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(Infinite) mixture models

I Good for modeling heterogeneous and complex data

I black-box modeling device for density estimation
I clustering and inference about heterogeneity
I enabling (near) automatic model selection

I Questions: quality of parameter estimates and interpretability

I when number of mixture components unknown?

I posterior contraction rates for parameters?

I what is impact of model misspecification?



All mixture models are misspecified...

perhaps some are more interpretable than others

I assume misspecification of either kernel density or mixing measure,
what does the posterior contracts to and how fast?

I broader question is effects of modeling choice on movement of
mass from prior to posterior

I some (misspecified) modeling choice yields faster posterior
contraction behavior than others, raising interesting questions
regarding interpretability in mixture modeling practice



The BNP way

Mixture model takes the form:

pG (x) =
k∑

i=1

pi f (x |θi )

Model specification:

G =
∑

piδθi ∼ Π

X1, . . . ,Xn|G
iid∼ pG

Posterior inference problems

I density estimation via posterior distribution of pG?

I parameter estimation: what happens to G a posteriori?



A brief state of affair for DP mixtures
For density estimation:

I the posterior on pG contracts to true data density at an optimal rate
up to a logarithmic factor, under suitable smoothness conditions
(Ghosal et al, 1999; Ghosal & van der Vaart, 2001; Lijoi et al, 2005;
Tokdar, 2006; Ghosal & van der Vaart, 2007; Walker et al, 2007;
Kruijer et al, 2010, Shen et al, 2013; and subsequent works)

For clustering: one needs to be careful

I placing a nonparametric Bayesian prior such as Dirichlet result in
inconsistent estimate of number of clusters (Miller & Harrison,
2014)

I if number of clusters is of interest, one can work with overfitted
model via a suitable prior or explicit prior on the number of
parameters (Rousseau & Mengersen, 2011; Green & Richardson,
1997; Nobile & Fearnside, 2007)

For parameter estimates: what do we mean by saying that the
posterior of G contracts to G0?



Wasserstein distance W1

If G =
∑k

i=1 piδθi and G0 = δθ0 on some metric space, then

W1(G ,G0) =
k∑

i=1

pi‖θ0 − θi‖.

If G =
∑k

i=1
1
k δθi , G

′ =
∑k

j=1
1
k δθ′j , then

W1(G ,G ′) = inf
π

k∑
i=1

1

k
‖θi − θ′π(i)‖,

where π ranges over the set of permutations on (1, . . . , k).

Generally, Wasserstein distance is an optimal transport distance
which quantifies the movement of mass from one probability mea-
sure to another
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Wasserstein distance Wr , r ≥ 1

Definition: Let G ,G ′ be two probability measures on Rd . A transport
plan, aka, a coupling κ of G ,G ′ is a joint dist on Rd × Rd which induces
marginals G ,G ′.

Viewing ‖θ − θ′‖r is the cost of moving an unit mass from θ to θ′, then
the optimal transportation cost defines Wr :

Wr (G ,G
′) :=

[
inf
κ

∫
‖θ − θ′‖rdκ(θ, θ′)

]1/r

.

Also useful as distance between Bayesian hierarchies (Nguyen, 2016).

Interpretation: if Wr (Gn,G0) � ωn = o(1), and G0 has finite
number of support points

I there are atoms of Gn converging to that of G0 at rate ωn

I there are also redundant atoms of Gn vanishing at rate
ωr
n � ωn
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Posterior contraction for DP location mixtures
(Nguyen, 2013): Given n-iid sample from pG0 , obtain Π(G |X1, . . . ,Xn)
Rates: depending on the smoothness β of kernel density f

I supersmooth kernel f , rate is W2(G ,G0) . (log n)−1/β

I Gaussian kernel: β = 2.

I ordinary smooth kernel f , rate is W2(G ,G0) . n−γ for any
γ < 2/((d + 2)(4 + (2β + 1)d))
I Laplace kernel: β = 2.

I for Laplace, improved bounds for W1 (Gao & van der Vaart (2016);
Donnet et al (2018))

Post-processing sample G (Guha, Ho & N, 2019)

I suppose W2(G ,G0) = op(ωn), G is a posterior sample

I sequentially and probabilistically merge all atoms that are within
distance ωn

I truncate/merge clusters with total weight less than a threshold to
obtain G̃

I resulting |G̃ | gives consistent estimate of |G0|
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Merge-Truncate-Merge (MTM) algorithm
INPUT: posterior sample G =

∑
i piδθi , rate ωn, constant c > 0.

Stage 1: Merge procedure:

I Reorder atoms {θ1, θ2, . . . } by sampling with replacement with
weights {p1, p2, . . . }. And then let τ1, τ2, . . . be the new indices, set
E = {τj}j as existing set of atoms.

I Sequentially for each index τj ∈ E , if there exists an index τi < τj
such that ‖θτi − θτj‖ ≤ ωn, then:

update pτi = pτi + pτj , and remove τj from E .

I Collect G ′ =
∑

j : τj∈E pτj δθτj :=
∑k

i=1 qiδφi so that q1 ≥ q2 ≥ . . . .

Stage 2: Truncate-Merge procedure:

I Set A = {i : qi > (cωn)r}, N = {i : qi ≤ (cωn)r}.
I For each index i ∈ A, if there is j ∈ A such that j < i and

qi‖φi − φj‖r ≤ (cωn)r , then remove i from A and add it to N .

I For each i ∈ N , find atom φj among j ∈ A that is nearest to φi

update qj = qj + qi .

OUTPUT: G̃ =
∑

j∈A qjδφj and k̃ = |A|.





MTM post-processing leads to consistent estimate of k .

Let G be a posterior sample from posterior distribution of any Bayesian
procedure, namely, Π(·|X1, . . . ,Xn) according to which the upper bound
holds for all δ > 0.

Π

(
G ∈ G(Θ) : Wr (G ,G0) ≤ δωn

∣∣∣∣X1, . . . ,Xn

)
pG0−→ 1 (1)

Theorem
Given posterior sample G for which (1) holds. Let G̃ and k̃ be the
outcome of Algorithm MTM applied to G for an arbitrary constant
c > 0. Then the following hold as n→∞.

(a) For all δ > 0, Π

(
G ∈ G(Θ) : Wr (G̃ ,G0) ≤ δωn

∣∣∣∣X1, . . . ,Xn

)
pG0−→ 1

(b) Π(k̃ = k0|X1, . . . ,Xn)
pG0−→ 1 .



quick summary

I distribution of G̃ is a meaningful Bayesian quantity, obtained via
push-forward map MTM T applied to the posterior of G :

law(G̃ ) = Π(G |X1, . . . ,Xn)#T

I nonetheless, posterior contraction behavior for components
parameters of G̃ remains slow

I tiny mass of many redundant atoms for G is the culprit
I this is the price we pay for being nonparametric: what works

well for density estimation may not work as well for parameter
estimation performance (and interpretability)

I what can we do to improve parameter estimation behavior?



Outline

Interpretability: parameter vs density estimation

Posterior contraction rates of parameters

Impact of model misspecification



Order of identifiability

recall that a mixture density is a linear combination of such kernels f

I classical 0-identifiability: if kernel density functions {f (x |θ)|θ ∈ Rd}
are linearly independent

I 1-identifiability: the kernel density f , its 1st order derivative of f
wrt parameter θ are linearly independent

I 2-identifiability: linear independence up to 2nd derivatives

I ∞-identifiability: ...

Most single-parameter families of kernel densities (e.g., exponential
families of distributions) are identifiable in arbitrary order

Parameter estimation rates under 2-strong identifiability (Chen, 1995;
Rousseau & Mengersen, 2011; Nguyen, 2013, Ho & Nguyen, 2016);
minimax optimal rates under (very) strong identifiability conditions
(Heinrich and Kahn, 2018)
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How common is weak identifiability? Very.

For Gaussian kernel density f (x |µ, v),

∂2f

∂µ2
= 2

∂f

∂v
.

For gamma kernel density f (x |a, b),

∂f

∂b
(x |a, b) =

a

b
f (x |a, b)− a

b
f (x |a + 1, b).

For skewnormal kernel density f (x |θ, v ,m),

∂2f

∂θ2
− 2

∂f

∂v
+

m3 + m

v

∂f

∂m
= 0.

2m
∂f

∂m
+ (m2 + 1)

∂2f

∂m2
+ 2vm

∂2f

∂v∂m
= 0.
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Overfitted mixtures under 2-identifiability condition

Nguyen (2013): e.g., location Gaussian mixtures, scale Gaussian
mixtures, compact parameter space

I Data are n-iid sample from a k0-mixture, where k0 < k

I Placing any “standard” prior on mixing measures with k atoms
G =

∑k
i=1 piδθi

I Then, the posterior for G contracts to G0 at rate Op((log n/n)1/4)
under W2

Consequences:

I redundant weights vanish at rate Op(log n/n)1/2

I component parameters contract a posteriori at rate
Op(log n/n)1/4



Overfitted mixtures with weakly identifiable kernels
Ho & Nguyen (2016): overfitted location-scale Gaussian mixtures

I Same overfitted setting as before

Posterior contraction of G to G0 under Wasserstein metric
occurs at rate is affected by how much overfiting

I overfitting by one: k − k0 = 1, then W4(G ,G0) = Op((log n/n)1/8)

which implies redundant weights vanish at n−1/2 rate, but
component parameters converge at n−1/8 rate

I overfitting by two: k − k0 = 2, then W6(G ,G0) = Op((log n/n)1/12)

which implies component parameters converge at n−1/12 rate

I generally, for k > k0, precise rate r relates to dimension of some real
affine varieties (solving a system of polynomial equations), so that

Wr (G0,G ) . V (pG0 , pG )1/r



Polynomial eqns derived from Gaussian kernel’s PDE
For r ≥ 1 there are r equations for 3(k − k0 + 1) vars (cj , aj , bj)

k−k0+1
j=1

k−k0+1∑
j=1

∑
n1+2n2=α

c2
j a

n1

j bn2

j

n1!n2!
= 0 for each α = 1, . . . , r

Example: if k = k0 + 1, and let r = 3, then

c2
1a1 + c2

2a2 = 0,

1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0,

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0.

This has a non-trivial solution, but not if we add another equation
corresponding to r = 4 to above:

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0.

Hence, we arrive at rate n−1/(2r) = n−1/8 when k = k0 + 1.



Polynomial eqns derived from Gaussian kernel’s PDE
For r ≥ 1 there are r equations for 3(k − k0 + 1) vars (cj , aj , bj)

k−k0+1
j=1

k−k0+1∑
j=1

∑
n1+2n2=α

c2
j a

n1

j bn2

j

n1!n2!
= 0 for each α = 1, . . . , r

Example: if k = k0 + 1, and let r = 3, then

c2
1a1 + c2

2a2 = 0,

1

2
(c2

1a
2
1 + c2

2a
2
2) + c2

1b1 + c2
2b2 = 0,

1

3!
(c2

1a
3
1 + c2

2a
3
2) + c2

1a1b1 + c2
2a2b2 = 0.

This has a non-trivial solution, but not if we add another equation
corresponding to r = 4 to above:

1

4!
(c2

1a
4
1 + c2

2a
4
2) +

1

2!
(c2

1a
2
1b1 + c2

2a
2
2b2) +

1

2!
(c2

1b
2
1 + c2

2b
2
2) = 0.

Hence, we arrive at rate n−1/(2r) = n−1/8 when k = k0 + 1.



0 1 2 3

x 10
4

0

0.5

1

1.5

2

2.5

3

n=sample size

 

 

W1

2.5(log(n)/n)
1/2

0 1 2 3

x 10
4

0

0.5

1

1.5

2

2.5

3

n=sample size

 

 

W4

2.05(log(n)/n)
1/8

0 1 2 3

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

n=sample size

 

 

W6

3.6(log(n)/n)
1/12

Figure: Posterior contraction rates for location-covariance mixtures of
Gaussians.

L to R:
(1) Exact-fitted: W1 � Op(n−1/2).
(2) Over-fitted by one: W4 � Op(n−1/8).
(3) Over-fitted by two: W6 � Op(n−1/12).



Inhomogeneity of data parameter space
Ho & Nguyen (2016, 2018):

most mixture models used in practice can be highly non-regular due to

I the PDE governing the density kernels (Gaussian, Gamma,
skewnormal, etc)

I mixture distribution = convex combination of these kernels

Thus, Fisher information matrix degenerates in certain affine varieties
forming subsets in parameter space; some are "more" singular than
others. So, a standard prior oblivious of these singularities implies that

I parameters of different types may possess different rates of
posterior contraction (e.g., scale parameter contracts faster
than location for Gaussian components)

I even parameters of the same type may carry distinct rates of
estimation (e.g., shape parameters associated with different
skewnormal mixture components)

Open question How can we design suitable prior distribution or
reparameterization to combat this inhomogeneity of parameter space?



Skewnormal mixtures

Mixture density pG (x) =
∑k

j=1 pj f (x |θj , σj ,mj), where the skewnormal
kernel takes form

f (x |θ, σ,m) :=
2

σ
φ

(
x − θ
σ

)
Φ(m(x − θ)/σ),

where φ(x) is the standard normal density and

Φ(x) =

∫
φ(t)1(t ≤ x) dt.

This generalizes Gaussian densities, which correspond to m = 0.

Exact-fitted mixtures: I (G ) is singular iif the parameters are real solution
of a number of polynomial equations

(i) Type A: P1(η) =
∏k

j=1 mj .

(ii) Type B:

P2(η) =
∏

1≤i 6=j≤k

{
(θi − θj)2+

[
σ2
i (1 + m2

j )− σ2
j (1 + m2

i )

]2}
.



Figure: Illustration of type A and type B singularity (for parameter triplet
(m1, θ1, v1 = σ2

1) for component 1, given a specific value of parameter triplet
for component 2

Note: for overfitted mixtures, true model is always singular



Cleverer priors for finite mixtures

A number of ways in handling unknown number of components

(1) overfitted mixtures, with suitable Dirichlet prior on mixing weights
(Rousseau & Mengersen, 2011) —> rates n−1/2+ε for any ε > 0
under 2-identifiability

(2) overfitted mixtures with "repulsive" mixture components (Petralia
et al, 2012; Xie & Xu, 2017)

(3) mixture of finite mixtures: placing a prior on the number of mixing
components (Nobile, 1994; Richardson & Green, 1997; Miller &
Harrison, 2014)

It can be shown that approach (3) yields adaptive posterior contrac-
tion rate for parameters, (log n/n)1/2, under minimal identifiability
condition, i.e., 1-identifiability (Guha, Ho & N, 2019)

None of this is applicable under misspecification
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All mixture models are misspecified...

Assume the data X1, . . . ,Xn generated from "true" density pG0,f0 .

Fitting this with a mixture model pG ,f =
∫
f (x |θ)G (dθ):

I either f is misspecified

I or G is misspecified,

I or both

By Bayes’ rule, one obtains Π(G |X1, . . . ,Xn)

Question: what becomes of this posterior distribution as n→∞?

I under some identifiability condition G tends to some G∗

I if f 6= f0, the best we can hope for is G → G∗, but G∗ 6= G0

I what does this mean?



... but some may be more interpretable than others

I we know what is bad: if f is wildly different from f0, then G∗ must
probably be wildly different from G0

I mathematically, it is of interest to find the relationship between G∗
and G0

I standard but challenging question of approximation theory in
math. analysis

I from an epistemological standpoint, we can never know the truth
about G0 and f0, yet we will continue to fit the data with a certain
choice of kernel f (Gaussian, Laplace, skewnormal, gamma, etc, etc)

I it is meaningful to find the posterior contraction behavior to
G∗, subject to our choice of kernel f (this says more about the
efficiency of the data in moving mass from a prior to a
posterior)

I it is not entirely clear should one prefer a f that results in fast
posterior contraction rate to G∗, or a slower rate?



Condition regarding the "truth": this specifies how misspecified are f and
G as they are related to f0,G0:

(M) The support of G0, namely, supp(G0) is a bounded subset of Rd .
Moreover, there are some constants C0,C1, α > 0 such that for any
R > 0,

sup
x∈Rd ,θ∈Θ,θ0∈supp(G0)

f (x |θ)

f0(x |θ0)
1‖x‖2≤R ≤ C1 exp(C0R

α).

Condition on prior:

(P) A standard prior on G: either a mixture of discrete measures with
finite support, or Dirichlet process on bounded subset Θ of Rd that
may or may not contain the support of G0



Misspecified density

Kleijn & van der Vaart (2006); White (1982): the posterior of pG
contracts to the minimizer of the Kullback-Leibler (KL) distance
from the true population density, pG0,f0 , to a density function re-
siding in the support of the induced prior on pG , provided that
the minimizer exists (in fact, existence of the minimizer implies
uniqueness due to convexity of the space).

The KL minimizer can be expressed as a mixture density pG∗ , where G∗ is
a probability measure on Θ. We may write

G∗ ∈ arg min
G∈P(Θ)

K (pG0,f0 , pG ).

Now, under a standard identifiability condition of f , the uniqueness of
pG∗ implies that of G∗.

We are interested in the posterior contraction behavior of G toward G∗.



Two choices of kernel for location mixtures

I Gaussian kernel with some fixed d × d covariance matrix Σ

f (x |θ) = |2πΣ|−1/2 exp

{
− (x − θ)>Σ−1(x − θ)/2

}
.

I Laplace kernel

f (x |θ) =
2

λ(2π)d/2

K(d/2)−1

(√
2/λ
√

(x − θ)>Σ−1(x − θ)
)

(√
λ/2
√

(x − θ)>Σ−1(x − θ)
)(d/2)−1

,

where Σ and λ > 0 are respectively fixed covariance matrix and
scale parameter such that |Σ| = 1. Here, Kv is a Bessel function of
the second kind of order v .



Recall the condition on misspecification:

(M) The support of G0, namely, supp(G0) is a bounded subset of Rd .
Moreover, there are some constants C0,C1, α > 0 such that for any
R > 0,

sup
x∈Rd ,θ∈Θ,θ0∈supp(G0)

f (x |θ)

f0(x |θ0)
1‖x‖2≤R ≤ C1 exp(C0R

α).

Theorem (misspecified Gaussian location mixture)
Let f be the Gaussian density kernel and (M) holds. Then, under
(P) as n tends to infinity,

Π

(
G ∈ G(Θ) : W2(G ,G∗) .

(
log log n

log n

)1/2∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability.

(Guha, Ho & N, 2019)



Theorem (misspecified Laplace location mixture)
Let f be the Laplace density kernel for fixed Σ and λ such that |Σ| = 1
and (M) holds. Then, under (P), as n tends to infinity,

Π

(
G ∈ G(Θ) : W2(G ,G∗) . exp

{
−mτ(α)

2

(
log n − log log n

2(d + 2)

)1/α
}

∣∣∣∣X1, . . . ,Xn

)
→ 1

in pG0,f0 -probability for any positive constant m < 4/(4 + 5d).
Here, constant τ(α) takes the form, with λmin, λmax being the minimum
and maximum eigenvalues of Σ:

τ(α) :=

√
2/(λλmax)(√

2/(λλmin) +
√

2/(λλmax) + C0

)1/α
.

For simplicity, if α = 1, the posterior contraction bound takes the
polynomial rate

n−
mτ(1)
4(d+2)



Some remarks
(i) Posterior contraction bound for Gaussian location mixtures remains
logarithmic rate (log log n/ log n)1/2 regardless of whether f0 is
misspecified or not. Should we use Gaussian kernel?

I No: this is too slow a movement of mass from prior to posterior

I Yes: when you are misspecified, it’s good to be conservative

(ii) For Laplace mixtures, the posterior contraction bounds remain n−γ
′
,

provided α ≥ 1. Due to misspecification, there is a loss of a constant
factor in the exponent γ′.

I consider the scenario where the true kernel f0 happens to be a
Gaussian kernel, but sample size n is small. Should we intentionally
misspecify by selecting f to be Laplace instead?

I ultimate answer may lie in tension between bias (how far is G∗ to
G0) vs the contracting variance (convergence to G∗)

W2(G0,G∗) >><<W2(Gn,G∗)



Some remarks
(i) Posterior contraction bound for Gaussian location mixtures remains
logarithmic rate (log log n/ log n)1/2 regardless of whether f0 is
misspecified or not. Should we use Gaussian kernel?

I No: this is too slow a movement of mass from prior to posterior

I Yes: when you are misspecified, it’s good to be conservative

(ii) For Laplace mixtures, the posterior contraction bounds remain n−γ
′
,

provided α ≥ 1. Due to misspecification, there is a loss of a constant
factor in the exponent γ′.

I consider the scenario where the true kernel f0 happens to be a
Gaussian kernel, but sample size n is small. Should we intentionally
misspecify by selecting f to be Laplace instead?

I ultimate answer may lie in tension between bias (how far is G∗ to
G0) vs the contracting variance (convergence to G∗)

W2(G0,G∗) >><<W2(Gn,G∗)



Some remarks
(i) Posterior contraction bound for Gaussian location mixtures remains
logarithmic rate (log log n/ log n)1/2 regardless of whether f0 is
misspecified or not. Should we use Gaussian kernel?

I No: this is too slow a movement of mass from prior to posterior

I Yes: when you are misspecified, it’s good to be conservative

(ii) For Laplace mixtures, the posterior contraction bounds remain n−γ
′
,

provided α ≥ 1. Due to misspecification, there is a loss of a constant
factor in the exponent γ′.

I consider the scenario where the true kernel f0 happens to be a
Gaussian kernel, but sample size n is small. Should we intentionally
misspecify by selecting f to be Laplace instead?

I ultimate answer may lie in tension between bias (how far is G∗ to
G0) vs the contracting variance (convergence to G∗)

W2(G0,G∗) >><<W2(Gn,G∗)



Some remarks
(i) Posterior contraction bound for Gaussian location mixtures remains
logarithmic rate (log log n/ log n)1/2 regardless of whether f0 is
misspecified or not. Should we use Gaussian kernel?

I No: this is too slow a movement of mass from prior to posterior

I Yes: when you are misspecified, it’s good to be conservative

(ii) For Laplace mixtures, the posterior contraction bounds remain n−γ
′
,

provided α ≥ 1. Due to misspecification, there is a loss of a constant
factor in the exponent γ′.

I consider the scenario where the true kernel f0 happens to be a
Gaussian kernel, but sample size n is small. Should we intentionally
misspecify by selecting f to be Laplace instead?

I ultimate answer may lie in tension between bias (how far is G∗ to
G0) vs the contracting variance (convergence to G∗)

W2(G0,G∗) >><<W2(Gn,G∗)



Summary

I no size fits all: what’s good for density estimation tends to perform
poorly from parameter estimation perspective

I parametric vs nonparametric prior specification

I some form of misspecification is more acceptable than others for the
sake of interpretability

I perhaps one should also be interested in selective parameter
inference (e.g., dominant components or outlying ones)?
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