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Talk outline

Learning functional relationships, but functional data are unavailable
— functional clustering
— differs from (non-linear) regression

— “co-clustering”, involving co-varying mixture distributions

Hierarchical and nonparametric Bayesian method

Intuitive computational algorithms for statistical inference

— Markov Chain Monte Carlo sampling for co-clustering

Asymptotic results for identifiability and consistency of latent mixing
measures



Temperature vs depth pattern in Atlantic ocean
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e data are (temp, depth) samples collected at 4 different locations at
different times in span of few days

e heterogeneous functional clustering patterns within each location
— extracting functional clusters

— interpolation

— comparisons between groups associated with different locations



Simpler example:
Problem of tracking (connecting the dots)

Co-varying mixture distributions

Covariate u

e data are positions Y € RY of multiple objects moving in a geographical
area (positions Y co-vary with time u)

e objects move in local clusters (might switch over time)

— we are not interested in the movement of each individual object; rather
we are interested in the paths over which the local clusters evolve

e moving paths are functions of time



Example: Functional clustering
without functional data

Co-varying mixture distributions
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Covariate u

e data are daily hormone levels from a population sample
e hormone levels from different individuals for different days u

e interested in global/functional clusters for a typical individual in the

population



A simple ad hoc computational heuristic

Co-varying mixture distributions

Covariate u

e this is viewed as a “co-clustering” problem
e collection of co-varying mixture distributions indexed by covariate u

e a heuristic:
— solve each clustering problem individually

— mix-match clusters from different mixture distributions



Our approach

e proposed a hierarchical nonparametric model that links “functional /global
clusters” to “non-functional/local” data

Co-varying mixture distributions

Covariate u

e several modeling ingredients
— assume smooth functional clusters using Gaussian process
— use Dirichlet process mixtures to handle unknown number of clusters

— probabilistic linkage achieved via conditional hierarchy



Background I: Dirichlet process mixtures

e Dirichlet process (DP) mixtures are natural for handling unknown num-
ber of mixing components

— mixing distribution GG is random and distributed according to a DP
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Background I: Dirichlet process mixtures

e Dirichlet process (DP) mixtures are natural for handling unknown num-

ber of mixing components

— mixing distribution GG is random and distributed according to a DP

e A Dirichlet process DP(ag, G) defines a distribution on (random) prob-
ability measures

— g concentration parameter, GGo centering distribution

e A random draw G ~ DP(ag, Gy) admits the “stick-breaking” represen-
tation w.p.1:

oo
G = Z 7Tk5¢k,
k=1
11d

— 04, denotes an atomic distribution concentrated at ¢, ¢r ~ Go

— stick-breaking weights 7, are random and depend only on ap

8-b



Background 1I: Dependent Dirichlet processes
e DDPs modeling framework advocated by MacEachern (1999)

e modeling a collection of Dirichlet processes {G,}: via stick-breaking
representation:

O
Gu= ) Turlp,
k=1

— for each uw € V': myr's are called “stick” variables; ¢, are “atoms”

— for each k: 7 = (muk)uev and ¢, = (duk)uecy are stochastic processes
indexed by u € V

e various extensions by Muller et al (2004), Delorio et al (2004), Ishwaran &
James (2001), Griffin & Steel (2006), Dunson & Park (2008)

e extension to functional data analysis setting, e.g., Duan et al (2007), Petrone
et al, (2009), Rodriguez et al (2009), Dunson (2008)

e our problem presents some modeling challenges: nonparametric functional

patterns without functional data



Background III: Hierarchical Dirichlet Processes

e HDPs modeling framework due to Teh, Jordan, Blei, Beal (JASA, 2006)
e hierarchy of recursively specified Dirichlet processes:

Gy, Go ~ DP(ag, Go)
Golvy, H ~ DP(v, H)

e note that G, Gy and H are probability measures on the same space of

atoms

e but they are specified in different levels in the model hierarchy
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Proposed approach

e A multi-level nonparametric Bayesian modeling approach:
— we need a collection of dependent DP's (as in DDPs)

— also different Dirichlet processes in different levels (as in HDPs)

o key features:
— a Dirichlet process for modeling functional atoms
— Dirichlet processes for modeling local atoms (for each )

— global and local atoms are related as different levels in the conditional

probability hierarchy
— a nested hierarchy of Dirichlet processes ( generalizing the HDP)
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Some notations

e Data are (yy;), indexed by u € V, and it =1,...,n,

Ny

e For each u € V, observations (y.;);.“, are draws from a mixture distri-

bution with mixing measure (,, supported by 6,,'s, where 6, € ©,,

— e.g., for mixture of gaussians, 6,'s are the means
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Some notations

Data are (yy;), indexed by u € V, and i = 1,...,ny,

For each w € V, observations (y,;).-*; are draws from a mixture distri-

)

bution with mixing measure (,, supported by 6,,'s, where 6, € ©,,

— e.g., for mixture of gaussians, 6,'s are the means

Define product space ® = [[, .y Ou

A global (functional) atom ¢ := (¢ )ucy is an element in ©

¢ is random and distributed by mixing measure (), which varies around
a smooth stochastic process H (e.g., Gaussian process)
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Full model specification (nested HDP)

(Nguyen, 2010)

e observations from each group indexed by u are drawn independently
from a mixture model:

11d

foranyueV;1=1,...,n,
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Full model specification (nested HDP)

(Nguyen, 2010)

e observations from each group indexed by u are drawn independently

from a mixture model:
iid

foranyueV;1=1,...,n,

e probability distribution H, which specifies centering distribution for
global clusters, is taken to be a Gaussian process on ©

e mixing measures (, are given a hierarchy of DPs:

Qly,H ~ DP(v,H),
Gulaw, @ P DP(ay,Q.), for allu € V
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Nested hierarchy of Dirichlet processes
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Statistical dependence among G, ’s

e the dependence confered by centering distribution H entails the depen-
dence among local distributions G,'s

e suppose that H is a Gaussian process, ¢ = (¢, : u € V) ~ N(, %),
where X takes standard exponential form

e for any measurable sets A and B:
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Statistical dependence among G, ’s

the dependence confered by centering distribution H entails the depen-
dence among local distributions G,'s

suppose that H is a Gaussian process, ¢ = (¢, : u € V) ~ N(u,X),
where X takes standard exponential form

for any measurable sets A and B:

0 as ||[u —v|| — o0

Corr(Gy(A),G,(B)) —>{
1 ifA=B, |lu—v||—0

relations between the two levels in the Bayesian hierarchy: the correla-
tion ratio

Corr(Gu(A), Gu(B))/Corr(Qu(A), Qu(B))

decreases from 1 to 0 as v ranges from 0 to oo
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Stick-breaking representation

e Mixing measure () for global clusters:

Q=) By,
k=1

where ¢, = (¢ur : uw € V) are independent draws from H, and 3 =
(Bk)rz1 ~ GEM(7).

e (), is the induced marginal of () at u, while mixing measure GG,, varies
around the (), and provides the support for local clusters:

Qu=Y Brls,..
k=1

©.)
Gu = Z 7TUI€5¢uk°
k=1
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Poélya-urn characterization

e Sampling of local atoms distributed by G, (which is integrated out):

o Uy
eui|0ula---79u,i—17QU7QNZi_ i 0 + - Qu

— (4 is the induced marginal of distribution @)
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Poélya-urn characterization

e Sampling of local atoms distributed by G, (which is integrated out):

7y Qyy
eui|0ula- .. Hu,i—laoé?mQ ~ Z i _ i 0 + - Qu

— (4 is the induced marginal of distribution @)

e Sampling of global atoms distributed by @ (which is integrated out):

g
q. + 7

Y {1zt v, H ~ Z

q+7
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Posterior inference

e Nested HDP is amenable to Gibbs sampling
— sampling local atoms by integrating out G,,'s

— sampling global atoms by integrating out (), and centering measure
H

e Conditional distribution of DP-distributed measure is again a Dirichlet
process

e Computational speedup is achieved by replacing the spatial process H
by a graphical model

— inference for tree-structured or chain-structure model requires time
linear in number of covariate levels u

18



Recall: simple computational heuristic

Co-varying mixture distributions

=
=,
=
S

Covariate u

e viewed as a “co-clustering” problem, one for each u
e collection of co-varying mixture distributions indexed by covariate u

e a heuristic:

— solve each clustering problem individually (allowing for sampling of

number of clusters)

— mix-match clusters from mixture distributions across different u's
19



Exploiting stick-breaking respresentation

Construct a Markov chain on space of stick-breaking representations (2, g, 3, ¢).

Sampling 3: Blq ~ Dir(q1,...,qx,7).

Sampling cluster labels z:

(1, _w + @y Bk ) F (Yui|dur)  if k used prev.

p(zuwi = k|27, q, B, ¢, Data) = |
O‘uﬁnewfyknew (yuz) lf k' — knew.

Sampling q: qx = ), Muk Where:

F(O‘uﬁk)

p(mur = m|z,m™"*, @) =

) S(nu-lm m) (auﬁk)m

Sampling global /functional clusters ¢:

(qbk‘z Data) X H qbk H F yuz|¢uk> for each k = 1 K

UL: 2=k

20



Tracking example

Co-varying mixture distributions

Covariate u

Prior specification:
e concentration parameters v ~ Gamma(5,.1) and a ~ Gamma(20, 20)
e variance 0% of F(-) is given prior InvGamma(5, 1)

e prior for global atoms H is a mean-0 Gaussian Process using (o,w) =
(1,0.01)

— smoothness specification is same as ground truth
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Clustering bifurcation behavior

Co-varying mixture distributions
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Covariate u

e prior for global atoms H is a mean-0 Gaussian Process using (o,w) =
(1,0.05)

e other prior specifications are the same as previous data example
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Inference of global clusters (tracks)

Posterior dist of global/functional clusters

Num of global clusters
160 ; . .

1401
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80r

60

40r

201

Covariate u

Left: Number of global clusters is 5 with > 90%
Right: (.05,.95) credible intervals of global cluster estimates
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Global clusters of bifurcating behavior

Posterior dist of global/functional clusters

Num of global clusters
150 ;

1001

50

Covariate u

Left: Number of global clusters is 3 with > 90%
Right: (.05,.95) credible intervals of global cluster estimates
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Evolution of local clusters

Posterior distribution of the number of local clusters associating with
different group index (location) w.

Num of local clusters at loc=1

Num of local clusters at loc=3
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Num of local clusters at loc=8
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Effects of vague prior for H

Posterior distributions of global cluster centers

Num of global clusters >

60

Locations u

Global (functional) clusters cannot be identified unless sufficiently smooth,
even as the local clusters are identified reasonably well.



Clustering progesterone hormone

Progresterone hormone curves
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Locations u

e Hormone levels collected from a number of women

so hormone trajectories are not given

e Subject ids are withheld,

e Comparison to hybrid DP approach (Petrone et al, 2009), which does

use the trajectorial information
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Temporally varying number of local clusters

Num of local clusters at loc=5 Num of local clusters at loc=18
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Estimates of global clusters

Posterior distributions of global cluster centers

0 5 10 15 20
Locations u

25

Posterior distributions of global cluster centers

0 5 10 15 20 25
Locations u

Left: Clustering results using the nHDP mixture model
Right: The hybrid-DP approach of Petrone, Guindani and Gelfand (2009)

Black solids are sample mean curves of the contraceptive group and no-

contraceptive group
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Pairwise comparison of hormone curves

10 20 30 40 50 60

Each entry in the heatmap depicts the posterior probability that the two
curves share the same local clusters, averaged over the last 4 days in the
menstrual cycle

nHDP approach (Left panel) provides sharper clusterings than the hybrid
DP approach (Right panel)
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Modeling of temperature/depth in Atlantic ocean
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e data are (temp, depth) samples collected at 4 different locations at

different times
e functional clustering within each location

e functional comparisons (ANOVA) between locations



Posterior distribution of global atoms

Mean/credible intervals of functional mean curves

0 100 200 300 400 500
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Number of functional clusters

2000¢

15007

10001

5007

All groups

10
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Posterior mean/std of mixing proportions

of the dominant functional clusters for each group of data

group (u) Tl w2 T u3 Tl T us5
1 0.98 (0.01) 0.00 (0) 0.00 (0) 0.0022 (0) 0.00 (0)
2 0.07 (0.20) 0.70 (0.16) 0.08 (0.05) 0.06 (0.03) 0.01 (0.02)
3 0.08 (0.24) 0.01 (0.02) 0.01 (0.02) 0.01 (0.02) 0.86 (0.24)
4 0.07 (0.23) 0.01 (0.02) 0.01 (0.03) 0.01 (0.02) 0.86 (0.22)

100 200

300 400 500
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Varying number of local clusters with depth

Groupl Group2

num of local clusters
o = N w S a1 o ~ [ee]

num of local clusters
o = N w » [$)]) o ~ [ee]
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Posterior mean (solid) and (.05,.95) credible intervals (dash)
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Identifiability and posterior consistency

e motivation: under what conditions can we ensure identifiability, poste-
rior consistency, and convergence rates of (latent) functional clusters on
basis of non-functional data?

e two layers of complexity:

— use of Gaussian process to introduce smoothness
of functional clusters

— use of Dirichlet process to capture heterogeneity
via multiple clusters

e recent work on posterior consistency: Barron, Schervish & Wasserman;
Shen & Wasserman: Ghosal & van der Vaart, Walker: Ghosal, Ghosh,
& R. V. Ramamoorthi; Lijoi, Walker & Prunster;
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Posterior consistency and identifiability

in infinite mixture

suppose that GG is a discrete mixing measure on space ©

conbining G with density of likelihood f(:|#) to obtain a mixture distri-

bution:

/f x|0)dG (0
data X3,..., X, are iid from pg«(-) for some “true” mixing measure
G*

endow G with a prior IT (such as Dirichlet process)

question: how fast does the posterior distribution of G-

(G| X1, ..., X»)

shrink in the neighborhood of true G*, as n tends to infinity?
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Wasserstein metric for discrete measures

e let p be a metric of space ©

« G=Y 1 pido, and G' = 3", plidy

o Wasserstein metric d,(G,G") is defined as:

d,(G,G") mquwp (0:,0),

1]

where g is matrix of joint probabilities on (i, j) such that } . qi; = p;
and > _; ¢ij = pj-
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Wasserstein metric for discrete measures

let p be a metric of space ©

G = Y0, pide, and G' = Y0, plidy

Wasserstein metric d,(G,G") is defined as:

d,(G,G") mquwp (0:,0),

1]

where g is matrix of joint probabilities on (i, j) such that } . qi; = p;
and _,; ¢;j = pj.
if © = R, p is usual Euclidean metric

if © =10, 1] a Banach space of bounded functions on [0, 1], p is the
uniform norm
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Theorem 1: Finite mixtures
(Nguyen, 2011)

e If©® = R%and f(-|0) belongs to a family satisfying suitable identifiability
conditions. Assume there are £ < oo mixture components, k known.
Then, there is a constant M > 0 such that:

(d,(G,G*) > Mn~ V4 X1,...,X,) — 0

in Pg«-probability.
— this generalizes a result of Chen (1995)

o If © = [,([0,1]), G is distributed by mixture of k Gaussian sample
paths with smoothness v, while true G* is supported by elements of ©
with smoothness v*. Then,

(d,(G,G*) > Mn 2@ 70| Xy,..., X,) — 0
in Pg«-probability.
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Theorem 2: Infinite mixtures with Dirichlet prior

(Nguyen, 2011)
Assume that the number of mixture components is unknown.

e If © = RY and f(-|#) belongs to a family of ordinary smooth density
functions with smoothness 3 > 0. Then, for any 0 > 0, there is a
constant M > 0 such that:

I1(d,(G, G*) > M(log n/n) @oGresmmaws | X1, ..., X,) — 0

in Pg«-probability.

e If © =R% and f(-|0) belongs to a family of supersmooth density func-
tions with smoothness 3 > 0. Then, there is a constant M > 0 such
that:

1(d,(G,G*) > M(logn)~YP|X1,...,X,) — 0

in Pg«-probability.
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Open questions remain ...

e Posterior consistency for Dirichlet process mixture using Gaussian pro-

Cess as centering measure

e Posterior consistency for our nested HDP model (for which functional

data are not available)

41



Summary

inference of global /functional clusters from local/non-functional data
the framework of nested hierarchy of Dirichlet processes
applicablity to a range of problems and data sets

initial results towards full theoretical analysis (i.e., posterior consistency)

for nonparametric Bayesian models of this type

relevant papers

— Nguyen, X. Inference of global clusters from locally distributed data.
Bayesian Analysis 5(4), 817-846, 2010.

— Nguyen, X. Convergence of latent mixing measures in nonparametric
and mixture models. Tech Report 527, Univ of Michigan Statistics,
2011.
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