Convergence of latent mixing measures in finite and infinite mixture models

Long Nguyen

Department of Statistics University of Michigan

BNP Workshop, ICERM 2012

• • = • • = •

Outline

Identifiability and consistency in mixture model-based clustering
onvergence of mixing measures

2 Wasserstein metric

Osterior concentration rates of mixing measures

- finite mixture models
- Dirichlet process mixture models
- Implications and proof ideas

Clustering problem

How do we subdivide $D = \{X_1, \ldots, X_n\}$ in \mathbb{R}^d into clusters?

3 / 29

Clustering problem

How do we subdivide $D = \{X_1, \ldots, X_n\}$ in \mathbb{R}^d into clusters?

Assume that data X_1, \ldots, X_n are iid sample from a mixture model

$$p_G(x) = \sum_{i=1}^k p_i f(x|\theta_i)$$

How do we guarantee consistent estimates for mixture components $\theta = (\theta_1, \dots, \theta_k)$ and $\mathbf{p} = (p_1, \dots, p_k)$?

イロト イポト イヨト イヨト

Bayesian nonparametric approach

Define mixing distribution:

$$G=\sum_{i=1}^k p_i \delta_{\theta_i}$$

Endow G with a prior distribution on the space of probability measures $\overline{\mathcal{G}}(\Theta)$

- for finite mixtures, k is given use parametric priors on mixing probabilities **p** and θ
- for infinite mixtures, k is unknown use a nonparametric prior such as the Dirichlet process:

 $G \sim \mathrm{DP}(\gamma, H)$

Bayesian nonparametric approach

Define mixing distribution:

$$G = \sum_{i=1}^{k} p_i \delta_{\theta_i}$$

Endow G with a prior distribution on the space of probability measures $\overline{\mathcal{G}}(\Theta)$

- for finite mixtures, k is given use parametric priors on mixing probabilities **p** and θ
- for infinite mixtures, k is unknown use a nonparametric prior such as the Dirichlet process:

$$G \sim \mathrm{DP}(\gamma, H)$$

Compute posterior distribution of *G* given data, $\Pi(G|X_1, \ldots, X_n)$

We are interested in concentration behavior of the posterior of G

イロト 不得 トイヨト イヨト

Posterior concentration of mixing measure G

Let X_1, \ldots, X_n be an iid sample from the mixture density

$$p_G(x) = \int f(x|\theta) G(d\theta)$$

f is known, while $G = G_0$ unknown discrete mixing measure

Questions

- when does the posterior distribution Π(G|X₁,...,X_n) concentrate most of its mass around the "truth" G₀?
- what is the rate of concentration (convergence)?

Related Work

Significant advances in posterior asymptotics (i.e., posterior consistency and convergence rates)

- general theory: Barron, Shervish & Wasserman (1999), Ghosal, Ghosh & van der Vaart (2000), Shen & Wasserman (2000), Walker (2004), Ghosal & van der Vaart (2007), Walker, Lijoi & Prunster (2007), ... going back to work of Schwarz (1965) and Le Cam (1973)
- mixture models: Ghosal, Ghosh & Ramamoorthi (1999), Genovese & Wasserman (2000), Ishwaran & Zarepour (2002), Ghosal & van der Vaart (2007), ...

These work focus mostly on the posterior concentration behavior of the data density p_G , not mixing measure G per se

(日)

Related Work on mixture models

Convergence of parameters \mathbf{p} and $\boldsymbol{\theta}$ in certain finite mixture settings:

- polynomial-time learnable settings: Kalai, Moitra, and Valiant (2010), Belkin & Sinha (2010); going back to Dasgupta (2000)
- overfitted setting: Rousseau & Mengersen (JRSSB, 2011)

Convergence of mixing measure G in a univariate finite mixture:

- settled by Jiahua Chen (AOS, 1995), who established optimal rate $n^{-1/4}$
- Bayesian asymptotics by Ishwaran, James and Sun (JASA, 2001)

Literature on deconvolution in kernel density estimation, in '80 and early '90 (Hall, Carroll, Fan, Zhang, $\ldots)$

Posterior concentration behavior of mixing measures in multivariate finite mixtures, and infinite mixtures remains unresolved

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Identifiability and consistency in mixture model-based clustering

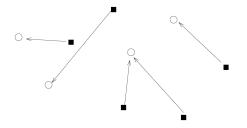
Wasserstein metric

- 3 Posterior concentration rates of mixing measures
- Implications and proof ideas

A B A A B A

Optimal transportation problem (Monge/Kantorovich, cf. Villani, '03)

How to optimally transport to goods from a collection of producers to a collection of consumers, all of which are located in some space?



squares: locations of producers; circles: locations of consumers

The optimal cost of transportation defines a (Wasserstein) distance between "production density" and "consumption density".

イロト イヨト イヨト

Wasserstein metric (cont)

Let $G = \sum_{i=1}^{k} p_i \delta_{\theta_i}$, $G' = \sum_{j=1}^{k'} p'_j \delta_{\theta'_j}$. A coupling between **p** and **p'** is a joint distribution **q** on $[1, \ldots, k] \times [1, \ldots, k']$ whose marginals are **p** and **p'**. That is, for any $(i, j) \in [1, \ldots, k] \times [1, \ldots, k']$,

$$\sum_{i=1}^{k} q_{ij} = p_j; \quad \sum_{j=1}^{k'} q_{ij} = p_i.$$

Definition

Let ρ be a distance function on Θ , the Wasserstein distance is defined by:

$$d_{\rho}(G,G') = \inf_{\mathbf{q}} \sum_{i,j} q_{ij} \rho(\theta_i,\theta'_j).$$

When $\Theta \subset \mathbb{R}^d$, ρ is Euclidean metric on \mathbb{R}^d , for $r \ge 1$, use ρ^r as a distance function on \mathbb{R}^d to obtain L_r Wasserstein metric:

$$W_r(G,G') := \left[\inf_{\mathbf{q}} \sum_{i,j} q_{ij} \|\theta_i - \theta'_j\|^r\right]^{1/r}.$$

Wasserstein distance W_r metrizes weak convergence in the space of probability measures on Θ .

Wasserstein distance W_r metrizes weak convergence in the space of probability measures on Θ .

If $\Theta = \mathbb{R}$, then $W_1(G, G') = \|CDF(G) - CDF(G')\|_1$.

11 / 29

Wasserstein distance W_r metrizes weak convergence in the space of probability measures on Θ .

If $\Theta = \mathbb{R}$, then $W_1(G, G') = \|CDF(G) - CDF(G')\|_1$.

If $G_0 = \delta_{\theta_0}$ and $G = \sum_{i=1}^k p_i \delta_{\theta_i}$, then

$$W_1(G_0,G) = \sum_{i=1}^k p_i \|\theta_0 - \theta_i\|.$$

A 回 > A 回 > A 回 >

Wasserstein distance W_r metrizes weak convergence in the space of probability measures on Θ .

If $\Theta = \mathbb{R}$, then $W_1(G, G') = \|CDF(G) - CDF(G')\|_1$.

If $G_0 = \delta_{\theta_0}$ and $G = \sum_{i=1}^k p_i \delta_{\theta_i}$, then

$$W_1(G_0,G) = \sum_{i=1}^k p_i \|\theta_0 - \theta_i\|.$$

If $G = \sum_{i=1}^{k} \frac{1}{k} \delta_{\theta_i}$, $G' = \sum_{j=1}^{k} \frac{1}{k} \delta_{\theta'_j}$, then $W_1(G, G') = \inf_{\pi} \sum_{i=1}^{k} \frac{1}{k} \|\theta_i - \theta'_{\pi(i)}\|,$

where π ranges over the set of permutations on $(1, \ldots, k)$.

Relations between Wasserstein distances and divergences If $W_2(G, G') = 0$, then clearly G = G' so that

$$V(p_G, p_{G'}) = h(p_G, p_{G'}) = K(p_G, p_{G'}) = 0.$$

It can be shown that an *f*-divergence (e.g., variational distance *V*, Hellinger *h*, Kullback-Leibler distance *K*) between p_G , $p_{G'}$ is always bounded from above by a Wasserstein distance

• if $f(x|\theta)$ is Gaussian with mean parameter θ , then

$$h(p_G, p_{G'}) \le W_2(G, G')/2\sqrt{2}.$$

• if $f(x|\theta)$ is Gamma with location parameter θ , then

$$K(p_G||p_{G'}) = O(W_1(G,G')).$$

Relations between Wasserstein distances and divergences If $W_2(G, G') = 0$, then clearly G = G' so that

$$V(p_G, p_{G'}) = h(p_G, p_{G'}) = K(p_G, p_{G'}) = 0.$$

It can be shown that an *f*-divergence (e.g., variational distance *V*, Hellinger *h*, Kullback-Leibler distance *K*) between p_G , $p_{G'}$ is always bounded from above by a Wasserstein distance

• if $f(x|\theta)$ is Gaussian with mean parameter θ , then

$$h(p_G, p_{G'}) \leq W_2(G, G')/2\sqrt{2}.$$

• if $f(x|\theta)$ is Gamma with location parameter θ , then

$$K(p_G||p_{G'}) = O(W_1(G, G')).$$

Conversely: if the distance between p_G, p'_G is small, can we ensure that $W_2(G, G')$ (or $W_1(G, G')$, etc) be small?

Identifiability in mixture models

The family $\{f(\cdot|\theta), \theta \in \Theta\}$ is identifiable if for any $G, G' \in \mathcal{G}(\Theta)$, $|p_G(x) - p_{G'}(x)| = 0$ for almost all x implies that G = G'.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Identifiability in mixture models

The family $\{f(\cdot|\theta), \theta \in \Theta\}$ is identifiable if for any $G, G' \in \mathcal{G}(\Theta)$, $|p_G(x) - p_{G'}(x)| = 0$ for almost all x implies that G = G'.

Stronger notion of identifiability (due to Chen (1995) for univariate case)

Strong identifiability

Let $\Theta \subseteq \mathbb{R}^d$. The family $\{f(\cdot|\theta), \theta \in \mathbb{R}^d\}$ is strongly identifiable if $f(x|\theta)$ is twice differentiable in θ , and for any finite k and distinct $\theta_1, \ldots, \theta_k$, the equality

$$\sup_{x \in \mathcal{X}} \left| \sum_{i=1}^{k} \alpha_i f(x|\theta_i) + \beta_i^T Df(x|\theta_i) + \gamma_i^T D^2 f(x|\theta_i) \gamma_i \right| = 0$$
(1)

implies that $\alpha_i = 0$, $\beta_i = \gamma_i = \mathbf{0} \in \mathbb{R}^d$ for i = 1, ..., k. Here, $Df(x|\theta_i)$ and $D^2f(x|\theta_i)$ denote the gradient and the Hessian at θ_i of $f(x|\cdot)$, resp.

◆□ > ◆□ > ◆豆 > ◆豆 > □ □

Wasserstein identifiability: finite mixtures

Suppose that

- Θ is a compact subset of \mathbb{R}^d
- the family $\{f(\cdot|\theta)\}$ is strongly identifiable
- the Hessian matrix $D^2 f(x|\theta)$ satisfies a uniform Lipschitz condition
- G_k(Θ) denotes the space of discrete measures with at most k < ∞ support points in Θ.

Theorem 1 (Nguyen, 2012)

For any $G_0\in \mathcal{G}_k(\Theta)$, there is a constant $C_0=C_0(k,G_0)>0$ such that

 $W_2^2(G_0,G) \leq C_0 \times V(p_{G_0},p_G) \ \forall G \in \mathcal{G}_k(\Theta)$

 $V(\cdot, \cdot)$ denotes the variational distance between two densities.

・ロト ・四ト ・ヨト ・ ヨト

Wasserstein identifiability: infinite mixtures

Let $G \in \overline{\mathcal{G}}(\Theta)$ (i.e., G has potentially unbounded number of support points)

We are restricted to convolution mixture models, i.e., $f(x|\theta)$ takes the form $f(x - \theta)$ for some multivariate density function f on \mathbb{R}^d , so that

$$p_G(x) = G * f(x) = \sum_i p_i f(x - \theta_i).$$

Suppose that

- Θ is a bounded subset of \mathbb{R}^d
- f is a density function on \mathbb{R}^d that is symmetric around 0.
- Fourier transform $\tilde{f}(\omega) \neq 0$ for all $\omega \in \mathbb{R}^d$.

・ 回 ト ・ ヨ ト ・ ヨ ト …

Theorem 2 (Nguyen, 2012)

Given assumptions on Θ and f in the previous page.

(1) Ordinary smooth likelihood. If $|\tilde{f}(\omega) \prod_{j=1}^{d} |\omega_j|^{\beta}| \ge d_0$ as $\omega_j \to \infty$, (j = 1, ..., d) for some positive constants d_0 and β . Then for any $m < 4/(4 + (2\beta + 1)d)$, there is some constant $C_1 = C_1(d, \beta, m) > 0$ such that for any $G, G' \in \bar{\mathcal{G}}(\Theta)$,

 $W_2^2(G,G') \leq C_1 \times V(p_G,p_{G'})^m.$

(2) Supersmooth likelihood. If |*f*(ω) Π^d_{j=1} exp(|ω_j|^β/γ)| ≥ d₀ as ω_j → ∞, (j = 1,...,d) for some positive constants β, γ, d₀. Then there is some constant C₁ = C₁(d, β) > 0 such that for any G, G' ∈ Ḡ(Θ),

$$W_2^2(G,G') \leq C_1 \times (-\log V(p_G,p_{G'}))^{-2/\beta}.$$

< □ > < □ > < □ > < □ > < □ > < □ >

Examples.

If f is the standard normal density on \mathbb{R}^d , $\tilde{f}(\omega) = \prod_{j=1}^d e^{-\omega_i^2/2}$, we obtain that

$$W_2^2(G,G')\lesssim rac{1}{\log(1/V(p_G,p_{G'}))}.$$

If f is a Laplace density on $\mathbb R$, e.g., $\widetilde{f}(\omega)=rac{1}{1+\omega^2}$, then

$$W_2^2(G,G') \lesssim V(p_G,p_{G'})^m$$

for any m < 4/9.

イロト 不得 トイヨト イヨト

Outline

- Identifiability and consistency in mixture model-based clustering
- 2) Wasserstein metric
- 3 Posterior concentration rates of mixing measures
 - 4 Implications and proof ideas

A B A A B A

Main result: Finite mixtures

 $k < \infty$ is known, Π is a prior distribution of mixing measures in $\mathcal{G}_k(\Theta)$. Suppose that the "truth" $\mathcal{G}_0 = \sum_{i=1}^k p_i^* \delta_{\theta_i^*} \in \mathcal{G}_k(\Theta)$. Moreover,

- (A1) Θ is compact subset of \mathbb{R}^d , and the family of likelihood functions $f(\cdot|\theta)$ is strongly identifiable.
- (A2) under prior Π , all p_i are bounded away from 0, and all pairwise distances $\|\theta_i \theta_j\|$ are bounded away from 0.
- (A3) some additional mild conditions on Π

Theorem 3

Let X_1, \ldots, X_n be an iid sample from P_{G_0} , where $G_0 \in \mathcal{G}_k(\Theta)$. Under Assumptions (A1–A3), there is a constant M > 0 such that

$$\Pi(W_2(G_0,G) \geq Mn^{-1/4}|X_1,\ldots,X_n) \to 0$$

in P_{G_0} -probability, as $n \to \infty$.

Main result: Dirichlet process mixtures

Given the "true" discrete measure $G_0 = \sum_{i=1}^k p_i^* \delta_{\theta_i^*} \in \mathcal{G}_k(\Theta)$, but k is unknown (potentially infinite)

Endow $G \in \overline{\mathcal{G}}(\Theta)$ with Dirichlet process prior $G \sim DP(\nu, P_0)$ for some $\nu > 0$ and non-atomic $P_0 \in \mathcal{P}(\Theta)$.

Furthermore,

- (B1) $\Theta \subset \mathbb{R}^d$ is compact, and P_0 has a Lebesgue density that is bounded away from zero.
- (B2) For some constants $C_1, m_1 > 0$, $K(f_i, f'_j) \le C_1 \rho^{m_1}(\theta_i, \theta'_j)$ for any $\theta_i, \theta'_j \in \Theta$. For any $G \in \operatorname{spt}(\Pi), \int p_{G_0}(\log(p_{G_0}/p_G))^2 \le C_2 K(p_{G_0}, p_G)^{m_2}$ for some constants $C_2, m_2 > 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 4

Let X_1, \ldots, X_n be an iid sample from P_{G_0} , where $G_0 \in \overline{\mathcal{G}}(\Theta)$. Given Assumptions (B1) and (B2) and the smoothness conditions for the likelihood family, there is a sequence $\beta_n \searrow 0$ such that

$$\Pi(W_2(G_0,G) \geq \beta_n | X_1,\ldots,X_n) \to 0$$

- in P_{G_0} probability. Specifically,
- (1) for ordinary smooth likelihood functions, take $\beta_n \simeq (\log n/n)^{\frac{2}{(d+2)(4+(2\beta+1)d)+\delta}}$, for any small $\delta > 0$.
- (2) for supersmooth likelihood functions, take $\beta_n \simeq (\log n)^{-1/\beta}$.

(1日) (1日) (1日)

Outline

- Identifiability and consistency in mixture model-based clustering
- 2 Wasserstein metric
- 3 Posterior concentration rates of mixing measures
- Implications and proof ideas

A B F A B F

Key elements of proof

We follow standard method of proof (cf., Ghosal, Ghosh & van der Vaart (2000), Ghosh & Ramamoorthi (2002))

- existence of tests that discriminate a mixing measure G from the complement of a ball
- the (induced) prior distribution on p_G is sufficiently dense in Kullback-Leibler distance

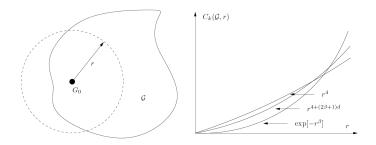
Technical challenges: the analysis has to be done in Wasserstein metric W_2 on G, as opposed to the standard Hellinger metric h for data density p_G

- 4 回 ト 4 三 ト 4 三 ト

Existence of tests

Suppose that G_0 has k support points. Let $\mathcal{G} \subset \overline{\mathcal{G}}(\Theta)$. The Hellinger information of W_2 metric for \mathcal{G} is

$$C_k(\mathcal{G},r) = \inf_{G \in \mathcal{G}: W_2(G_0,G) \ge r} h^2(p_{G_0},p_G).$$



• both \mathcal{G} and $C_k(\mathcal{G}, \cdot)$ may be non-convex.

• behavior near 0 of $\mathcal{C}_k(\mathcal{G},\cdot)$ depends on both f(x| heta) and \mathcal{G}

▲ 臣 ▶ | ▲ 臣 ▶ | |

A test φ_n is an indicator function of the iid sample X_1, \ldots, X_n .

Lemma

Let $D(\epsilon)$ be the covering number in Wasserstein metric of a certain subset of $\overline{\mathcal{G}}(\Theta)$. There exist tests φ_n such that for any small $\epsilon > 0$,

$$P_{G_0}\varphi_n \leq D(\epsilon) \sum_{t=1}^{\lceil \operatorname{diam}(\Theta)/\epsilon\rceil} \exp[-nC_k(\mathcal{G}, t\epsilon)/8]$$
$$\sup_{G \in \mathcal{G}: W_2(G_0, G) > \epsilon} P_G(1 - \varphi_n) \leq \exp[-nC_k(\mathcal{G}, \epsilon)/8].$$

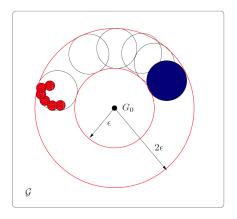
If \mathcal{G} is convex, then $D(\epsilon)$ is the $\epsilon/2$ -covering number of the "ring set":

$$\mathcal{S} := \{ G : W_2(G_0, G) \in [\epsilon, 2\epsilon] \}$$

If \mathcal{G} is non-convex, then $D(\epsilon)$ is the ϵ' -covering number of set \mathcal{S} , where

$$\epsilon' \asymp C_k^{1/4}(\mathcal{G}, \epsilon/2).$$

< ロ > < 同 > < 回 > < 回 > < 回 > <



For convex \mathcal{G} , $D(\epsilon)$ is the number **blue** balls, of radius $\epsilon/2$, that cover ring set \mathcal{S} . For non-convex \mathcal{G} , $D(\epsilon)$ is the number of red balls, of radius $C_k^{1/4}(\mathcal{G}, \epsilon/2)$.

• for finite mixtures, $C_k^{1/4}(\mathcal{G},\epsilon/2) = O(\epsilon)$, but typically $C_k^{1/4}(\mathcal{G},\epsilon/2) = o(\epsilon)$

< □ > < □ > < □ > < □ > < □ > < □ >

Entropy bounds

Since Wasserstein metric inherits the geometry of the space of atoms Θ , it is simple to obtain bounds on the covering number in Wasserstein space:

Lemma

- (a) $\log N(2\epsilon, \mathcal{G}_k(\Theta), d_{\rho}) \leq k(\log N(\epsilon, \Theta, \rho) + \log(e + e \operatorname{diam}(\Theta)/\epsilon)).$
- (b) $\log N(2\epsilon, \overline{\mathcal{G}}(\Theta), d_{\rho}) \leq N(\epsilon, \Theta, \rho) \log(e + e \operatorname{diam}(\Theta)/\epsilon).$
- (c) Let $G_0 = \sum_{i=1}^k p_i^* \delta_{\theta_i^*} \in \mathcal{G}_k(\Theta)$. Assume that $M = \max_{i=1}^k 1/p_i^* < \infty$ and $m = \min_{i,j \le k} \rho(\theta_i^*, \theta_j^*) > 0$. Then,

$$\log N(\epsilon/2, \{G \in \mathcal{G}_k(\Theta) : d_{\rho}(G_0, G) \le 2\epsilon\}, d_{\rho}) \\ \le k(\sup_{\Theta'} \log N(\epsilon/4, \Theta', \rho) + \log(32k \operatorname{diam}(\Theta)/m)),$$

where the supremum in the right side is taken over all bounded subsets $\Theta' \subseteq \Theta$ such that diam $(\Theta') \leq 4M\epsilon$.

イロト イヨト イヨト イヨト

Kullback-Leibler dense property

The Kullback-Leibler dense property, which provides a lower bound on the probability that the Kullback-Leibler distance to a given mixture density p_{G_0} is small can be derived from "small ball probability":

Lemma

Let $G \sim DP(\nu, P_0)$, where P_0 is a non-atomic base probability measure on a compact set Θ . For a small $\epsilon > 0$, let $D = D(\epsilon, \Theta, \rho)$ denote the packing number of Θ under ρ metric. Then, under the Dirichlet process distribution,

$$\Pi(G: W_2(G_0, G) \leq \sqrt{5}\epsilon) \geq \Gamma(\nu)[\epsilon^2(2D)^{-1}\operatorname{diam}(\Theta)^{-2}]^{D-1}\nu^D\prod_{i=1}^D P_0(S_i).$$

Here, (S_1, \ldots, S_D) denotes the D disjoint $\epsilon/2$ -balls that form a maximal packing of Θ . $\Gamma(\cdot)$ is the gamma function.

イロト イヨト イヨト イヨト

Summary

The question of posterior concentration of mixing measures is useful especially for clustering applications

Wasserstein metric provides a natural way to explore this question

- rates established for both finite and Dirichlet process mixtures
- minimax optimal rates?

For details, see:

• X. Nguyen, "Convergence of latent mixing measures in finite and infinite mixture models". Technical Report available at

www.stat.lsa.umich.edu/~xuanlong

イロト イヨト イヨト ・