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What about . . .

“Something old, something new, something borrowed, something blue . . . ”

All these techniques center around clustering problems, but they illustrate a fairly
large body of work in modern statistics and machine learning

Part 1, 2, 3 focus on aspects of algorithms, optimization and stochastic
simulations

Part 4 is an in-depth excursion into the world of statistical modeling

Part 5 has a good dose of probability theory and stochastic processes

Part 6 delves deeper into the statistical theory
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A basic clustering problem

Suppose we have data set D = {X1, . . . ,XN} in some space.
How do we subdivide these data points to clusters?

Data points may represent scientific measurements, business transactions, text
documents, images
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Example: Clustering of images
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Example: A data point is an article in Psychology Today
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Obtain “clusters” organized by certain topics: (Blei et al, 2010)
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K-means algorithm
maintain two kinds of variables:{

cluster means: µk , k = 1, . . . ,K ;
cluster assigment: Z k

n ∈ {0, 1}, n = 1, . . . ,N.

number of clusters K assumed known.

Algorithm

1. Initialize {µk}Kk=1 arbitrarily.
2. Repeat (a) and (b) until convergence:
(a) update for all n = 1, . . . ,N:

Z k
n :=

{
1, if k = argmini≤K ‖Xn − µi‖ ,
0, otherwise.

(b) update for all k = 1, . . . ,K :

µk =

∑N
n=1 Z

k
n Xn∑N

n=1 Z
k
n

.
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Illustration
K = 2
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What does all this mean?

Operational/mechanical/algebraic meaning: It is easy to show that

K-means algorithm obtains a (locally) optimal solution to optimization problem:

min
{Z,µ}

N∑
n=1

K∑
k=1

Z k
n ‖Xn − µk‖2 .

(Much) harder questions:

Why this optimization?
Does this give us the “true” clusters?
What if our assumptions are wrong?
What is the best possible algorithm for learning clusters?
How can we be certain of the “truth” from empirical data?
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Statistical inference a.k.a. learning:
Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out
pattern/law/value of certain phenomenon from empirical data

the pattern is parameterized by θ ∈ Θ, while data are samples X1, . . . ,XN

An inference procedure is called an estimator in mathematical statistics. It may
be formalized as an algorithm, thus a learning algorithm in machine learning.
Mathematically, it is a mapping from data to an estimate for θ:

X1, . . . ,XN 7→ T (X1, . . . ,XN) ∈ Θ

The output of the learning algorithm, T (X ), is an estimate of the unknown
“truth” θ.
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What, How, Why

In clustering problem θ represents the variables used to describe cluster means
and cluster assigments θ = {θk ;Z k

n }, as well as number of clusters K

What is the “right” inference procedure?

traditionally studied by statisticians

How to achieve this learning procedure in a computationally efficient manner?

traditionally studied by computer scientists

Why is the procedure both “right” and “efficient”?

how much data and how much computations do we need

these questions drive asymptotic statistics and learning theory
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We use clustering as a case study to illustrate these rather fundamental questions
in statistics and machine learning, also because of

vast range of modern applications

fascinating recent research in algorithms and statistical theory motivated this
type of problems

interest links connecting optimization and numerical analysis to complex
statistical modeling, probability theory and stochastic processes
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Roles of probabilistic models

In order to infer about θ from data X , a probabilistic model is needed to provide
the “glue” linking θ to X

A model is specified in the form of a probability distribution P(X |θ)

Given the same probability model, statisticians may still disagree on how to
proceed; there are two broadly categorized approaches to inference: frequentist
and Bayes

these two viewpoints are consistent mathematically, but can be wildly incompatible
in terms of interpretation

both are interesting and useful in different inferential situations

roughly speaking, a frequentist method assumes that θ is a non-random unknown
parameter, while a Bayesian method always treats θ as a random variable

frequentists view data X as infinitely available as independent replicates, while a
Bayesian does not worry about the data he hasn’t seen (he cares more about θ)
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Model-based clustering

Assume that data are generated according to a random process:

pick one of K clusters from a distribution π = (π1, . . . , πK )

generate a data point from a cluster-specific probability distribution

This yields a mixture model:

P(X |φ) =
K∑

k=1

πkP(X |φk),

where the collection of parameters is θ = (π,φ);

π = πk ’s are mixing probabilities, φ = (φ1, . . . , φK ) are the parameters associated
with the K clusters.

We still need to specify the cluster-specific distributions P(X |φk) for each k .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 16 / 86



Model-based clustering

Assume that data are generated according to a random process:

pick one of K clusters from a distribution π = (π1, . . . , πK )

generate a data point from a cluster-specific probability distribution

This yields a mixture model:

P(X |φ) =
K∑

k=1

πkP(X |φk),

where the collection of parameters is θ = (π,φ);

π = πk ’s are mixing probabilities, φ = (φ1, . . . , φK ) are the parameters associated
with the K clusters.

We still need to specify the cluster-specific distributions P(X |φk) for each k .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 16 / 86



Model-based clustering

Assume that data are generated according to a random process:

pick one of K clusters from a distribution π = (π1, . . . , πK )

generate a data point from a cluster-specific probability distribution

This yields a mixture model:

P(X |φ) =
K∑

k=1

πkP(X |φk),

where the collection of parameters is θ = (π,φ);

π = πk ’s are mixing probabilities, φ = (φ1, . . . , φK ) are the parameters associated
with the K clusters.

We still need to specify the cluster-specific distributions P(X |φk) for each k .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 16 / 86



Example: for Gaussian mixtures, φk = (µk ,Σk) and P(X |φk) is a Gaussian
distribution with mean µk and covariance matrix Σk .

Why Gaussians? What is K , the number of Gaussians subpopulations?
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Representation via latent variables

For each data point X , introduce a latent variable Z ∈ {1, . . . ,K} that indicates
which subpopulation X is associated with.

Generative model

Z ∼ Multinomial(π),

X |Z = k ∼ N(µk ,Σk).

Marginalizing out the latent Z , we obtain:

P(X |θ) =
K∑

k=1

P(X |Z = k , θ)P(Z = k |θ)

=
K∑

k=1

πkN(X |µk ,Σk).

Data set D = (X1, . . . ,XN) are i.i.d. samples from this generating process.
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Equivalent representation via mixing measure

Define the discrete probability measure

G =
K∑

k=1

πkδφk

where δφk
is an atom at φk

The mixture model is define as follows:

θn := (µn,Σn) ∼ G

Xn|θn ∼ P(·|θn)

Each θn is equal to the mean/variance of the cluster associated with data Xn. G
is called a mixing measure.
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Inference

Setup: Given data D = {X1, ...,XN} assumed iid from a mixture model.
{Z1, . . . ,ZN} are associated (latent) cluster assignment variables.

Goal:

Estimate parameters θ = (π, µ,Σ).

Estimate cluster assigment via calculation of conditional probability of
cluster labels P(Zn|Xn)
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Maximum likelihood estimation
A frequentist method for estimation going back to Fisher (see, e.g., van der
Vaart, 2000)

Likelihood function is a function of parameter:

L(θ|Data) = P(Data|θ) =
N∏

n=1

P(Xn|θ).

MLE gives the estimate:

θ̂N := argmax
θ

L(θ|Data)

= argmax
θ

N∑
n=1

logP(Xn|θ).

A fundamental theorem in asymptotic statistics

Under regularity conditions, the maximum likelihood estimator is consistent and
asymptotically efficient.

I.e., assuming that X1, . . . ,XN
i.i.d∼ P(X |θ∗), then θN → θ∗ in probability (or

almost surely), as N →∞.
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MLE for Gaussian mixtures (cont)

Recall the mixture density:

P(X |θ) =
K∑

k=1

πkN(X |µk ,Σk)

π, µ,Σ := argmax
N∑

n=1

log{
K∑

k=1

πkN(Xn|µk ,Σk)}.

It is possible but cubersome to solve this optimization directly, a more practically
convenient approach is via the EM (Expectation-Maximization) algorithm.
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EM algorithm for Gaussian mixtures

Intuition

For each data point Xn, if Zn is known for all n = 1, . . . ,N, it would be easy
to estimate the “cluster” means and covariances µk ,Σk .

But Zn’s are hidden — perhaps, we can "fill-in" the latent variable Zn by an
estimate, such as the conditional expectation E(Zn|Xn). This can be done if
all parameters are known.

Classic “chicken-and-egg” situation!
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EM algorithm for Gaussian mixture

1. Initialize {µk ,Σk , πk}Kk=1 arbitrarily.
2. Repeat (a) and (b) until convergence:
(a) For k = 1, . . . ,K , n = 1, . . . ,N, calculate conditional expectation of labels:

τ k
n ←− P(Z = k |Xn)

= P(Xn|Z=k)P(Z=k)PK
k=1 P(Xn|Z=k)P(Z=k)

= πkN(Xn|µk ,Σk )PK
k=1 πkN(Xn|µk ,Σk )

.

(b) Update for k = 1, . . . ,K :

µk ←−
PN

n=1 τ
k
n xnPN

n=1 τ
k
n

,

Σk ←−
PN

n=1 τ
k
n (xn−µk )(xn−µk )TPN

n=1 τ
k
n

,

πk ←− 1
N

∑N
n=1 τ

k
n .

This algorithm is a “soft version” that generalizes the K-means algorithm!
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Illustration of EM algorithm
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What does this algorithm really do?

We will show that this algorithm ultimately obtains a local optimum of the
likelihood function. I.e., it is indeed an MLE method.

Suppose that we have “full data (complete data)” Dc = {(Zn,Xn)N
n=1}.

Then we can calculate the complete log-likelihood function:

lc(θ|Dc) = logP(Dc |θ)

=
N∑

n=1

logP(Xn,Zn|θ)

=
N∑

n=1

log

{ K∏
k=1

(πkN(Xn|µk ,Σk))Z k
n

}

=
N∑

n=1

K∑
k=1

Z k
n log{πkN(Xn|µk ,Σk)}

=
N∑

n=1

K∑
k=1

Z k
n (log πk + logN(Xn|µk ,Σk)).
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To estimate the parameters, we may wish to optimize the complete log-likelihood
if we actually have full data (Zn,Xn)N

n=1.
Since Zn’s are actually latent, we settle for conditional expectation. In fact,

Easy exercise

The updating step (b) of the EM algorithm described earlier optimizes the
conditional expectation of the complete log-likelhood:

θ := argmaxE[lc(θ|Dc)|X1, . . . ,XN)],

where E[lc(θ|Dc)|X1, . . . ,XN ] =
∑N

n=1

∑K
k=1 τ

k
n (log πk + logN(Xn|µk ,Σk)).

(Proof by taking gradient with respect to parameters and setting to 0).
Compare this to optimizing the original likelihood function:

l(θ|D) =
N∑

n=1

log

{ K∑
i=1

πkN(Xn|µk ,Σk)

}
.
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Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

EM algorithm for Gaussian mixtures

1. Initialize randomly θ = {µk ,Σk , πk}Kk=1.
2. Repeat (a) and (b) until convergence:
(a) “E-step”: given current estimate of θ, compute E [lc(θ|Dc)|D].
(b) “M-step”: update θ by maximizing E [lc(θ|Dc)|D];

It remains to show that maximizing the expected complete log-likelihood is
equivalent to maximizing the log-likelihood function . . .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 28 / 86



Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

EM algorithm for Gaussian mixtures

1. Initialize randomly θ = {µk ,Σk , πk}Kk=1.
2. Repeat (a) and (b) until convergence:
(a) “E-step”: given current estimate of θ, compute E [lc(θ|Dc)|D].
(b) “M-step”: update θ by maximizing E [lc(θ|Dc)|D];

It remains to show that maximizing the expected complete log-likelihood is
equivalent to maximizing the log-likelihood function . . .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 28 / 86



Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

EM algorithm for Gaussian mixtures

1. Initialize randomly θ = {µk ,Σk , πk}Kk=1.
2. Repeat (a) and (b) until convergence:
(a) “E-step”: given current estimate of θ, compute E [lc(θ|Dc)|D].
(b) “M-step”: update θ by maximizing E [lc(θ|Dc)|D];

It remains to show that maximizing the expected complete log-likelihood is
equivalent to maximizing the log-likelihood function . . .

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 28 / 86



EM algorithm for latent variable models
A model with latent variables abstractly defined as follows:

Z ∼ P(·|θ)

X |Z ∼ P(·|Z , θ).

This type of model includes

mixture models, hierarchical models (will see later in this lecture)

hidden Markov models, Kalman filters, etc

Recall the log-likelihood function for observed data:

l(θ|D) = log p(D|θ) =
N∑

n=1

log p(Xn|θ)

and the log-likelihood function for the complete data:

lC (θ|DC ) = log p(DC |θ) =
N∑

n=1

log p(Xn,Zn|θ).
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EM algorithm maximizes the likelihood

EM algorithm for latent variable models

1. Initialize randomly θ.
2. Repeat (a) and (b) until convergence:
(a) “E-step”: given current estimate of θ, compute E [lc(θ|Dc)|D].
(b) “M-step”: update θ by maximizing E [lc(θ|Dc)|D];

Theorem

The EM algorithm is a coordinatewise hill-climbing algorithm with respect to the
likelihood function.

For proof, see hand-written notes.
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Outline

1 Clustering problem

2 Finite mixture models

3 Bayesian estimation

4 Hierarchical Mixture

5 Dirichlet processes and nonparametric Bayes

6 Asymptotic theory

7 References
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Bayesian estimation

In a Bayesian approach, parameters θ = (π, µ,Σ) are assumed to be random

There needs to be a prior distribution for θ
Consequentially we obtain a Bayesian mixture model

Inference boils down to calculation of posterior probability:

Bayes’ Rule

P(θ|Data) ≡ P(θ|X )

=
P(θ)P(X |θ)∫
P(θ)P(X |θ)dθ

posterior ∝ prior× likelihood
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Prior distributions

π = (π1, . . . , πK ) ∼ Dir(α)

µ1, . . . , µK ∼ N(0, I)

Σ1, . . . ,ΣK ∼ IW(Ψ,m).

A million dollar question: how to choose prior distributions?
(such as Dirichlet, Normal, Inverse-Wishart, . . . )

. . . the pure Bayesian viewpoint

. . . the pragmatic viewpoint: computational convenience via conjugacy

. . . the theoretical viewpoint: posterior asymptotics
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Dirichlet distribution
Let π = (π1, . . . , πK ) be a point in the (K − 1)-simplex

i.e., 0 ≤ πk ≤ 1, and
∑K

k=1 = 1

Let α = (α1, . . . , αK ) be a set of parameters, where αk > 0
The Dirichlet density is defined as

P(π|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

πα1−1
1 . . . παK−1

K .

Eπk = αk/(
∑K

k=1 αk)
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Multinomial-Dirichlet conjugacy

Let π ∼ Dir(α).
Let Z ∼ Multinomial(π), i.e. P(Z = k |π) = πk for k = 1, . . . ,K .
Write Z as indicator vector Z = (Z 1 . . .Z k).

Then the posterior probability of π is:

P(π|Z ) ∝ P(π)P(Z |π)

∝ (πα1−1
1 . . . παK−1

K )× (πZ 1

1 . . . πZ k

K )

∝ πα1−1
1 . . . παK−1

K

= πα1+Z 1−1
1 . . . παK +Z k−1

K ,

which is again a Dirichlet density with modified parameter: Dir(α + Z )

We say Multinomial-Dirichlet is a conjugate pair
Other conjugate pairs: Normal-Normal (for mean variable µ), Normal-Inverse
Wishart (for covariance matrix Σ), etc
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Bayesian mixture model

Xn|Zn = k ∼ N(µk ,Σk)

Zn|π ∼ Multinomial(π)

π ∼ Dir(α)

µi |µ0,Σ0 ∼ N(µ0,Σ0)

Σi |Ψ ∼ IW(Ψ,m).

(α, µ0,Σ0,Ψ) are non-random parameters
(or they may be random and assigned with prior distributions as well)
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Posterior inference

Posterior inference is about calculating conditional probability of latent variables
and model parameters
i.e., P((Zn)N

n=1, (πk , µk ,Σk)K
k=1|X1, . . . ,XN)

This is usually difficult computationally

An approach is via sampling, exploiting conditional independence

At this point we take a detour, discussing a general modeling and inference
formalism known as graphical models
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Directed graphical models
Given a graph G = (V, E), where each node v ∈ V is associated with a random
variable Xv :

The joint distribution on collection of variables XV = {Xv : v ∈ V} factorizes
accoding to the “parent-of” relation defined by directed edges E :

P(XV) =
∏
v∈V

P(Xv |Xparents(v))
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Conditional independence

Observed variables are shaded

It can be shown that X1 ⊥ {X4,X5,X6|X2,X3}.

Moreover we read off all such conditional independence from the graph structure.
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Basic conditional independence structure
“chain structure”: X ⊥ Z |Y

“causal structure”: X ⊥ Z |Y

“explanation-away”: X ⊥ Z (marginally) but X 6⊥ Z |Y
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“Explanation-away”

aliens = “Alice was abducted by
aliens”
watch = “forgot to set watch
alarm before bed”
late = “Alice is late for class”

aliens ⊥ watch

aliens 6⊥ watch | late
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Condionally i.i.d.
“Conditional iid (identically and independently distributed)”: this is represented by
a plate notation that allows subgraphs to be replicated:

Note that this graph represents a mixture distribution for observed variables
(X1, . . . ,XN):

P(X1, . . . ,XN) =

∫
P(X1, . . . ,XN |θ)dP(θ)

=

∫ N∏
i=1

P(Xi |θ)dP(θ)
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Gibbs sampling

A Markov chain Monte Carlo (MCMC) sampling method

Consider a collection of variables, say X1, . . . ,XN with a joint distribution
P(X1, . . . ,XN) (which may be a conditional joint distribution in our specific
problem)

A stationary Markov chain is a sequence of Xt = (X t
1 , . . . ,X

t
N) for t = 1, 2, . . .

such that given Xt , random variable Xt+1 is conditionally independent of all
variables before t, and

P(Xt+1|Xt) is invariant with respect to t
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Gibbs sampling (cont)

Gibbs sampling method sets up the Markov chain as follows

at step t = 1, initialize X1 to arbitrary values

at step t, choose n randomly among 1, . . . ,N

draw a sample for X t
n from P(Xn|X1, . . . ,Xn−1,Xn+1, . . . ,XN)

iterate

A fundamental theorem of Markov chain theory

Under mild conditions (ensuring ergodicity), Xt converges in the limit to the joint
distribution of X, namely P(X1, . . . ,XN)
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Back to posterior inference

The goal is the sample from the (conditional) joint distribution
P((Zn)N

n=1, (πk , µk ,Σk)K
k=1|X1, . . . ,XN)

By Gibbs sampling, it is sufficient to be able to sample from conditional
distributions of each of the latent variables and parameters given everything else
(and conditionally on the data)

We will see that conditional independence helps in a big way
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Sample π:

P(π|µ,Σ,Z1...ZN ,Data) = P(π|Z1...ZN)

↑ (conditional independence)

∝ P(Z1...Zn|π)P(π|α)

= Dir(α1 + n1, α2 + n2, ..., αK + nK ),

where nj =
∑N

n=1 I(Zn = j).

Sample Zn:

P(Zn = k |everything else, including data) = P(Zn = k |Xn,π, µ,Σ)

↑ (conditional independence)

=
πkN(Xn|µk ,Σk)∑K

k=1 πkN(Xn|µk ,Σk)
.
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Sample µk :

P(µk |µ0,Σ0,Z,X,Σ)

= P(µk |µ0,Σ0,Σk , {Zn,Xn such that Zn = k})
∝ P({Xn : Zn = k}|µk ,Σk)P(µk |µ0,Σ0)

↑ Bayes’ Rule

=
∏

n:Zn=k

exp

{
− 1

2
(Xn − µk)T Σ−1

k (Xn − µk)

}
× exp−1

2
(µk − µ0)T Σ−1

0 (µk − µ0)

∝ exp−1

2
(µk − µ̃k)T Σ̃k

−1
(µk − µ̃k)

≡ N(µ̃k , Σ̃k)
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Here,

Σ̃k
−1

= Σ−1
0 + nkΣ−1

k ,

where nk =
N∑

n=1

1(Zn = k)

Σ̃k
−1
µ̃k = Σ−1

0 µ0 + Σ−1
k

∑
Xn:Zn=k

Xn

Hence, µ̃k = Σ̃k(Σ−1
0 µ0 + Σ−1

k

∑
Xn:Zn=k Xn).

Notice that if nk →∞, then Σ̃k → 0.
So, µ̃k − 1

nk

∑
n:Zn=k Xn → 0. (That is, the prior is taken over by data!)
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To sample Σk , we use inverse Wishart distribution (a generalization of the
chi-square distribution to multivariate cases) as prior:

B ∼W−1(Ψ,m)⇔ B−1 ∼W (Ψ,m)

B ,Ψ : p × p PSD matrices, m : degree of freedom

Inverse-Wishart density:

P(B |Ψ,m) ∝ ‖Ψ‖m
2 ‖B‖

−(n+p+1)
2 exp−tr(ΨB−1/2)

Assume that, as a prior for Σk , k = 1, ...,K ,

Σk |Ψ,m ∼ IW(Ψ,m).
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So the posterior distribution for Σk takes the form:

P(Σk |Ψ,m,µ, pi,Z,Data)

= P(Σk |Ψ,m, µk , {Xn : Zn = k})
∝

∏
n:Zn=k

P(Xn|Σk , µk)× P(Σk |Ψ,m)

∝ 1

‖Σk‖
nk
2

exp

{ ∑
n:Zn=k

−1

2
tr[Σ−1

k (Xk − µk)(Xk − µk)T ]

}
×‖Ψ‖m

2 ‖Σk‖−
m+p+1

2 exp−1

2
tr[ΨΣ−1

k ]

= IW(A + Ψ, nk + m)

where

A =
∑

n:Zn=k

(Xn − µk)(Xn − µk)T , nk =
N∑

n=1

I(Zn = k)
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Summary of Gibbs sampling

Use Gibbs sampling to obtain samples from the posterior distribution
P(π,Z, µ,Σ|X1, . . . ,XN)

Sampling algorithm

Randomly generate (π(1),Z (1), µ,(1) ,Σ(1))

For t = 1, ...,T , do the following:

(1) draw π(t+1) ∼ P(π|Z (t), µ(t),Σ(t),Data)

(2) draw Z
(t+1)
n ∼ P(Zn|Z (t)

−n, µ
(t),Σ(t), π(t+1),Data)

(3) draw µ
(t+1)
k ∼ P(µk |µ(t)

k ,Z
(t+1)
n ,Σ(t), π(t+1),Data)
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By the fundamental theorem of Markov chain, for t sufficiently large,
π(t),Z (t), µ,(t) ,Σ(t)) can be viewed as a random sample of the posterior
P(·|Data)

Suppose that we have drawn samples from the posterior distribution, posterior
probabilities can be obtained via Monte Carlo approximation

E.g., posterior probability of the cluster label for data point Xn:

P(Zn|Data) ≈ 1

T − s + 1
ΣT

t=sδZ s
n

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 52 / 86



By the fundamental theorem of Markov chain, for t sufficiently large,
π(t),Z (t), µ,(t) ,Σ(t)) can be viewed as a random sample of the posterior
P(·|Data)

Suppose that we have drawn samples from the posterior distribution, posterior
probabilities can be obtained via Monte Carlo approximation

E.g., posterior probability of the cluster label for data point Xn:

P(Zn|Data) ≈ 1

T − s + 1
ΣT

t=sδZ s
n

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 52 / 86



By the fundamental theorem of Markov chain, for t sufficiently large,
π(t),Z (t), µ,(t) ,Σ(t)) can be viewed as a random sample of the posterior
P(·|Data)

Suppose that we have drawn samples from the posterior distribution, posterior
probabilities can be obtained via Monte Carlo approximation

E.g., posterior probability of the cluster label for data point Xn:

P(Zn|Data) ≈ 1

T − s + 1
ΣT

t=sδZ s
n

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 52 / 86



Comparing Gibbs sampling and EM algorithm

Gibbs can be viewed as a stochastic version of the EM algorithm

EM algorithm
1. E step: given current value of
parameter θ, calculate conditional
expectation of latent variables Z
2. M step: given the conditional
expectations of Z, update θ by
maximizing the expected
complete log-likelihood function

Gibbs sampling
1. given current values of θ,
sample Z
2. given current values of Z,
sample (random) θ
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Outline
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Recall our Bayesian mixture model: for each n = 1, . . . ,N, k = 1, . . . ,K ,

Xn|Zn = i ∼ N(µi ,Σi ),

Zn|π ∼ Multinomial(π)

π ∼ Dir(α)

µ|µ0,Σ0 ∼ N(µ0,Σ0)

Σk |Ψ ∼ IW(Ψ,m).

We may assume further that parameters (α, µ0,Σ0,Ψ) are may be random and
assigned by prior distributions

Thus we obtain a hierarchical model in which parameters appear as latent random
variables
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Exchangeability

The existence of latent variables can be motivated by De Finetti’s theorem

Classical statistics often relies on assumption of i.i.d. data X1, . . . ,XN with
respect to some probability model parameterized by θ (non-random)

However, if X1, . . . ,XN are exchangeable, then De Finetti’s theorem establishes
the existence of a latent random variable θ such that, X1, . . . ,XN are
conditionally i.i.d. given θ

This theorem is regarded by many as one of the results that provide the
mathematical foundation for Bayesian statistics
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Definition

Let I be a countable index set. A sequence (Xi : i ∈ I ) (finite or infinite) is
exchangeable if for any permutation ρ of I

(Xρ(i))i∈I
law
= (Xi )i∈I

De Finetti’s theorem

If (X1, ...,Xn, ...) is an infinite exchangeable sequence of random variables on
some probability space then there is a random variable θ ∼ π such that
X1, ...,Xn, ... are iid conditionally on θ. That is, for all n

P(X1, ...,Xn, ...) =

∫
θ

n∏
i=1

P(Xi |θ) dπ(θ)

Remarks

Exchangeability is a weaker assumption than iid.

θ may be (generally) an infinite dimensional variable
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Latent Dirichlet allocation/ Finite admixture

Developed by Pritchard et al (2000), Blei et al (2001)

Widely applicable to data such as texts, images and biological data (Google
Scholar has 12000 citations)

A canonical and simple example of hierarchical mixture model for discrete data

Some jargons:

Basic building blocks are words represented by random variables, say W , where
W ∈ {1, ...,V }. V is the length of the vocabulary.

A document a sequence of words denoted by W = (W1, ...,WN).

A corpus is a collection of documents (W
1
, ...,W

m
).

General problems: Given a collection of documents, can we infer the topics that
the documents may be clustered around?
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Early modeling attempts
Unigram Model: All documents in corpus share the same “topic”. I.e.,
For any document W = (W1, . . . ,WN),

W1, ...,WN ∼ Mult(θ)

N

M

Wn

θ
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Mixture of Unigram Model: Each document W is associated with a latent ”topic”
variable Z . I.e.,
For each d = 1, . . . ,m, generate document W = (W1, . . . ,WN) as follows:

Z ∼ Mult(θ)

W1, ...,WN |Z = k
iid∼ Mult(βk)

N

M

Wn

θ

N

M

Wn

Z

θ

β

Unigram Mixture of unigrams
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Latent Dirichlet allocation model
Assume the following:

The words within each document are exchangeable – this is the ’bag of
words’ assumption

The documents within each corpus are exchangeable

A document may be associated with K topics

Each word within a document is associated with any topics

For d = 1, . . . ,M, generate document W = (W1, . . . ,WN) as follows:

draw θ ∼ Dir(α1, ..., αK ),

for each n = 1, ...,N,

Zn ∼ Mult(θ) i.e. P(Zn = k |θ) = θk

Wn|Zn
iid∼ Mult(β) i.e. P(Wn = j |Zn = k ,β) = βkj , β ∈ RK×V
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Geometric illustration

N
M

Wn

Zn

θ

α

β

Each x dot in the topic polytope (topic simplex in illustration) corresponds to the
word frequency vector for a random document
Extreme points of the topic polytope (e.g., topic 1, topic 2,...) in RHS are
represented by vectors βk for k = 1, 2, . . . in the hierarchical model in LHS

βk = (βk1, . . . , βkV )
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Posterior inference

The goal of inference includes:

1 Compute the posterior distribution, P(θ,Z |W , α, β) for each document
W = (W1, . . . ,WN)

2 Estimating α, β from the data, e.g., corpus of M documents W
1
, . . . ,W

M

Both of the above are relatively easy to do using Gibbs Sampling, or
Metropolis-Hastings, which will be left as an exercise.
Unfortunately a sampling algorithm may be extremely slow (to achieve
convergence), this motivate a fast deterministic algorithm for posterior inference.
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The posterior can be rewritten as

P(θ,Z |W , α, β) =
P(θ,Z ,W , α, β)

P(W |α, β)

The numerator can be computed easily:

P(θ,Z ,W , α, β) = P(θ|α)
N∏

n=1

P(Zn|θ)P(Wn|Zn, β)

Unfortunately, the denominator is difficult:

P(W |α, β) =

∫
Z ,θ

P(θ,Z ,W |α, β) =

∫
Γ(
∑
αk)

K∏
k=1

Γ(αk)

K∏
k=1

θαk−1
k

N∏
n=1

 K∑
k=1

V∏
j=1

(θkβkj)
I{Wn=j}

 dθ

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 64 / 86



The posterior can be rewritten as

P(θ,Z |W , α, β) =
P(θ,Z ,W , α, β)

P(W |α, β)

The numerator can be computed easily:

P(θ,Z ,W , α, β) = P(θ|α)
N∏

n=1

P(Zn|θ)P(Wn|Zn, β)

Unfortunately, the denominator is difficult:

P(W |α, β) =

∫
Z ,θ

P(θ,Z ,W |α, β) =

∫
Γ(
∑
αk)

K∏
k=1

Γ(αk)

K∏
k=1

θαk−1
k

N∏
n=1

 K∑
k=1

V∏
j=1

(θkβkj)
I{Wn=j}

 dθ

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 64 / 86



The posterior can be rewritten as

P(θ,Z |W , α, β) =
P(θ,Z ,W , α, β)

P(W |α, β)

The numerator can be computed easily:

P(θ,Z ,W , α, β) = P(θ|α)
N∏

n=1

P(Zn|θ)P(Wn|Zn, β)

Unfortunately, the denominator is difficult:

P(W |α, β) =

∫
Z ,θ

P(θ,Z ,W |α, β) =

∫
Γ(
∑
αk)

K∏
k=1

Γ(αk)

K∏
k=1

θαk−1
k

N∏
n=1

 K∑
k=1

V∏
j=1

(θkβkj)
I{Wn=j}

 dθ

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 64 / 86



Variational inference

This is an alternative to sampling-based inference.
The main spirit is to turn a difficult computation problem into an optimization
problem, one which can be modified/simplified.
We consider the simplest form of variational inference, known as “mean-field”
approximation:

Consider a family of tractable distributions Q = {q(θ,Z|W , α, β)}

Choose the one in Q, that is closest to the true posterior:

q∗ = argmin
q∈Q

KL(q||p(θ,Z|W , α, β))

Use q∗ instead of the true parameter q ∈ Q
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In mean-field approximation, Q taken to be the family of "factorized"
distributions, i.e.:

q(θ,Z |W , γ, φ) = q(θ|W , γ)ΠN
n=1q(Zn|W , φ)

Optimization is performed with rspect to variational parameters (γ, φ)

Under q ∈ Q, for n = 1, . . . ,N; k = 1, . . . ,K ,

P(Zn = k |W , φn) = φnk

θ|γ ∼ Dir(γ),γ ∈ RK
+

The optimization of variational parameters can be achieved by implementing a
simple system of updating equations.
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Mean-field algorithm

1. Initialize φ, γ arbitrarily.
2. Keep updating until convergence:

φnk ∝ βkWn
exp{Eq[log θk |γ]}

γk = αk +
N∑

n=1

φnk .

In the first updating equation, we use a fact of Dirichlet distribution: if
θ = (θ1, . . . , θK ) ∼ Dir(γ), then

E[log θk |γ] = Ψ(γk)−Ψ(
K∑

k=1

γk),

where Ψ is the digamma function:

Ψ(x) =
d log Γ

dx
=

Γ′(x)

Γ(x)
.
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Derivation of the mean-field approximation

Jensen’s Inequality

logP(W |α, β) = log

∫
θ

∑
Z

P(θ,Z,W |α, β)dθ

= log

∫
θ

∑
Z

P(θ,Z,W |α, β)

q(θ,Z)
q (θ,Z) dθ

≥
∫
θ

∑
Z

q (θ,Z) log
P(θ,Z,W |α, β)

q(θ,Z)
dθ

= Eq logP(θ,Z,W |α, β)− Eq log q(θ,Z)

=: L(γ, φ;α, β)

The gap of the bound:

logP(W |α, β)− L(γ, φ;α, β) = KL(q(θ,Z)||P(θ,Z|W , α, β)).
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So q∗ solves the following maximization:

max
γ,φ

L(γ, φ;α, β).

Note that

logP(θ,Z,W |α, β) = logP(θ|α) +
N∑

n=1

(
logP(Zn|θ) + logP(Wn|Zn, β)

)
So,

L(γ, φ;α, β) = Eq logP (θ|α) +
N∑

n=1

{Eq logP(Zn|θ) + Eq logP(Wn|Zn, β)}

−Eq log q(θ|γ)−
N∑

n=1

Eq log q (Zn|φn) .
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Let’s go over each term in the previous expression:

logP (θ|α) =
Γ (
∑
αk)

K∏
k=1

Γ (αk)

K∏
k=1

θαk−1
k ,

logP (θ|α) =
K∑

k=1

(αk−1) log θk + log Γ
(∑

αk

)
−

K∑
k=1

log Γ (αk) ,

Eq logP (θ|α) =
K∑

k=1

(αk − 1)

(
Ψ(γk)−Ψ

(
K∑

k=1

γk

))

+ log Γ
(∑

αk

)
−

K∑
k=1

log Γ (αk) .
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Next term:

P(Zn|θ) =
K∏

k=1

θ
I(Zn=k)
k ,

logP(Zn|θ) =
K∑

k=1

I (Zn = k) log θk ,

Eq logP(Zn|θ) =
K∑

k=1

φnk

(
Ψ (γk)−Ψ

(
K∑

k=1

γk

))
.

And next:

logP (Wn|Zn, β) = log
K∏

k=1

V∏
j=1

(βkj)
I(Wn=j,Zn=k)

,

Eq logP(Zn|θ) =
K∑

k=1

V∑
j=1

I (Zn = k) log βkj .
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And next:

q(θ|γ) =
Γ(
∑
γk)

K∑
k=1

Γ(γk)

K∏
k=1

θγk−1
k ,

so,

Eq log q(θ|γ) =
K∑

k=1

(γk − 1)

(
Ψ (γk)−Ψ

(
K∑

k=1

γk

))

+ log Γ(
K∑

k=1

γk)−
K∑

k=1

log Γ(γk).

And next:

q(Zn|φn) =
K∏

k=1

φ
I(Zn=k)
nk ,

So Eq log q(Zn|γn) =
K∑

k=1

φnk log φnk .
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And next:

q(θ|γ) =
Γ(
∑
γk)

K∑
k=1

Γ(γk)

K∏
k=1

θγk−1
k ,

so,

Eq log q(θ|γ) =
K∑

k=1

(γk − 1)

(
Ψ (γk)−Ψ

(
K∑

k=1

γk

))

+ log Γ(
K∑

k=1

γk)−
K∑

k=1

log Γ(γk).

And next:

q(Zn|φn) =
K∏

k=1

φ
I(Zn=k)
nk ,

So Eq log q(Zn|γn) =
K∑

k=1

φnk log φnk .
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To summarize, we maximize the lower bound of the likelihood function:

L(γ, φ;α, β) := Eq[logP(θ,Z,W |α, β)]− Eq[log q(θ,Z)]

with respect to variational parameters satisfying constraints, for all
n = 1, . . . ,N; k = 1, . . . ,K

K∑
k=1

φnk = 1,

φnk ≥ 0,

γk ≥ 0.

L decomposes nicely into a sum, which admits simple gradient-based update
equations:

Fix γ, maximize w.r.t. φ, ⇒ φnk ∝ βkWn
exp(Ψ(γk)−Ψ(

k∑
k=1

γk)),

Fix φ, maximize w.r.t. γ, ⇒ γk = αk +
N∑

n=1

φnk .
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Variational EM algorithm
It remains to estimate parameters α and β,

Data D = set of documents {W 1
,W

2
, . . . ,W

M}

Log-likelihood L(D) =
M∑

d=1

log p(Wd |α, β)

=
M∑

d=1

L(γd , φd |α, β) + KL(q‖P(θ, z|D, α, β))

EM algorithm involves alternating between E step and M step until convergence:

Variational E step

For each d = 1, . . . ,M, let (γd , φd ) := argmax L(γd , φd ;α, β).

M step

Solve (α, β) = argmax
∑M

d=1 L(γd , φd |α, β).
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Example
An example article from the AP corpus (Blei et al, 2003)
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Example
An example article from Science corpus (1880–2002) (Blei & Lafferty, 2009)
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Variations of the same theme
Graphical model for dynamic topic modeling (Blei & Lafferty, 2009)

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 77 / 86



Evolution of two topics from the dynamic model fitted to the Science archive
(1880–2002)
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See hand-written notes.
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See hand-written notes.
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