov process: Raghavan and Veeravalli

(2010)

• ...
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Talk outline

• statistical formulation for sequential detection of multiple change points

in a network setting

– probabilistic graphical models

– extension of sequential analysis to multiple change point variables

• sequential and “real-time” message-passing detection algorithms

– decision procedures with limited data and computation

• asymptotic theory characterizing detection delay and algorithm conver-

gence

– roles of graphical models in asymptotic analysis
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Graphical models for multiple change points

• m network sites labeled by U = {1, . . . , m}

• given a graph G = (U, E) that specifies the the connections among

u ∈ U

• each site j experiences a change at time λj ∈ N

– λj is endowed with (independent) prior distribution πj
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Graphical models for multiple change points

• m network sites labeled by U = {1, . . . , m}

• given a graph G = (U, E) that specifies the the connections among

u ∈ U

• each site j experiences a change at time λj ∈ N

– λj is endowed with (independent) prior distribution πj

• there may be private data sequence (Xn
j )n≥1 for site j

– private data sequence changes its distribution after λj

• there is shared data sequence (Xn
ij)n≥1 for each edge e = (i, j) con-

necting neighboring pair of sites j and i:

Xn
ij

iid∼ gij(·), for n < λij := min(λi, λj)

iid∼ fij(·), for n ≥ λij = min(λi, λj)

Nguyen/Amini/Rajagopal 8-b



Graphical model of change points and data sequences
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(a) Topology of sensor network (b) Graphical model of random variables

Joint distribution of change points and observed network data at time n:

P (λ∗, X
n
∗ ) =

∏

j∈V

πj(λj)
∏

j∈V

P (Xn
j |λj)

∏

(ij)∈E

P (Xn
ij |λi ∧ λj)

Star notations: λ∗ := (λ1, . . . , λm), X
n
∗ = (Xn

1 , . . . , Xn
m).

• Change point variables are statistically dependent a posteriori!
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Min-functional of change points
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Let S be a subset of network sites. Define the earliest change point among

any sites in S:

λS := min
u∈S

λj .

Question: what is the optimal stopping rule τS for estimating λS?

τS ∼ σ(X
[n]
∗ ).
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A natural rule is by thresholding the posterior probability:

τS = inf{n : P(min
u∈S

λj ≤ n|X [n]
∗ ) ≥ 1 − α},

for small α > 0.
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A natural rule is by thresholding the posterior probability:

τS = inf{n : P(min
u∈S

λj ≤ n|X [n]
∗ ) ≥ 1 − α},

for small α > 0.

This rule is sub-optimal (unlike the single change point case, which is optimal

under some conditions on the prior).

But it will be shown to be asymptotically optimal and computationally

tractable.
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Message-passing distributed computation via sum-product algorithm:

the issue to compute posterior probabilities, assuming that data and statis-

tical messages can be only be passed through the graphical structure:

P (λS ≤ n|X [n]
∗ ) ≥ 1 − α}.

λ1
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24
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(a) Topology of sensor network (b) Message-passing in network

Simple to implement via an adaptation of the sum-product algorithm

Computational complexity. When G is a tree, the computational complexity

of the message passing algorithm at each time step n is O((|V | + |E|)n),

but linearity in n is not desirable.
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Mean-field approximation.

• Define latent binary variables Zn
j = I(λj ≤ n).

• Compute P (Zn
∗ |X [n]

∗ ) in terms of P (Zn
∗ |X [n−1]

∗ ) by Bayes rule.

• Decoupling approximation: As n gets large, due to concentration, the

variables Zn
j become decoupled across the graph. So, approximate:

P̃ (Zn
∗ |X [n−1]

∗ ) ≈
∏

j∈V

P (Zn
j |X [n−1]

∗ )

• In effect, we have avoided marginalization over time at every time step,

resulting in O(1) computational complexity in n.

Theorem 1. Both exact message-passing algorithm and mean-field ap-

proximation algorithm construct a Markov sequence of posterior probabilities

that obey a contraction map. This entails that both sequences converge to

1 almost surely.
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Approximation of posterior paths, n 7→ P (λj ≤ n|X [n]
∗ ).
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Main Theorem (optimal delay theorem).

Assume that

(a) The change points λj are endowed with independent geometric priors.

(b) The likelihood ratio functions are bounded from above.

Then the proposed stopping rule τS satisfies:

(i) False alarm rate: P(τS ≤ λS) ≤ α.

(ii) The expected delay is asymptotically optimal, and takes the form:

E[(τS − min
u∈S

λj)|τS ≥ min
u∈S

λj ] =
| log α|(1 + o(1))

d +
∑

j∈S

Ij +
∑

(ij)∈E∩S

Iij

︸ ︷︷ ︸
IλS

.

Here, Ij =
∫

fi log(fj/gj), and Iij =
∫

fij log(fij/gij).
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Graph-based Kullback-Leibler information ...
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If S = {1}, then IλS
= I1

If S = {1, 2}, then IλS
= I1 + I2 + I12

If S = {1, 2, 3}, then IλS
= I1 + I2 + I3 + I12 + I23.
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Concentration inequalities for marginal LRs

For φ = minu∈S λj , define marginal likelihood ratio

Dk,n
φ := Dk

φ(Xn
∗ ) :=

P
k
φ(Xn

∗ )

P∞
φ (Xn

∗ )
,

where P
k
φ denotes P(·|φ = k).

Define conditional prior probability πk
φ(m∗) := P(λ∗ = m∗ | φ = k).

By a general result of Tartakovski & Veeravalli (2006), if

P
k
φ

[ 1

N
max

1≤n≤N
log Dk

φ(Xk+n
∗ ) ≥ (1 + ε)Iφ

]
N→∞−→ 0 (1)

for all (small) ε > 0 and all k ∈ N, then the “lower bound” follows,

infeτ∈∆φ(α) E
[
τ̃ − φ | τ̃ ≥ φ

]
≥ | log α|

qφ+Iφ

(
1 + o(1)

)
.
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Furthermore, let

T k
ε := sup

{
n ∈ N :

1

n
log Dk

φ(Xk+n−1
∗ ) < Iφ − ε

}
.

By Tartakovski-Veeravalli (2006), if one has

E Tφ
ε :=

∞∑

k=1

P(φ = k) E
k
φ(T k

ε ) < ∞, (2)

for all (small) ε > 0, then the “upper bound” follows, that is, E[τS − φ |
τS ≥ φ] ≤ | log α|

qφ+Iφ
(1 + o(1)).

Both conditions (1) and (2) can be deduced from an elaborate form of

concentration inequality for the marginal likelihood ratio.
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Key concentration lemma. Denote by P
m∗

λ∗

the conditional probability

P(·|λ∗ = m∗). Assume that for all m∗ ∈ N
d in the support of πk

φ(·),

P
m∗

λ∗

{∣∣∣
1

n
log Dk

φ(Xn
∗ ) − Iφ

∣∣∣ > ε
}
≤ q(n) exp(−c1nε2) (3)

for all n ∈ N and ε ∈ (0, ε0) such that n ≥ 1

ε2
p2(m∗, k) , where

• p(·) and q(·) are polynomials with nonnegative coefficients,

• both P(φ = ·) and P(λj |φ = k) have finite polynomial moments.

Then the optimal delay Theorem holds.
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Probabilistic calculus of ǫ-equivalence

Definition. Consider two sequences {an} and {bn} of random variables,

where an = an(k) and bn = bn(k) could depend on a common parameter

k ∈ N. The two sequences are called “asymptotically ε-equivalent” as

n → ∞, under {P
m∗

λ∗

: m∗ ∈ supp(πk
φ)}, and denoted

an

ε≍ bn,

if there exist polynomials p(·) and q(·) (with constant nonnegative coeffi-

cients), and ε0 > 0, such that for all m∗ ∈ supp(πk
φ), we have

P
m∗

λ∗

(|an − bn| ≤ ε) ≥ 1 − q(n)e−c1nε2

for all n ∈ N and ε ∈ (0, ε0) satisfying
√

nε ≥ p(m∗, k).
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By union bound and algebraic manipulation, we obtain the following rules:

1. an

ε≍ bn implies an

Cε≍ bn for C > 0 and αan

ε≍ αbn for α ∈ R.

2. an

ε≍ bn and bn

ε≍ cn implies an

ε≍ cn. (Transitivity)

3. an

ε≍ bn and cn

ε≍ dn implies an ± cn

ε≍ bn ± dn.

4. an

ε≍ bn implies max{an, cn}
ε≍ max{bn, cn}.

5. an

ε≍ bn, cn

ε≍ 1 and {bn} bounded implies an|cn|
ε≍ bn.

6. an

ε≍ a > 0 and bn

ε

4 −b < 0 implies max{an, bn}
ε≍ a.

7. “log–sum-max” inequality for positive sequences {an} and {bn}:

n−1 log(an + bn)
ε≍ max{n−1 log an, n−1 log bn}.

Based on this calculus we can deduce the ǫ-equivalence of the marginal

likelihood ratio from the ǫ-equivalence of the likelihood ratios defined on

individual sites and edges of neighboring sites.
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Plots of the slope 1
| log α|E[τS − φS |τS ≥ φS ] for star network of (1,2,3,4)

centering at 2
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Summary

• decentralized sequential detection of multiple change points

– model, algorithm and asymptotic theory needed to go beyond single

change point setting

• new statistical formulation drawing from:

– classical sequential analysis

– probabilistic graphical models (Bayes nets)

• introduced a “message-passing” sequential detection algorithm, exploit-

ing the benefit of “network information”

• asymptotic theory for analyzing false alarm rates and detection delay
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• for more detail, see

– A. Amini and X. Nguyen.

Sequential detection of multiple change points: A graphical mod-

els approach. Technical report, Department of Statistics, Univ of

Michigan, 2012.

– See also: R. Rajagopal, X. Nguyen, S.C. Ergen and P. Varaiya.

Simultaneous sequential detection of multiple interacting faults.

http://arxiv.org/abs/1012.1258
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