Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure

Long Nguyen
Department of Statistics
University of Michigan

9th Bayesian Nonparametrics Conference Amsterdam, June 2013

Inference of the Dirichlet process base measure

- let Q_{1}, \ldots, Q_{m} be m random measures drawn from $D P_{\alpha G}$, where $G=G_{0}$, how to infer about G_{0} on the basis of Q_{i} 's?
- studied by Korwar and Hollander (Ann. Prob., 1973)

Inference of the Dirichlet process base measure

- let Q_{1}, \ldots, Q_{m} be m random measures drawn from $D P_{\alpha G}$, where $G=G_{0}$, how to infer about G_{0} on the basis of Q_{i} 's?
- studied by Korwar and Hollander (Ann. Prob., 1973)
- A realistic elaboration: assume that we have no direct observations of Q_{i} 's, only iid observations from mixture models $Q_{i} * f$
- Moreover, base measure G is endowed with a prior distribution, namely another Dirichlet process prior

Inference of the Dirichlet process base measure

- let Q_{1}, \ldots, Q_{m} be m random measures drawn from $D P_{\alpha G}$, where $G=G_{0}$, how to infer about G_{0} on the basis of Q_{i} 's?
- studied by Korwar and Hollander (Ann. Prob., 1973)
- A realistic elaboration: assume that we have no direct observations of Q_{i} 's, only iid observations from mixture models $Q_{i} * f$
- Moreover, base measure G is endowed with a prior distribution, namely another Dirichlet process prior
- this is the Hierarchial Dirichlet Process (Teh, Jordan, Blei and Beal, JASA, 2006)
- we ask: what is the posterior concentration behavior of G, given the observed data?

Modeling of exchangeable groups of exchangeable data

motivated by De Finetti's, each group can be modeled by a mixture model, while the mixture models are coupled by a nonparametric Bayesian hierarchy

Hierarchical Dirichlet process mixture

(Teh et al, JASA 2006)

$$
\begin{gathered}
G \sim D P_{\gamma H} \\
Q_{1}, \ldots, Q_{m} \mid G \stackrel{i i d}{\sim} D P_{\alpha G} \\
Y_{i 1}, \ldots, Y_{i n} \mid Q_{i} \stackrel{i i d}{\sim} Q_{i} * f
\end{gathered}
$$

Posterior concentration of "tables" and "dishes" in Chinese restaurants:

- posterior concentration behavior of latent G ?
- posterior concentration behavior of Q_{i} 's
- quantifying benefits of "borrowing of strength": hierarchical model vs treating groups separately?

Benefits of "borrowing strength"

given \tilde{n}-sample ($Y_{1}^{0}, \ldots, Y_{\tilde{n}}^{0}$) from mixture distribution $Q_{0} * f$ Q_{0} is assumed to share the same atoms as Q_{i} 's

Stand-alone DP mixture

Hierarchical DP mixture

Talk outline

- tools from optimal transportation theory
- Wasserstein metrics for nonparametric Bayesian hierarchies
- two main theorems
- posterior concentration rate of Dirichlet base measure
- benefits of "borrowing strength": improvement from nonparametric to parametric rate of convergence
- main ingredients of proof
- concentration of Dirichlet measure
- concentration of measure along the boundary between two Dirichlet processes

Optimal transport problem (Monge-Kantorovich)

- goods are transported from producers to customers in the optimal way (given that transportation cost is proportional to distance)
- the optimal transportation cost defines a distance between "production density" and "consumption density"

squares: locations of producers; circles: locations of consumers

Wasserstein distance

Let $G, G^{\prime} \in \mathcal{P}(\Theta)$, the space of Borel probability measures on Θ, $\mathcal{T}\left(G, G^{\prime}\right)$ set of all couplings of G, G^{\prime}, i.e., all joint distributions on $\Theta \times \Theta$ which project to marginals G, G^{\prime}

Definition

Let ρ be a distance function on Θ, the Wasserstein distance is defined by:

$$
d_{\rho}\left(G, G^{\prime}\right)=\inf _{\kappa \in \mathcal{T}\left(G, G^{\prime}\right)} \int \rho\left(\theta, \theta^{\prime}\right) d \kappa .
$$

Wasserstein distance

Let $G, G^{\prime} \in \mathcal{P}(\Theta)$, the space of Borel probability measures on Θ, $\mathcal{T}\left(G, G^{\prime}\right)$ set of all couplings of G, G^{\prime}, i.e., all joint distributions on $\Theta \times \Theta$ which project to marginals G, G^{\prime}

Definition

Let ρ be a distance function on Θ, the Wasserstein distance is defined by:

$$
d_{\rho}\left(G, G^{\prime}\right)=\inf _{\kappa \in \mathcal{T}\left(G, G^{\prime}\right)} \int \rho\left(\theta, \theta^{\prime}\right) d \kappa .
$$

When $\Theta \subset \mathbb{R}^{d}$, for $r \geq 1$, use $\|\cdot\|^{r}$ as a distance function on \mathbb{R}^{d} to obtain L_{r} Wasserstein metric:

$$
W_{r}\left(G, G^{\prime}\right):=\left[\inf _{\kappa \in \mathcal{T}\left(G, G^{\prime}\right)} \int\left\|\theta-\theta^{\prime}\right\|^{r} d \kappa\right]^{1 / r} .
$$

Facts and Examples

Wasserstein distance W_{r} metrizes weak convergence in the space of probability measures on Θ.

Facts and Examples

Wasserstein distance W_{r} metrizes weak convergence in the space of probability measures on Θ.

If $\Theta=\mathbb{R}$, then $W_{1}\left(G, G^{\prime}\right)=\left\|\operatorname{CDF}(G)-\operatorname{CDF}\left(G^{\prime}\right)\right\|_{1}$.

Facts and Examples

Wasserstein distance W_{r} metrizes weak convergence in the space of probability measures on Θ.

$$
\text { If } \Theta=\mathbb{R} \text {, then } W_{1}\left(G, G^{\prime}\right)=\left\|C D F(G)-\operatorname{CDF}\left(G^{\prime}\right)\right\|_{1} .
$$

If $G_{0}=\delta_{\theta_{0}}$ and $G=\sum_{i=1}^{k} p_{i} \delta_{\theta_{i}}$, then

$$
W_{1}\left(G_{0}, G\right)=\sum_{i=1}^{k} p_{i}\left\|\theta_{0}-\theta_{i}\right\| .
$$

Facts and Examples

Wasserstein distance W_{r} metrizes weak convergence in the space of probability measures on Θ.

$$
\text { If } \Theta=\mathbb{R} \text {, then } W_{1}\left(G, G^{\prime}\right)=\left\|C D F(G)-\operatorname{CDF}\left(G^{\prime}\right)\right\|_{1} .
$$

If $G_{0}=\delta_{\theta_{0}}$ and $G=\sum_{i=1}^{k} p_{i} \delta_{\theta_{i}}$, then

$$
W_{1}\left(G_{0}, G\right)=\sum_{i=1}^{k} p_{i}\left\|\theta_{0}-\theta_{i}\right\| .
$$

If $G=\sum_{i=1}^{k} \frac{1}{k} \delta_{\theta_{i}}, G^{\prime}=\sum_{j=1}^{k} \frac{1}{k} \delta_{\theta_{j}^{\prime}}$, then

$$
W_{1}\left(G, G^{\prime}\right)=\inf _{\pi} \sum_{i=1}^{k} \frac{1}{k}\left\|\theta_{i}-\theta_{\pi(i)}^{\prime}\right\|,
$$

where π ranges over the set of permutations on $(1, \ldots, k)$.

Distance of nonparametric Bayesian hierarchies

Recall that $W_{r}\left(G, G^{\prime}\right)$ is Wasserstein metric on $\mathcal{P}(\Theta)$

Further up in the Bayesian hierarchy, again using Wasserstein-type distance

Distance of nonparametric Bayesian hierarchies

Recall that $W_{r}\left(G, G^{\prime}\right)$ is Wasserstein metric on $\mathcal{P}(\Theta)$

Further up in the Bayesian hierarchy, again using Wasserstein-type distance

Distance on measures of measures

Let $\mathcal{D}, \mathcal{D}^{\prime} \in \mathcal{P}(\mathcal{P}(\Theta))$ (the space of Borel probability measures on $\mathcal{P}(\Theta)$). Define Wasserstein distance between $\mathcal{D}, \mathcal{D}^{\prime}$

$$
W_{r}\left(\mathcal{D}, \mathcal{D}^{\prime}\right):=\inf _{\mathcal{K} \in \mathcal{T}\left(\mathcal{D}, \mathcal{D}^{\prime}\right)}\left[\int W_{r}^{r}\left(G, G^{\prime}\right) d \mathcal{K}\left(G, G^{\prime}\right)\right]^{1 / r}
$$

$\mathcal{T}\left(\mathcal{D}, \mathcal{D}^{\prime}\right)$ is the space of all couplings of $\mathcal{D}, \mathcal{D}^{\prime} \in \mathcal{P}(\mathcal{P}(\Theta))$

Distance between two Dirichlet processes
 (Nguyen, 2013)

Let $\mathcal{D}=D P_{\alpha G}$ and $\mathcal{D}^{\prime}=D P_{\alpha^{\prime} G^{\prime}}$. Then

$$
W_{r}\left(\mathcal{D}, \mathcal{D}^{\prime}\right) \geq W_{r}\left(G, G^{\prime}\right) .
$$

Moreover, if $\alpha=\alpha^{\prime}$ then $W_{r}\left(\mathcal{D}, \mathcal{D}^{\prime}\right)=W_{r}\left(G, G^{\prime}\right)$.

Set-up: posterior concentration of Dirichlet base measure

Let Q_{1}, \ldots, Q_{m} be iid from $D P_{\alpha G}$, where $G=G_{0}$ (fixed non-random)
G is endowed with another Dirichlet prior $G \sim D P_{\gamma H}$, where H non-atomic

Set-up: posterior concentration of Dirichlet base measure

Let Q_{1}, \ldots, Q_{m} be iid from $D P_{\alpha G}$, where $G=G_{0}$ (fixed non-random)
G is endowed with another Dirichlet prior $G \sim D P_{\gamma H}$, where H non-atomic

Each Q_{i} gives a mixture distribution $Q_{i} * f$, of which an n-iid sample is given

Set-up: posterior concentration of Dirichlet base measure

Let Q_{1}, \ldots, Q_{m} be iid from $D P_{\alpha G}$, where $G=G_{0}$ (fixed non-random)
G is endowed with another Dirichlet prior $G \sim D P_{\gamma H}$, where H non-atomic

Each Q_{i} gives a mixture distribution $Q_{i} * f$, of which an n-iid sample is given

We will show that
As $m \rightarrow \infty$ and $n=n(m) \rightarrow \infty$ at a suitable rate, there is $\epsilon_{m, n} \rightarrow 0$ such that

$$
\Pi_{G}\left(W_{1}\left(G, G_{0}\right) \geq C \epsilon_{m, n} \mid m \times n \operatorname{Data} Y_{[n]}^{[m]}\right) \longrightarrow 0
$$

in probability.

Assumptions

On kernel density f, and base probability measure H of the Dirichlet prior for G
(A1) For some $r \geq 1, C_{1}>0, h\left(f(\cdot \mid \theta), f\left(\cdot \mid \theta^{\prime}\right)\right) \leq C_{1}\left\|\theta-\theta^{\prime}\right\|^{r}$ and $K\left(f(\cdot \mid \theta), f\left(\cdot \mid \theta^{\prime}\right)\right) \leq C_{1}\left\|\theta-\theta^{\prime}\right\|^{r} \forall \theta, \theta^{\prime} \in \Theta$.
(A2) There holds $M=\sup _{\theta, \theta^{\prime} \in \Theta} \chi\left(f(\cdot \mid \theta), f\left(\cdot \mid \theta^{\prime}\right)\right)<\infty$.
(A3) $H \in \mathcal{P}(\Theta)$ is non-atomic, and for some constant $c_{0}>0, H(B) \geq c_{0} \epsilon^{d}$ for any closed ball B of radius ϵ.

Main Theorems

Let Θ be a bounded subset of \mathbb{R}^{d}. Suppose that
(a) Assumptions (A1-A3) hold.
(b) G_{0} has a finite number of support points in Θ.
(c) The Dirichlet parameters $\alpha \in(0,1], \gamma>0$, and $H \in \mathcal{P}(\Theta)$ non-atomic.

Theorem 1 (Nguyen, 2013)

As $m \rightarrow \infty$ and $n \rightarrow \infty$ such that $n_{1}(m) \leq n \leq n_{2}(m)$ for some sequences $n_{2}(m)$ and $n_{1}(m) \rightarrow \infty$, there holds

$$
\Pi_{G}\left(\left.W_{1}\left(G, G_{0}\right) \geq C\left(\frac{n^{3 d} \log m}{m}\right)^{1 /(2 d+2)} \right\rvert\, m \times n \operatorname{Data} Y_{[n]}^{[m]}\right) \longrightarrow 0
$$

in probability for a large constant C.

Remarks

The details of $n_{1}(m)$ and $n_{2}(m)$ depend on additional conditions of f. Define

$$
\alpha^{*}:=\min _{\theta \in \mathrm{spt} G_{0}} \alpha G_{0}(\{\theta\})
$$

(i) If f is ordinary smooth with parameter β, then it suffices to set

$$
n_{1}(m) \asymp m^{\frac{4+(2 \beta+1) d^{\prime}}{3 \sigma\left(4+(2 \beta+1) d^{\prime}\right)\left((2 d+2) \alpha^{*}\right.}}
$$

and $n_{2}(m) \asymp(m / \log m)^{1 / 3 d}$, for any $d^{\prime}>d$. In particular, if n is allowed to grow at the rate $n \asymp n_{1}(m)$ then the posterior concentration rate is

$$
\epsilon_{m, n} \asymp n^{-\frac{\alpha^{*}}{4+(2 \beta+1) d}}(\log n)^{1 /(2 d+2)} \asymp m^{-\gamma}(\log m)^{1 /(2 d+2)},
$$

where

$$
\gamma=\frac{\alpha^{*}}{3 d\left(4+(2 \beta+1) d^{\prime}\right)+(2 d+2) \alpha^{*}}<\frac{1}{2 d+2} .
$$

(ii) If f is supersmooth with parameter β, then it suffices to set

$$
\frac{m}{\log m(\log n)^{\alpha^{*}(2 d+2) / \beta}} \lesssim n^{3 d} \lesssim \frac{m}{\log m} .
$$

In particular, if n satisfies $n^{3 d}(\log n)^{\alpha^{*}(2 d+2) / \beta} \asymp \frac{m}{\log _{\alpha^{m}}}$, then we obtain the concentration rate $\epsilon_{m, n} \asymp(\log n)^{-\alpha^{*} / \beta} \asymp(\log m)^{-\alpha^{*} / \beta}$.
(iii) Requirements of the type $n_{1}(m) \leq n \leq n_{2}(m)$ appear crucial in deriving posterior concentration rates in hierarchical models. Beyond this range, we do not know the rates
(iv) If G_{0} has infinite support, we conjecture that polynomial rate is no longer possible.

Effects of "borrowing strength"

given \tilde{n}-sample ($Y_{1}^{0}, \ldots, Y_{\tilde{n}}^{0}$) from mixture distribution $Q_{0} * f$ Q_{0} is assumed to share the same atoms as Q_{i} 's

Stand-alone DP mixture
Hierarchical DP mixture

Stand-alone setting

Suppose that an iid \tilde{n}-sample $Y_{[\tilde{n}]}^{0}$ drawn from a mixture model $Q_{0} * f$ is available, where $Q_{0}=Q_{0}^{*} \in \mathcal{P}(\Theta)$ is unknown:

$$
Y_{[\tilde{n}]}^{0} \mid Q_{0} \stackrel{i d}{\sim} Q_{0} * f .
$$

In a stand-alone setting Q_{0} is endowed with a Dirichlet prior: $Q_{0} \sim D P_{\alpha_{0} H_{0}}$ for some known $\alpha_{0}>0$ and non-atomic base measure $H_{0} \in \mathcal{P}(\Theta)$.

Stand-alone setting

Suppose that an iid \tilde{n}-sample $Y_{[\tilde{n}]}^{0}$ drawn from a mixture model $Q_{0} * f$ is available, where $Q_{0}=Q_{0}^{*} \in \mathcal{P}(\Theta)$ is unknown:

$$
Y_{[\tilde{n}]}^{0} \mid Q_{0} \stackrel{i i d}{\sim} Q_{0} * f .
$$

In a stand-alone setting Q_{0} is endowed with a Dirichlet prior: $Q_{0} \sim D P_{\alpha_{0} H_{0}}$ for some known $\alpha_{0}>0$ and non-atomic base measure $H_{0} \in \mathcal{P}(\Theta)$.

(Nguyen, Ann Stat (2013))

Then

$$
\Pi_{Q}\left(\left.h\left(Q_{0} * f, Q_{0}^{*} * f\right) \geq(\log \tilde{n} / \tilde{n})^{\frac{1}{d+2}} \right\rvert\, Y_{[\tilde{[n]}}^{0}\right) \longrightarrow 0
$$

in $P_{Y_{[\overrightarrow{0}]}^{0} \mid Q_{0}^{*}}$ probability.

Alternatively, in hierarchical DP setting

suppose Q_{0} is attached to the hierarchical Dirichlet process in the same way as the Q_{1}, \ldots, Q_{m}, i.e.:

$$
G \sim D P_{\gamma H}, \quad Q_{0}, Q_{1}, \ldots, Q_{m} \mid G \stackrel{i i d}{\sim} D P_{\alpha G} .
$$

- implicitly Q_{0} is assumed to share the same set of supporting atoms as Q_{1}, \ldots, Q_{m}, as they share with the (latent) discrete base measure G.

Alternatively, in hierarchical DP setting

suppose Q_{0} is attached to the hierarchical Dirichlet process in the same way as the Q_{1}, \ldots, Q_{m}, i.e.:

$$
G \sim D P_{\gamma H}, \quad Q_{0}, Q_{1}, \ldots, Q_{m} \mid G \stackrel{i i d}{\sim} D P_{\alpha G} .
$$

- implicitly Q_{0} is assumed to share the same set of supporting atoms as Q_{1}, \ldots, Q_{m}, as they share with the (latent) discrete base measure G.

Then, as $\tilde{n} \rightarrow \infty$ and $m, n \rightarrow \infty$ at suitable rates, there is $\delta_{m, n, \tilde{n}} \downarrow 0$ such that

$$
\Pi_{Q}\left(h\left(Q_{0} * f, Q_{0}^{*} * f\right) \geq \delta_{m, n, \tilde{n}} \mid Y_{[\tilde{n}]}^{0}, Y_{[n]}^{[m]}\right) \longrightarrow 0
$$

in $P_{Y_{[\bar{\sigma}}^{0} \mid Q_{0}^{*}} \times P_{G_{0}}^{m}$-probability, where

$$
\delta_{m, n, \tilde{n}} \asymp(\log \tilde{n} / \tilde{n})^{1 /(d+2)}+\epsilon_{m, n}^{r_{0} / 2} \log \left(1 / \epsilon_{m, n}\right),
$$

Here, $\epsilon_{m, n}$ is an assumed concentration rate for the posterior of G.

- extra term $\epsilon_{m, n}^{r_{0} / 2} \log \left(1 / \epsilon_{m, n}\right)$ suggests decreased efficiency due to the maintainance of the latent hierarchy
- extra term $\epsilon_{m, n}^{r_{0} / 2} \log \left(1 / \epsilon_{m, n}\right)$ suggests decreased efficiency due to the maintainance of the latent hierarchy
- if m and n grow sufficiently fast relatively to \tilde{n} so that $\epsilon_{m, n}$ is suitably small, then the impact of "borrowing of strength" from the $m \times n$ data set $Y_{[n]}^{[m]}$ on the inference about the data set $Y_{[\tilde{n}]}^{0}$ is quite striking:
- extra term $\epsilon_{m, n}^{r_{0} / 2} \log \left(1 / \epsilon_{m, n}\right)$ suggests decreased efficiency due to the maintainance of the latent hierarchy
- if m and n grow sufficiently fast relatively to \tilde{n} so that $\epsilon_{m, n}$ is suitably small, then the impact of "borrowing of strength" from the $m \times n$ data set $Y_{[n]}^{[m]}$ on the inference about the data set $Y_{[\tilde{n}]}^{0}$ is quite striking:

Theorem 2 (Nguyen, 2013)

(1) if f is an ordinary smooth kernel density, then $\delta_{m, n, \tilde{n}} \asymp(\log \tilde{n} / \tilde{n})^{1 / 2}$.
(2) if f is a supersmooth kernel density with smoothness $\beta>0$, then $\delta_{m, n, \tilde{n}} \asymp(1 / \tilde{n})^{1 /(\beta+2)}$.

- the above theorem shows the improved efficiency for groups with small size \tilde{n} - recall nonparametrate rate if using stand-alone mixture model, $(\log \tilde{n} / \tilde{n})^{1 /(d+2)}$

Proof ingredients

- Existence of test argument: a subset in $\mathcal{P}(\Theta)$ that can be used to discriminate a pair of Dirichlet processes
- Existence of a point-estimate for mixing measures in a mixture model that admits finite-sample probability bounds
- implying a lower bound of Hellinger distance of HDP data densities in terms of Wasserstein distance of Dirichlet processes
- Posterior concentration under a perturbation of base measure
- requiring concentration of Dirichlet measure
- The rest are standard Bayesian asymptotics techniques (e.g., Ghosal, Ghosh and van der Vaart (2000))

Existence of test sets

Consider a test $D P_{\alpha G}$ against $D P_{\alpha G^{\prime}}$, we need to show existence of test set $S \subset \mathcal{P}(\Theta)$ the difference of measures on S is sufficiently large

Existence of test sets

Consider a test $D P_{\alpha G}$ against $D P_{\alpha G^{\prime}}$, we need to show existence of test set $S \subset \mathcal{P}(\Theta)$ the difference of measures on S is sufficiently large
Boundary of S is "regular": the Dirichlet measure on the ϵ-tube defined along the boundary of S (in Wasserstein metric) needs to go to 0 at certain rate as $\epsilon \rightarrow 0$

Point estimate of mixing measures with finite-sample

 boundsGiven the assumption on kernel density f, with constants $C_{1}>0, r \geq 1$. Given n-sample from a mixture distribution $Q_{0} * f$, there exists a point estimate \hat{Q}_{n} of Q_{0} and $\hat{f}_{n}=\hat{Q}_{n} * f$ such that for any $Q_{0} \in \mathcal{Q}$: under $Q_{0} * f$-measure,

$$
\begin{aligned}
& \mathbb{P}\left(h\left(\hat{f}_{n}, Q_{0} * f\right) \geq \epsilon_{n}\right) \leq 5 \exp \left(-c_{2} n \epsilon_{n}^{2}\right) \\
& \mathbb{P}\left(W_{2}\left(\hat{Q}_{n}, Q_{0}\right) \geq \delta_{n}\right) \leq 5 \exp \left(-c_{2} n \epsilon_{n}^{2}\right)
\end{aligned}
$$

where c_{1}, c_{2} are some universal positive constants.

Point estimate of mixing measures with finite-sample bounds

Given the assumption on kernel density f, with constants $C_{1}>0, r \geq 1$. Given n-sample from a mixture distribution $Q_{0} * f$, there exists a point estimate \hat{Q}_{n} of Q_{0} and $\hat{f}_{n}=\hat{Q}_{n} * f$ such that for any $Q_{0} \in \mathcal{Q}$: under $Q_{0} * f$-measure,

$$
\begin{aligned}
& \mathbb{P}\left(h\left(\hat{f}_{n}, Q_{0} * f\right) \geq \epsilon_{n}\right) \leq 5 \exp \left(-c_{2} n \epsilon_{n}^{2}\right), \\
& \mathbb{P}\left(W_{2}\left(\hat{Q}_{n}, Q_{0}\right) \geq \delta_{n}\right) \leq 5 \exp \left(-c_{2} n \epsilon_{n}^{2}\right),
\end{aligned}
$$

where c_{1}, c_{2} are some universal positive constants. And:
(a) $\epsilon_{n}=C_{2}(\log n / n)^{r / 2 d}$, if $d>2 r ; \epsilon_{n}=C_{2}(\log n / n)^{r /(d+2 r)}$ if $d<2 r$, and $\epsilon_{n}=(\log n)^{3 / 4} / n^{1 / 4}$ if $d=2 r$.
(b) If f is ordinary smooth with parameter $\beta>0$, then $\delta_{n}=C_{3} \epsilon_{n}^{\frac{2}{4+(2 \beta+1) d r}}$ for any $d^{\prime}>d$. If f is supersmooth with parameter $\beta>0$, then $\delta_{n}=C_{3}\left[-\log \epsilon_{n}\right]^{-1 / \beta}$.

Here, C_{2}, C_{3} are different constants in each case. C_{2} depends only on d, r, Θ and C_{1}, while C_{3} depends only d, β, Θ and C_{2}.

Posterior concentration under perturbation

Suppose that spt $Q_{0} \subset$ spt G_{0}, and we use a Dirichlet prior $Q \sim D P_{\alpha G}$ such that $W_{r}\left(G, G_{0}\right)$ is "small", then the posterior of Q given the data concentrates on the true Q_{0} at a suitably fast rate

Posterior concentration under perturbation

Suppose that spt $Q_{0} \subset \operatorname{spt} G_{0}$, and we use a Dirichlet prior $Q \sim D P_{\alpha G}$ such that $W_{r}\left(G, G_{0}\right)$ is "small", then the posterior of Q given the data concentrates on the true Q_{0} at a suitably fast rate

To prove the above statement, one needs to carefully construct suitable sieves that occupy most of the probability mass, while requiring small entropy

Posterior concentration under perturbation

Suppose that spt $Q_{0} \subset$ spt G_{0}, and we use a Dirichlet prior $Q \sim D P_{\alpha G}$ such that $W_{r}\left(G, G_{0}\right)$ is "small", then the posterior of Q given the data concentrates on the true Q_{0} at a suitably fast rate

To prove the above statement, one needs to carefully construct suitable sieves that occupy most of the probability mass, while requiring small entropy

This requires new facts about the concentration of the Dirichlet process

Summary

- posterior concentration of latent hierarchies in the hierarchical Dirichlet process
- convergence of the Dirichlet mean measure from mixture data
- asymptotic gain of borrowing information in the Bayes hierarchy
- for details see
- Nguyen, X. Borrowing strength in hierarchical Bayes: convergence of the Dirichlet base measure. arxiv.org/abs/1301.0802

