# Inference of functional clustering patterns from non-functional data

Long Nguyen Department of Statistics

University of Michigan

Madison, April 2012

# Talk outline

- Learning functional relationships, but functional data are unavailable
  - functional clustering
  - differs from (non-linear) regression
  - "co-clustering", involving co-varying mixture distributions
- Hierarchical and nonparametric Bayesian method
- Intuitive computational algorithms for statistical inference
  - Markov Chain Monte Carlo sampling for co-clustering
- Asymptotic results for identifiability and consistency of latent mixing measures

### Temperature vs depth pattern in Atlantic ocean



- data are (temp, depth) samples collected at 4 different locations at different times in span of few days
- heterogeneous functional clustering patterns within each location
  - extracting functional clusters
  - interpolation
  - comparisons between groups associated with different locations

# Simpler example: Problem of tracking (connecting the dots)



- data are positions  $Y \in \mathbb{R}^d$  of multiple objects moving in a geographical area (positions Y co-vary with time u)
- objects move in local clusters (might switch over time)
  - we are not interested in the movement of each individual object; rather we are interested in the paths over which the local clusters evolve
- moving paths are functions of time

# Example: Functional clustering without functional data



- data are daily hormone levels from a population sample
- $\bullet\,$  hormone levels from different individuals for different days u
- interested in global/functional clusters for a typical individual in the population

# A simple ad hoc computational heuristic



- this is viewed as a "co-clustering" problem
- $\bullet\,$  collection of co-varying mixture distributions indexed by covariate u
- a heuristic:
  - solve each clustering problem individually
  - mix-match clusters from different mixture distributions

# Our approach

 proposed a hierarchical nonparametric model that links "functional/global clusters" to "non-functional/local" data



- several modeling ingredients
  - assume smooth functional clusters using Gaussian process
  - use Dirichlet process mixtures to handle unknown number of clusters
  - probabilistic linkage achieved via conditional hierarchy

# **Background I: Dirichlet process mixtures**

- Dirichlet process (DP) mixtures are natural for handling unknown number of mixing components
  - mixing distribution G is random and distributed according to a DP

# **Background I: Dirichlet process mixtures**

- Dirichlet process (DP) mixtures are natural for handling unknown number of mixing components
  - $-\,$  mixing distribution G is random and distributed according to a DP
- A Dirichlet process  $DP(\alpha_0, G_0)$  defines a distribution on (random) probability measures
  - $\alpha_0$  concentration parameter,  $G_0$  centering distribution

# **Background I: Dirichlet process mixtures**

- Dirichlet process (DP) mixtures are natural for handling unknown number of mixing components
  - mixing distribution G is random and distributed according to a DP
- A Dirichlet process DP(α<sub>0</sub>, G<sub>0</sub>) defines a distribution on (random) probability measures
  - $\alpha_0$  concentration parameter,  $G_0$  centering distribution
- A random draw G ~ DP(α<sub>0</sub>, G<sub>0</sub>) admits the "stick-breaking" representation w.p.1:

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k},$$

- $\delta_{\phi_k}$  denotes an atomic distribution concentrated at  $\phi_k$ ,  $\phi_k \stackrel{iid}{\sim} G_0$
- stick-breaking weights  $\pi_k$  are random and depend only on  $lpha_0$

### **Background II: Dependent Dirichlet processes**

- DDPs modeling framework advocated by MacEachern (1999)
- modeling a collection of Dirichlet processes  $\{G_u\}$ : via stick-breaking representation:

0

$$G_u = \sum_{k=1}^{\infty} \pi_{uk} \delta_{\phi_{uk}}$$

- for each  $u \in V$ :  $\pi_{uk}$ 's are called "stick" variables;  $\phi_{uk}$  are "atoms"
- for each k:  $\pi_k = (\pi_{uk})_{u \in V}$  and  $\phi_k = (\phi_{uk})_{u \in V}$  are stochastic processes indexed by  $u \in V$
- various extensions by Muller et al (2004), Delorio et al (2004), Ishwaran & James (2001), Griffin & Steel (2006), Dunson & Park (2008)
- extension to functional data analysis setting, e.g., Duan et al (2007), Petrone et al, (2009), Rodriguez et al (2009), Dunson (2008)
- our problem presents some modeling challenges: nonparametric functional patterns without functional data

# **Background III: Hierarchical Dirichlet Processes**

- HDPs modeling framework due to Teh, Jordan, Blei, Beal (JASA, 2006)
- hierarchy of *recursively* specified Dirichlet processes:

 $G_u | \alpha_0, G_0 \sim \mathrm{DP}(\alpha_0, G_0)$  $G_0 | \gamma, H \sim \mathrm{DP}(\gamma, H)$ 

- note that  $G_u$ ,  $G_0$  and H are probability measures on the same space of atoms
- but they are specified in different levels in the model hierarchy

# **Proposed approach**

- A multi-level nonparametric Bayesian modeling approach:
  - we need a collection of dependent DP's (as in DDPs)
  - also different Dirichlet processes in different levels (as in HDPs)
- key features:
  - a Dirichlet process for modeling functional atoms
  - Dirichlet processes for modeling local atoms (for each u)
  - global and local atoms are related as different levels in the conditional probability hierarchy
  - a *nested* hierarchy of Dirichlet processes (generalizing the HDP)

### Some notations

- Data are  $(y_{ui})$ , indexed by  $u \in V$ , and  $i = 1, \ldots, n_u$
- For each  $u \in V$ , observations  $(y_{ui})_{i=1}^{n_u}$  are draws from a mixture distribution with mixing measure  $G_u$  supported by  $\theta_u$ 's, where  $\theta_u \in \Theta_u$

- e.g., for mixture of gaussians,  $\theta_u{\,}'\!\mathrm{s}$  are the means

### Some notations

- Data are  $(y_{ui})$ , indexed by  $u \in V$ , and  $i = 1, \ldots, n_u$
- For each u ∈ V, observations (y<sub>ui</sub>)<sup>n<sub>u</sub></sup><sub>i=1</sub> are draws from a mixture distribution with mixing measure G<sub>u</sub> supported by θ<sub>u</sub>'s, where θ<sub>u</sub> ∈ Θ<sub>u</sub>
   e.g., for mixture of gaussians, θ<sub>u</sub>'s are the means
- Define product space  $\boldsymbol{\Theta} = \prod_{u \in V} \Theta_u$
- A global (functional) atom  $\boldsymbol{\phi} := (\phi_u)_{u \in V}$  is an element in  $\boldsymbol{\Theta}$
- $\phi$  is random and distributed by mixing measure Q, which varies around a smooth stochastic process H (e.g., Gaussian process)

# Full model specification (nested HDP)

(Nguyen, 2010)

• observations from each group indexed by *u* are drawn independently from a mixture model:

 $\begin{array}{lll} y_{ui}|\theta_{ui} & \stackrel{iid}{\sim} & F(\cdot|\theta_{ui}) \\ \\ \theta_{ui}|G_u & \stackrel{iid}{\sim} & G_u \\ & & & \quad \text{for any } u \in V; \ i = 1, \dots, n_u \end{array}$ 

# Full model specification (nested HDP)

(Nguyen, 2010)

• observations from each group indexed by *u* are drawn independently from a mixture model:

 $\begin{array}{lll} y_{ui}|\theta_{ui} & \stackrel{iid}{\sim} & F(\cdot|\theta_{ui}) \\ \\ \theta_{ui}|G_u & \stackrel{iid}{\sim} & G_u \\ & & \quad \text{for any } u \in V; \ i = 1, \dots, n_u \end{array}$ 

- probability distribution H, which specifies centering distribution for global clusters, is taken to be a Gaussian process on  $\Theta$
- mixing measures  $G_u$  are given a hierarchy of DPs:

$$Q|\gamma, H \sim DP(\gamma, H),$$
  
$$\frac{G_u}{G_u}|\alpha_u, Q \stackrel{indep}{\sim} DP(\alpha_u, Q_u), \text{ for all } u \in V$$

### Nested hierarchy of Dirichlet processes



# Statistical dependence among $G_u$ 's

- the dependence confered by centering distribution H entails the dependence among local distributions  $G_u$ 's
- suppose that H is a Gaussian process,  $\phi = (\phi_u : u \in V) \sim N(\mu, \Sigma)$ , where  $\Sigma$  takes standard exponential form
- for any measurable sets A and B:

# Statistical dependence among $G_u$ 's

- the dependence confered by centering distribution H entails the dependence among local distributions  $G_u$ 's
- suppose that H is a Gaussian process,  $\phi = (\phi_u : u \in V) \sim N(\mu, \Sigma)$ , where  $\Sigma$  takes standard exponential form
- for any measurable sets A and B:

$$\operatorname{Corr}(G_u(A), G_v(B)) \to \begin{cases} 0 & \text{as } \|u - v\| \to \infty \\ 1 & \text{if } A = B, \ \|u - v\| \to 0 \end{cases}$$

# Statistical dependence among $G_u$ 's

- the dependence confered by centering distribution H entails the dependence among local distributions  $G_u$ 's
- suppose that H is a Gaussian process,  $\phi = (\phi_u : u \in V) \sim N(\mu, \Sigma)$ , where  $\Sigma$  takes standard exponential form
- for any measurable sets A and B:

$$\operatorname{Corr}(G_u(A), G_v(B)) \to \begin{cases} 0 & \text{as } \|u - v\| \to \infty \\ 1 & \text{if } A = B, \ \|u - v\| \to 0 \end{cases}$$

• relations between the two levels in the Bayesian hierarchy: the correlation ratio

 $\operatorname{Corr}(G_u(A), G_v(B)) / \operatorname{Corr}(Q_u(A), Q_v(B))$ 

decreases from 1 to 0 as  $\gamma$  ranges from  $0 \text{ to } \infty$ 

#### **Stick-breaking representation**

• Mixing measure Q for global clusters:

$$Q = \sum_{k=1}^{\infty} \beta_k \delta_{\phi_k}$$

where  $\phi_k = (\phi_{uk} : u \in V)$  are independent draws from H, and  $\beta = (\beta_k)_{k=1}^{\infty} \sim \operatorname{GEM}(\gamma)$ .

•  $Q_u$  is the induced marginal of Q at u, while mixing measure  $G_u$  varies around the  $Q_u$ , and provides the support for local clusters:

$$Q_u = \sum_{k=1}^{\infty} \beta_k \delta_{\phi_{uk}},$$

$$G_u = \sum_{k=1}^{\infty} \pi_{uk} \delta_{\phi_{uk}}.$$

# Pólya-urn characterization

• Sampling of *local atoms* distributed by  $G_u$  (which is integrated out):

$$\theta_{ui}|\theta_{u1},\ldots,\theta_{u,i-1},\alpha_u,Q\sim\sum_{t=1}^{m_u}\frac{n_{ut}}{i-1+\alpha_u}\delta_{\psi_{ut}}+\frac{\alpha_u}{i-1+\alpha_u}Q_u.$$

 $- Q_u$  is the induced marginal of distribution Q

### Pólya-urn characterization

• Sampling of *local atoms* distributed by  $G_u$  (which is integrated out):

$$\theta_{ui}|\theta_{u1},\ldots,\theta_{u,i-1},\alpha_u,Q\sim\sum_{t=1}^{m_u}\frac{n_{ut}}{i-1+\alpha_u}\delta_{\psi_{ut}}+\frac{\alpha_u}{i-1+\alpha_u}Q_u.$$

 $- Q_u$  is the induced marginal of distribution Q

• Sampling of *global atoms* distributed by Q (which is integrated out):

$$|\boldsymbol{\psi}_t| \{\boldsymbol{\psi}_l\}_{l \neq t}, \gamma, H \sim \sum_{k=1}^K \frac{q_k}{q_{\cdot} + \gamma} \delta_{\boldsymbol{\phi}_k} + \frac{\gamma}{q_{\cdot} + \gamma} H.$$

# **Posterior inference**

- Nested HDP is amenable to Gibbs sampling
  - sampling local atoms by integrating out  $G_u\sp{is}$
  - sampling global atoms by integrating out Q, and centering measure H
- Conditional distribution of DP-distributed measure is again a Dirichlet process
- Computational speedup is achieved by replacing the spatial process  ${\cal H}$  by a graphical model
  - inference for tree-structured or chain-structure model requires time linear in number of covariate levels  $\boldsymbol{u}$

# **Recall: simple computational heuristic**



- $\bullet\,$  viewed as a "co-clustering" problem, one for each u
- $\bullet\,$  collection of co-varying mixture distributions indexed by covariate u
- a heuristic:
  - solve each clustering problem individually (allowing for sampling of number of clusters)
  - mix-match clusters from mixture distributions across different u's

#### **Exploiting stick-breaking respresentation**

Construct a Markov chain on space of stick-breaking representations  $(z, q, \beta, \phi)$ . Sampling  $\beta$ :  $\beta | q \sim \text{Dir}(q_1, \dots, q_K, \gamma)$ .

Sampling cluster labels *z*:

$$p(z_{ui} = k | \boldsymbol{z}^{-ui}, \boldsymbol{q}, \boldsymbol{\beta}, \boldsymbol{\phi}_k, \text{Data}) = \begin{cases} (n_{u \cdot k}^{-ui} + \alpha_u \beta_k) F(y_{ui} | \boldsymbol{\phi}_{uk}) & \text{if } k \text{ used prev.} \\ \alpha_u \beta_{\text{new}} f_{uk^{\text{new}}}^{y_{ui}}(y_{ui}) & \text{if } k = k^{\text{new}}. \end{cases}$$

Sampling q:  $q_k = \sum_{u \in V} m_{uk}$  where:

$$p(m_{uk} = m | \boldsymbol{z}, \boldsymbol{m}^{-uk}, \boldsymbol{\beta}) = \frac{\Gamma(\alpha_u \beta_k)}{\Gamma(\alpha_u \beta_k + n_{u \cdot k})} s(n_{u \cdot k}, m) (\alpha_u \beta_k)^m$$

Sampling global/functional clusters  $\phi$ :

$$p(\boldsymbol{\phi}_k | \boldsymbol{z}, \text{Data}) \propto H(\boldsymbol{\phi}_k) \prod_{u:z_{ui}=k} F(y_{ui} | \phi_{uk}) \text{ for each } k = 1, \dots, K.$$

# **Tracking example**



Prior specification:

- concentration parameters  $\gamma \sim \text{Gamma}(5,.1)$  and  $\alpha \sim \text{Gamma}(20,20)$
- variance  $\sigma_{\epsilon}^2$  of  $F(\cdot)$  is given prior InvGamma(5,1)
- prior for global atoms H is a mean-0 Gaussian Process using  $(\sigma,\omega)=(1,0.01)$ 
  - $-\,$  smoothness specification is same as ground truth

# **Clustering bifurcation behavior**



- prior for global atoms H is a mean-0 Gaussian Process using  $(\sigma,\omega)=(1,0.05)$
- other prior specifications are the same as previous data example

# Inference of global clusters (tracks)



Left: Number of global clusters is 5 with > 90%Right: (.05,.95) credible intervals of global cluster estimates

# **Global clusters of bifurcating behavior**



Left: Number of global clusters is 3 with > 90%Right: (.05,.95) credible intervals of global cluster estimates

# **Evolution of local clusters**

Posterior distribution of the number of local clusters associating with different group index (location) u.



# **Effects of vague prior for** H



Global (functional) clusters cannot be identified unless sufficiently smooth, even as the local clusters are identified reasonably well.

# **Clustering progesterone hormone**



- Hormone levels collected from a number of women
- Subject ids are withheld, so hormone trajectories are *not* given
- Comparison to hybrid DP approach (Petrone et al, 2009), which does use the trajectorial information

# **Temporally varying number of local clusters**



#### Number of global clusters:



## **Estimates of global clusters**



Left: Clustering results using the nHDP mixture model Right: The hybrid-DP approach of Petrone, Guindani and Gelfand (2009)

Black solids are sample mean curves of the contraceptive group and nocontraceptive group

### Pairwise comparison of hormone curves



Each entry in the heatmap depicts the posterior probability that the two curves share the same *local* clusters, averaged over the last 4 days in the menstrual cycle

nHDP approach (Left panel) provides sharper clusterings than the hybrid DP approach (Right panel)

### Modeling of temperature/depth in Atlantic ocean



- data are (temp, depth) samples collected at 4 different locations at different times
- functional clustering within each location
- functional comparisons (ANOVA) between locations

# Posterior distribution of global atoms



# Number of functional clusters



# Posterior mean/std of mixing proportions

of the dominant functional clusters for each group of data

| group $(u)$ | ${m \pi}_{u1}$ | ${m \pi}_{u2}$ | ${m \pi}_{u3}$ | ${m \pi}_{u4}$ | ${m \pi}_{u5}$ |
|-------------|----------------|----------------|----------------|----------------|----------------|
| 1           | 0.98 (0.01)    | 0.00 (0)       | 0.00 (0)       | 0.0022 (0)     | 0.00 (0)       |
| 2           | 0.07 (0.20)    | 0.70 (0.16)    | 0.08 (0.05)    | 0.06 (0.03)    | 0.01 (0.02)    |
| 3           | 0.08 (0.24)    | 0.01 (0.02)    | 0.01 (0.02)    | 0.01 (0.02)    | 0.86 (0.24)    |
| 4           | 0.07 (0.23)    | 0.01 (0.02)    | 0.01 (0.03)    | 0.01 (0.02)    | 0.86 (0.22)    |



### Varying number of local clusters with depth



Posterior mean (solid) and (.05,.95) credible intervals (dash)

# **Identifiability and posterior consistency**

- motivation: under what conditions can we ensure identifiability, posterior consistency, and convergence rates of (latent) functional clusters on basis of non-functional data?
- two layers of complexity:
  - use of Gaussian process to introduce smoothness of functional clusters
  - use of Dirichlet process to capture heterogeneity via multiple clusters
- recent work on posterior consistency: Barron, Schervish & Wasserman;
  Shen & Wasserman; Ghosal & van der Vaart, Walker; Ghosal, Ghosh,
  & R. V. Ramamoorthi; Lijoi, Walker & Prunster;

# Posterior consistency and identifiability in infinite mixture

- suppose that G is a discrete mixing measure on space  $\Theta$
- conbining G with density of likelihood f(·|θ) to obtain a mixture distribution:

$$p_G(x) = \int f(x|\theta) dG(\theta).$$

- data  $X_1, \ldots, X_n$  are iid from  $p_{G^*}(\cdot)$  for some "true" mixing measure  $G^*$
- endow G with a prior  $\Pi$  (such as Dirichlet process)
- question: how fast does the posterior distribution of G:

$$\Pi(G|X_1,\ldots,X_n)$$

shrink in the neighborhood of true  $G^*$ , as n tends to infinity?

#### Wasserstein metric for discrete measures

- let  $\rho$  be a metric of space  $\Theta$ 

• 
$$G = \sum_{i=1}^{k} p_i \delta_{\theta_i}$$
 and  $G' = \sum_{j=1}^{k'} p'_j \delta_{\theta'_j}$ 

• Wasserstein metric  $d_{\rho}(G, G')$  is defined as:

$$d_{\rho}(G,G') = \inf_{\boldsymbol{q}} \sum_{i,j} q_{ij} \rho(\theta_i, \theta'_j),$$

where q is matrix of joint probabilities on (i, j) such that  $\sum_j q_{ij} = p_i$ and  $\sum_i q_{ij} = p'_j$ .

#### Wasserstein metric for discrete measures

- let  $\rho$  be a metric of space  $\Theta$ 

• 
$$G = \sum_{i=1}^{k} p_i \delta_{\theta_i}$$
 and  $G' = \sum_{j=1}^{k'} p'_j \delta_{\theta'_j}$ 

• Wasserstein metric  $d_{\rho}(G, G')$  is defined as:

$$d_{\rho}(G, G') = \inf_{\boldsymbol{q}} \sum_{i,j} q_{ij} \rho(\theta_i, \theta'_j),$$

where q is matrix of joint probabilities on (i, j) such that  $\sum_j q_{ij} = p_i$ and  $\sum_i q_{ij} = p'_j$ .

- if  $\Theta = \mathbb{R}^d$ ,  $\rho$  is usual Euclidean metric
- if  $\Theta = l_\infty[0,1]$  a Banach space of bounded functions on  $[0,1],~\rho$  is the uniform norm

### **Theorem 1: Finite mixtures**

(Nguyen, 2011)

If Θ = ℝ<sup>d</sup> and f(·|θ) belongs to a family satisfying suitable identifiability conditions. Assume there are k < ∞ mixture components, k known. Then, there is a constant M > 0 such that:

$$\Pi(d_{\rho}(G, G^*) > Mn^{-1/4} | X_1, \dots, X_n) \to 0$$

in  $P_{G^*}$ -probability.

- this generalizes a result of Chen (1995)

• If  $\Theta = l_{\infty}([0,1])$ , G is distributed by mixture of k Gaussian sample paths with smoothness  $\gamma$ , while true  $G^*$  is supported by elements of  $\Theta$  with smoothness  $\gamma^*$ . Then,

$$\Pi(d_{\rho}(G,G^*) > Mn^{-\frac{\gamma \wedge \gamma^*}{2(2\gamma \wedge \gamma^*+1)}} | X_1, \dots, X_n) \to 0$$

in  $P_{G^*}$ -probability.

# **Theorem 2: Infinite mixtures with Dirichlet prior**

(Nguyen, 2011)

Assume that the number of mixture components is unknown.

• If  $\Theta = \mathbb{R}^d$  and  $f(\cdot|\theta)$  belongs to a family of ordinary smooth density functions with smoothness  $\beta > 0$ . Then, for any  $\delta > 0$ , there is a constant M > 0 such that:

$$\Pi(d_{\rho}(G, G^*) > M(\log n/n)^{\frac{2}{(d+2)(4+(2\beta+1)d)+\delta}} | X_1, \dots, X_n) \to 0$$

in  $P_{G^*}$ -probability.

• If  $\Theta = \mathbb{R}^d$  and  $f(\cdot|\theta)$  belongs to a family of supersmooth density functions with smoothness  $\beta > 0$ . Then, there is a constant M > 0 such that:

$$\Pi(d_{\rho}(G, G^*) > M(\log n)^{-1/\beta} | X_1, \dots, X_n) \to 0$$

in  $P_{G^*}$ -probability.

# Open questions remain ...

- Posterior consistency for Dirichlet process mixture using Gaussian process as centering measure
- Posterior consistency for our nested HDP model (for which functional data are not available)

# Summary

- inference of global/functional clusters from local/non-functional data
- the framework of *nested hierarchy* of Dirichlet processes
- applicablity to a range of problems and data sets
- initial results towards full theoretical analysis (i.e., posterior consistency) for nonparametric Bayesian models of this type
- relevant papers
  - Nguyen, X. Inference of global clusters from locally distributed data.
    Bayesian Analysis 5(4), 817–846, 2010.
  - Nguyen, X. Convergence of latent mixing measures in nonparametric and mixture models. Tech Report 527, Univ of Michigan Statistics, 2011.