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Talk outline

• Learning functional relationships, but functional data are unavailable

– functional clustering

– differs from (non-linear) regression

– “co-clustering”, involving co-varying mixture distributions

• Hierarchical and nonparametric Bayesian method

• Intuitive computational algorithms for statistical inference

– Markov Chain Monte Carlo sampling for co-clustering

• Asymptotic results for identifiability and consistency of latent mixing

measures
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Temperature vs depth pattern in Atlantic ocean
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• data are (temp, depth) samples collected at 4 different locations at

different times in span of few days

• heterogeneous functional clustering patterns within each location

– extracting functional clusters

– interpolation

– comparisons between groups associated with different locations
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Simpler example:

Problem of tracking (connecting the dots)
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• data are positions Y ∈ R
d of multiple objects moving in a geographical

area (positions Y co-vary with time u)

• objects move in local clusters (might switch over time)

– we are not interested in the movement of each individual object; rather

we are interested in the paths over which the local clusters evolve

• moving paths are functions of time
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Example: Functional clustering

without functional data
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• data are daily hormone levels from a population sample

• hormone levels from different individuals for different days u

• interested in global/functional clusters for a typical individual in the

population
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A simple ad hoc computational heuristic
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• this is viewed as a “co-clustering” problem

• collection of co-varying mixture distributions indexed by covariate u

• a heuristic:

– solve each clustering problem individually

– mix-match clusters from different mixture distributions
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Our approach

• proposed a hierarchical nonparametric model that links “functional/global

clusters” to “non-functional/local” data
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• several modeling ingredients

– assume smooth functional clusters using Gaussian process

– use Dirichlet process mixtures to handle unknown number of clusters

– probabilistic linkage achieved via conditional hierarchy
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Background I: Dirichlet process mixtures

• Dirichlet process (DP) mixtures are natural for handling unknown num-

ber of mixing components

– mixing distribution G is random and distributed according to a DP
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• Dirichlet process (DP) mixtures are natural for handling unknown num-

ber of mixing components

– mixing distribution G is random and distributed according to a DP

• A Dirichlet process DP(α0, G0) defines a distribution on (random) prob-

ability measures

– α0 concentration parameter, G0 centering distribution
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Background I: Dirichlet process mixtures

• Dirichlet process (DP) mixtures are natural for handling unknown num-

ber of mixing components

– mixing distribution G is random and distributed according to a DP

• A Dirichlet process DP(α0, G0) defines a distribution on (random) prob-

ability measures

– α0 concentration parameter, G0 centering distribution

• A random draw G ∼ DP(α0, G0) admits the “stick-breaking” represen-

tation w.p.1:

G =

∞
∑

k=1

πkδφk
,

– δφk
denotes an atomic distribution concentrated at φk, φk

iid
∼ G0

– stick-breaking weights πk are random and depend only on α0
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Background II: Dependent Dirichlet processes

• DDPs modeling framework advocated by MacEachern (1999)

• modeling a collection of Dirichlet processes {Gu}: via stick-breaking

representation:

Gu =

∞
∑

k=1

πukδφuk

– for each u ∈ V : πuk’s are called “stick” variables; φuk are “atoms”

– for each k: πk = (πuk)u∈V and φk = (φuk)u∈V are stochastic processes

indexed by u ∈ V

• various extensions by Muller et al (2004), DeIorio et al (2004), Ishwaran &

James (2001), Griffin & Steel (2006), Dunson & Park (2008)

• extension to functional data analysis setting, e.g., Duan et al (2007), Petrone

et al, (2009), Rodriguez et al (2009), Dunson (2008)

• our problem presents some modeling challenges: nonparametric functional

patterns without functional data
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Background III: Hierarchical Dirichlet Processes

• HDPs modeling framework due to Teh, Jordan, Blei, Beal (JASA, 2006)

• hierarchy of recursively specified Dirichlet processes:

Gu|α0, G0 ∼ DP(α0, G0)

G0|γ, H ∼ DP(γ, H)

• note that Gu, G0 and H are probability measures on the same space of

atoms

• but they are specified in different levels in the model hierarchy
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Proposed approach

• A multi-level nonparametric Bayesian modeling approach:

– we need a collection of dependent DP’s (as in DDPs)

– also different Dirichlet processes in different levels (as in HDPs)

• key features:

– a Dirichlet process for modeling functional atoms

– Dirichlet processes for modeling local atoms (for each u)

– global and local atoms are related as different levels in the conditional

probability hierarchy

– a nested hierarchy of Dirichlet processes ( generalizing the HDP)
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Some notations

• Data are (yui), indexed by u ∈ V , and i = 1, . . . , nu

• For each u ∈ V , observations (yui)
nu

i=1
are draws from a mixture distri-

bution with mixing measure Gu supported by θu’s, where θu ∈ Θu

– e.g., for mixture of gaussians, θu’s are the means
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Some notations

• Data are (yui), indexed by u ∈ V , and i = 1, . . . , nu

• For each u ∈ V , observations (yui)
nu

i=1
are draws from a mixture distri-

bution with mixing measure Gu supported by θu’s, where θu ∈ Θu

– e.g., for mixture of gaussians, θu’s are the means

• Define product space Θ =
∏

u∈V Θu

• A global (functional) atom φ := (φu)u∈V is an element in Θ

• φ is random and distributed by mixing measure Q, which varies around

a smooth stochastic process H (e.g., Gaussian process)
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Full model specification (nested HDP)

(Nguyen, 2010)

• observations from each group indexed by u are drawn independently

from a mixture model:

yui|θui
iid
∼ F (·|θui)

θui|Gu
iid
∼ Gu

for any u ∈ V ; i = 1, . . . , nu
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Full model specification (nested HDP)

(Nguyen, 2010)

• observations from each group indexed by u are drawn independently

from a mixture model:

yui|θui
iid
∼ F (·|θui)

θui|Gu
iid
∼ Gu

for any u ∈ V ; i = 1, . . . , nu

• probability distribution H, which specifies centering distribution for

global clusters, is taken to be a Gaussian process on Θ

• mixing measures Gu are given a hierarchy of DPs:

Q|γ, H ∼ DP(γ, H),

Gu|αu, Q
indep
∼ DP(αu, Qu), for all u ∈ V
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Nested hierarchy of Dirichlet processes

H Hu Hv Hw

Q Qu Qv Qw

Gu Gv Gw

θui θvi θwi
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Statistical dependence among Gu’s

• the dependence confered by centering distribution H entails the depen-

dence among local distributions Gu’s

• suppose that H is a Gaussian process, φ = (φu : u ∈ V ) ∼ N(µ, Σ),

where Σ takes standard exponential form

• for any measurable sets A and B:
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Statistical dependence among Gu’s

• the dependence confered by centering distribution H entails the depen-

dence among local distributions Gu’s

• suppose that H is a Gaussian process, φ = (φu : u ∈ V ) ∼ N(µ, Σ),

where Σ takes standard exponential form

• for any measurable sets A and B:

Corr(Gu(A), Gv(B)) →

{

0 as ‖u − v‖ → ∞

1 if A = B, ‖u − v‖ → 0
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Statistical dependence among Gu’s

• the dependence confered by centering distribution H entails the depen-

dence among local distributions Gu’s

• suppose that H is a Gaussian process, φ = (φu : u ∈ V ) ∼ N(µ, Σ),

where Σ takes standard exponential form

• for any measurable sets A and B:

Corr(Gu(A), Gv(B)) →

{

0 as ‖u − v‖ → ∞

1 if A = B, ‖u − v‖ → 0

• relations between the two levels in the Bayesian hierarchy: the correla-

tion ratio

Corr(Gu(A), Gv(B))/Corr(Qu(A), Qv(B))

decreases from 1 to 0 as γ ranges from 0 to ∞
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Stick-breaking representation

• Mixing measure Q for global clusters:

Q =

∞
∑

k=1

βkδφk

where φk = (φuk : u ∈ V ) are independent draws from H, and β =

(βk)∞k=1
∼ GEM(γ).

• Qu is the induced marginal of Q at u, while mixing measure Gu varies

around the Qu, and provides the support for local clusters:

Qu =
∞
∑

k=1

βkδφuk
,

Gu =

∞
∑

k=1

πukδφuk
.
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Pólya-urn characterization

• Sampling of local atoms distributed by Gu (which is integrated out):

θui|θu1, . . . , θu,i−1, αu, Q ∼

mu
∑

t=1

nut

i − 1 + αu
δψut

+
αu

i − 1 + αu
Qu.

– Qu is the induced marginal of distribution Q
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Pólya-urn characterization

• Sampling of local atoms distributed by Gu (which is integrated out):

θui|θu1, . . . , θu,i−1, αu, Q ∼

mu
∑

t=1

nut

i − 1 + αu
δψut

+
αu

i − 1 + αu
Qu.

– Qu is the induced marginal of distribution Q

• Sampling of global atoms distributed by Q (which is integrated out):

ψt|{ψl}l 6=t, γ, H ∼

K
∑

k=1

qk

q· + γ
δφk

+
γ

q· + γ
H.
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Posterior inference

• Nested HDP is amenable to Gibbs sampling

– sampling local atoms by integrating out Gu’s

– sampling global atoms by integrating out Q, and centering measure

H

• Conditional distribution of DP-distributed measure is again a Dirichlet

process

• Computational speedup is achieved by replacing the spatial process H

by a graphical model

– inference for tree-structured or chain-structure model requires time

linear in number of covariate levels u
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Recall: simple computational heuristic
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• viewed as a “co-clustering” problem, one for each u

• collection of co-varying mixture distributions indexed by covariate u

• a heuristic:

– solve each clustering problem individually (allowing for sampling of

number of clusters)

– mix-match clusters from mixture distributions across different u’s
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Exploiting stick-breaking respresentation

Construct a Markov chain on space of stick-breaking representations (z, q, β, φ).

Sampling β: β|q ∼ Dir(q1, . . . , qK , γ).

Sampling cluster labels z:

p(zui = k|z−ui, q, β, φk, Data) =







(n−ui
u·k + αuβk)F (yui|φuk) if k used prev.

αuβnewfyui

uknew(yui) if k = knew.

Sampling q: qk =
∑

u∈V muk where:

p(muk = m|z, m−uk, β) =
Γ(αuβk)

Γ(αuβk + nu·k)
s(nu·k, m)(αuβk)m.

Sampling global/functional clusters φ:

p(φk|z, Data) ∝ H(φk)
∏

ui:zui=k

F (yui|φuk) for each k = 1, . . . , K.
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Tracking example
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Prior specification:

• concentration parameters γ ∼ Gamma(5, .1) and α ∼ Gamma(20, 20)

• variance σ2

ǫ of F (·) is given prior InvGamma(5, 1)

• prior for global atoms H is a mean-0 Gaussian Process using (σ, ω) =

(1, 0.01)

– smoothness specification is same as ground truth
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Clustering bifurcation behavior
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• prior for global atoms H is a mean-0 Gaussian Process using (σ, ω) =

(1, 0.05)

• other prior specifications are the same as previous data example
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Inference of global clusters (tracks)
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Left: Number of global clusters is 5 with > 90%

Right: (.05,.95) credible intervals of global cluster estimates
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Global clusters of bifurcating behavior
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Left: Number of global clusters is 3 with > 90%

Right: (.05,.95) credible intervals of global cluster estimates
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Evolution of local clusters

Posterior distribution of the number of local clusters associating with

different group index (location) u.
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Effects of vague prior for H
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Global (functional) clusters cannot be identified unless sufficiently smooth,

even as the local clusters are identified reasonably well.
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Clustering progesterone hormone
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• Hormone levels collected from a number of women

• Subject ids are withheld, so hormone trajectories are not given

• Comparison to hybrid DP approach (Petrone et al, 2009), which does

use the trajectorial information
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Temporally varying number of local clusters

1 2 3
0

10

20

30

40

50

60

70
Num of local clusters at loc=5

1 2 3
0

10

20

30

40

50

60

70

80
Num of local clusters at loc=18

1 2 3
0

20

40

60

80

100
Num of local clusters at loc=22

1 2 3
0

20

40

60

80

100
Num of local clusters at loc=24

Number of global clusters:

1 2 3
0

10

20

30

40

50

60

70

80
Num of global clusters

28



Estimates of global clusters
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Left: Clustering results using the nHDP mixture model

Right: The hybrid-DP approach of Petrone, Guindani and Gelfand (2009)

Black solids are sample mean curves of the contraceptive group and no-

contraceptive group
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Pairwise comparison of hormone curves
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Each entry in the heatmap depicts the posterior probability that the two

curves share the same local clusters, averaged over the last 4 days in the

menstrual cycle

nHDP approach (Left panel) provides sharper clusterings than the hybrid

DP approach (Right panel)
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Modeling of temperature/depth in Atlantic ocean
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• data are (temp, depth) samples collected at 4 different locations at

different times

• functional clustering within each location

• functional comparisons (ANOVA) between locations

31



Posterior distribution of global atoms
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Number of functional clusters
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Posterior mean/std of mixing proportions

of the dominant functional clusters for each group of data

group (u) πu1 πu2 πu3 πu4 πu5

1 0.98 (0.01) 0.00 (0) 0.00 (0) 0.0022 (0) 0.00 (0)

2 0.07 (0.20) 0.70 (0.16) 0.08 (0.05) 0.06 (0.03) 0.01 (0.02)

3 0.08 (0.24) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.86 (0.24)

4 0.07 (0.23) 0.01 (0.02) 0.01 (0.03) 0.01 (0.02) 0.86 (0.22)
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Varying number of local clusters with depth
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Posterior mean (solid) and (.05,.95) credible intervals (dash)
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Identifiability and posterior consistency

• motivation: under what conditions can we ensure identifiability, poste-

rior consistency, and convergence rates of (latent) functional clusters on

basis of non-functional data?

• two layers of complexity:

– use of Gaussian process to introduce smoothness

of functional clusters

– use of Dirichlet process to capture heterogeneity

via multiple clusters

• recent work on posterior consistency: Barron, Schervish & Wasserman;

Shen & Wasserman; Ghosal & van der Vaart, Walker; Ghosal, Ghosh,

& R. V. Ramamoorthi; Lijoi, Walker & Prunster;
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Posterior consistency and identifiability

in infinite mixture

• suppose that G is a discrete mixing measure on space Θ

• conbining G with density of likelihood f(·|θ) to obtain a mixture distri-

bution:

pG(x) =

∫

f(x|θ)dG(θ).

• data X1, . . . , Xn are iid from pG∗(·) for some “true” mixing measure

G∗

• endow G with a prior Π (such as Dirichlet process)

• question: how fast does the posterior distribution of G:

Π(G|X1, . . . , Xn)

shrink in the neighborhood of true G∗, as n tends to infinity?
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Wasserstein metric for discrete measures

• let ρ be a metric of space Θ

• G =
∑k

i=1
piδθi

and G′ =
∑k′

j=1
p′jδθ′

j

• Wasserstein metric dρ(G, G′) is defined as:

dρ(G, G′) = inf
q

∑

i,j

qijρ(θi, θ
′
j),

where q is matrix of joint probabilities on (i, j) such that
∑

j qij = pi

and
∑

i qij = p′j .
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Wasserstein metric for discrete measures

• let ρ be a metric of space Θ

• G =
∑k

i=1
piδθi

and G′ =
∑k′

j=1
p′jδθ′

j

• Wasserstein metric dρ(G, G′) is defined as:

dρ(G, G′) = inf
q

∑

i,j

qijρ(θi, θ
′
j),

where q is matrix of joint probabilities on (i, j) such that
∑

j qij = pi

and
∑

i qij = p′j .

• if Θ = R
d, ρ is usual Euclidean metric

• if Θ = l∞[0, 1] a Banach space of bounded functions on [0, 1], ρ is the

uniform norm
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Theorem 1: Finite mixtures

(Nguyen, 2011)

• If Θ = R
d and f(·|θ) belongs to a family satisfying suitable identifiability

conditions. Assume there are k < ∞ mixture components, k known.

Then, there is a constant M > 0 such that:

Π(dρ(G, G∗) > Mn−1/4|X1, . . . , Xn) → 0

in PG∗ -probability.

– this generalizes a result of Chen (1995)

• If Θ = l∞([0, 1]), G is distributed by mixture of k Gaussian sample

paths with smoothness γ, while true G∗ is supported by elements of Θ

with smoothness γ∗. Then,

Π(dρ(G, G∗) > Mn− γ∧γ∗

2(2γ∧γ∗+1) |X1, . . . , Xn) → 0

in PG∗ -probability.
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Theorem 2: Infinite mixtures with Dirichlet prior

(Nguyen, 2011)

Assume that the number of mixture components is unknown.

• If Θ = R
d and f(·|θ) belongs to a family of ordinary smooth density

functions with smoothness β > 0. Then, for any δ > 0, there is a

constant M > 0 such that:

Π(dρ(G, G∗) > M(log n/n)
2

(d+2)(4+(2β+1)d)+δ |X1, . . . , Xn) → 0

in PG∗ -probability.

• If Θ = R
d and f(·|θ) belongs to a family of supersmooth density func-

tions with smoothness β > 0. Then, there is a constant M > 0 such

that:

Π(dρ(G, G∗) > M(log n)−1/β |X1, . . . , Xn) → 0

in PG∗ -probability.
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Open questions remain ...

• Posterior consistency for Dirichlet process mixture using Gaussian pro-

cess as centering measure

• Posterior consistency for our nested HDP model (for which functional

data are not available)
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Summary

• inference of global/functional clusters from local/non-functional data

• the framework of nested hierarchy of Dirichlet processes

• applicablity to a range of problems and data sets

• initial results towards full theoretical analysis (i.e., posterior consistency)

for nonparametric Bayesian models of this type

• relevant papers

– Nguyen, X. Inference of global clusters from locally distributed data.

Bayesian Analysis 5(4), 817–846, 2010.

– Nguyen, X. Convergence of latent mixing measures in nonparametric

and mixture models. Tech Report 527, Univ of Michigan Statistics,

2011.
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