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What about ...

’

“Something old, something new, something borrowed, something blue ...’

All these techniques center around clustering problems, but they illustrate a fairly
large body of work in modern statistics and machine learning

Part 1, 2, 3 focus on aspects of algorithms, optimization and stochastic
simulations

@ Part 4 is an in-depth excursion into the world of statistical modeling
@ Part 5 has a good dose of probability theory and stochastic processes

@ Part 6 delves deeper into the statistical theory
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A basic clustering problem

Suppose we have data set D = {Xj,..., Xy} in some space.
How do we subdivide these data points to clusters?
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A basic clustering problem

Suppose we have data set D = {Xj,..., Xy} in some space.
How do we subdivide these data points to clusters?

Data points may represent scientific measurements, business transactions, text
documents, images
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Example: Clustering of images
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Example: A data point is an article in Psychology Today

The Evolution of Moral Models
This is the 13th in the series "Religion and Science: A Beautiful Friendship".
Published on July 18, 2012 by Robert W. Fuller, Ph.D. in Somebodies and Nobodies

When religion has committed itself to a particular science model,
it has often been left behind as the public embraced a new
model. That's the position in which the Catholic Church found
itself in defending Ptolemy’s geocentric model of the solar
system against the simpler heliocentric model of Copernicus. It's
the situation in which supporters of “creationism”—and its

offspring, “intelligent design"—find themselves today.
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This is the 13th in the series "Religion and Science: A Beautiful Friendship".
Published on July 18, 2012 by Robert W. Fuller, Ph.D. in Somebodies and Nobodies

When religion has committed itself to a particular science model,
it has often been left behind as the public embraced a new
model. That's the position in which the Catholic Church found
itself in defending Ptolemy’s geocentric model of the solar
system against the simpler heliocentric model of Copernicus. It's
the situation in which supporters of “creationism”—and its

offspring, “intelligent design"—find themselves today.

Are Men Shallow?

A wealthy man's high dating standards may have an evolutionary basis.
Published on July 19, 2012 by Vinita Mehta, Ph.D., Ed.M. in Head Games

Does a man with money think he's a more worthy catch? Stereotypes have long depicted rich men as

coveted romantic partners. Now, a new study further investigates how much truth there is to this
supposed bias — and its evolutionary underpinnings.
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itself in defending Ptolemy’s geocentric model of the solar
system against the simpler heliocentric model of Copernicus. It's
the situation in which supporters of “creationism”—and its

offspring, “intelligent design"—find themselves today.

Are Men Shallow?

A wealthy man's high dating standards may have an evolutionary basis.
Published on July 19, 2012 by Vinita Mehta, Ph.D., Ed.M. in Head Games

Does a man with money think he's a more worthy catch? Stereotypes have long depicted rich men as

coveted romantic partners. Now, a new study further investigates how much truth there is to this
supposed bias — and its evolutionary underpinnings.

Learning Disabilities in Adulthood
Barriers to proper accomodations
Published on July 20, 2012 by Becky Ready, Ph.D. in Your Quality of Life

Children with learning disabilities grow up to adults with learning disabilities. Learning disabilities are
life-long disorders that have tremendous impact on one’s educational and occupational achievement.
Persons with learning disabilities are bright and multi-talented and capable of great accomplishment
with the proper supports and accommodations.

Access to accommodations often relies on a neuropsychological assessment that includes, but is not
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Obtain “clusters” organized by certain topics: (Blei et al, 2010)

a ; model ; memory

m&yms_ phe ; stream
s categorizer ; child

ex ; emotions ; gender

; psychology the : of :
;of 5

color ; image ; I; notion ; visual ; bi

: stress ; i drug ; food ; brain

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 7 /86



K-means algorithm
maintain two kinds of variables:

cluster means: pi, k=1,...
cluster assigment: ZX € {0,1}, n=1,...

number of clusters K assumed known.
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K-means algorithm
maintain two kinds of variables:

cluster means: p, k=1,...,
cluster assigment: ZX € {0,1}, n=1,...,N.

number of clusters K assumed known.
Algorithm

1. Initialize {,Uk}szl arbitrarily.
2. Repeat (a) and (b) until convergence:
(a) update for all n=1,..., N:

k. 1, if k=argminj<k || Xy — will,
"1 0, otherwise.

(b) update for all k =1,...,K:

N k
o T ZEX,
Xz
n=1“n
y
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What does all this mean?
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What does all this mean?

Operational /mechanical /algebraic meaning: It is easy to show that

K-means algorithm obtains a (locally) optimal solution to optimization problem:

N K
min 35" ZE X0~ P

? n=1 k=1
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What does all this mean?

Operational /mechanical /algebraic meaning: It is easy to show that

K-means algorithm obtains a (locally) optimal solution to optimization problem:

N K
min 35" ZE X0~ P

n=1 k=1

(Much) harder questions:

Why this optimization?

Does this give us the “true” clusters?

What if our assumptions are wrong?

What is the best possible algorithm for learning clusters?
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What does all this mean?

Operational /mechanical /algebraic meaning: It is easy to show that

K-means algorithm obtains a (locally) optimal solution to optimization problem:

N K
min 33" Z5 X, — jul

{Z,p} n=1 k=1

(Much) harder questions:

Why this optimization?

Does this give us the “true” clusters?

What if our assumptions are wrong?

What is the best possible algorithm for learning clusters?
How can we be certain of the “truth” from empirical data?
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Statistical inference a.k.a. learning:

Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out
pattern/law/value of certain phenomenon from empirical data

@ the pattern is parameterized by 6 € ©, while data are samples Xj, ..., Xy
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Statistical inference a.k.a. learning:

Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out
pattern/law/value of certain phenomenon from empirical data

@ the pattern is parameterized by 6 € ©, while data are samples Xj, ..., Xy

An inference procedure is called an estimator in mathematical statistics. It may
be formalized as an algorithm, thus a learning algorithm in machine learning.
Mathematically, it is a mapping from data to an estimate for 6:

X1, , Xy — T(X17...,XN)€@
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Statistical inference a.k.a. learning:

Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out
pattern/law/value of certain phenomenon from empirical data

@ the pattern is parameterized by 6 € ©, while data are samples Xj, ..., Xy

An inference procedure is called an estimator in mathematical statistics. It may
be formalized as an algorithm, thus a learning algorithm in machine learning.
Mathematically, it is a mapping from data to an estimate for 6:

X1, , Xy — T(X17...,XN)€e

The output of the learning algorithm, T(X), is an estimate of the unknown
“truth” 6.
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What, How, Why

In clustering problem 6 represents the variables used to describe cluster means
and cluster assigments 6 = {0; ZX}, as well as number of clusters K

What is the “right” inference procedure?

@ traditionally studied by statisticians

How to achieve this learning procedure in a computationally efficient manner?

@ traditionally studied by computer scientists
Why is the procedure both “right” and “efficient”?

@ how much data and how much computations do we need

@ these questions drive asymptotic statistics and learning theory
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We use clustering as a case study to illustrate these rather fundamental questions
in statistics and machine learning, also because of

@ vast range of modern applications

@ fascinating recent research in algorithms and statistical theory motivated this
type of problems

@ interest links connecting optimization and numerical analysis to complex
statistical modeling, probability theory and stochastic processes
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Outline

e Finite mixture models
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Roles of probabilistic models

In order to infer about € from data X, a probabilistic model is needed to provide
the “glue” linking 6 to X
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A model is specified in the form of a probability distribution P(X|6)

Given the same probability model, statisticians may still disagree on how to

proceed; there are two broadly categorized approaches to inference: frequentist
and Bayes
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Roles of probabilistic models

In order to infer about € from data X, a probabilistic model is needed to provide
the “glue” linking 6 to X

A model is specified in the form of a probability distribution P(X|6)

Given the same probability model, statisticians may still disagree on how to

proceed; there are two broadly categorized approaches to inference: frequentist
and Bayes

@ these two viewpoints are consistent mathematically, but can be wildly incompatible
in terms of interpretation

@ both are interesting and useful in different inferential situations

@ roughly speaking, a frequentist method assumes that € is a non-random unknown
parameter, while a Bayesian method always treats 6 as a random variable

@ frequentists view data X as infinitely available as independent replicates, while a
Bayesian does not worry about the data he hasn’t seen (he cares more about 0)
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Model-based clustering

Assume that data are generated according to a random process:
@ pick one of K clusters from a distribution 7 = (71, ..., 7k)

@ generate a data point from a cluster-specific probability distribution
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Model-based clustering

Assume that data are generated according to a random process:
@ pick one of K clusters from a distribution 7 = (71, ..., 7k)

@ generate a data point from a cluster-specific probability distribution

This yields a mixture model:

P(X|9) = Zka X|¢x),

k=1

where the collection of parameters is § = (7, ¢);

7 = m,'s are mixing probabilities, ¢ = (¢1,. .., dk) are the parameters associated
with the K clusters.
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Model-based clustering

Assume that data are generated according to a random process:
@ pick one of K clusters from a distribution 7 = (71, ..., 7k)

@ generate a data point from a cluster-specific probability distribution

This yields a mixture model:

P(X|¢) = ZMP X|o),

k=1

where the collection of parameters is 8 = (7, ¢);

7 = m,'s are mixing probabilities, ¢ = (¢1,. .., dk) are the parameters associated
with the K clusters.

We still need to specify the cluster-specific distributions P(X|¢x) for each k.
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Example: for Gaussian mixtures, ¢x = (uk, k) and P(X|¢x) is a Gaussian
distribution with mean py and covariance matrix .
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Example: for Gaussian mixtures, ¢x = (uk, k) and P(X|¢x) is a Gaussian
distribution with mean py and covariance matrix .

Why Gaussians? What is K, the number of Gaussians subpopulations?
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Representation via latent variables

For each data point X, introduce a latent variable Z € {1,

..., K} that indicates
which subpopulation X is associated with.

Generative model

Z ~ Multinomial(7r),

XlZ =k~ N(/,Lk,zk).
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Representation via latent variables

For each data point X, introduce a latent variable Z € {1,..., K} that indicates
which subpopulation X is associated with.

Generative model

Z ~ Multinomial(7r),
XlZ =k~ N(/,Lk,zk).

Marginalizing out the latent Z, we obtain:

K
P(X|0) = > P(X|Z=k,0)P(Z = k|)

= > mN(X |, Te)-
k=1
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Representation via latent variables

For each data point X, introduce a latent variable Z € {1,..., K} that indicates

which subpopulation X is associated with.
Generative model

Z ~ Multinomial(7r),
XlZ =k~ N(/,Lk,zk).

Marginalizing out the latent Z, we obtain:

M=

P(X]0) = P(X|Z = k,0)P(Z = k|0)
k=1
K
= > mN(X |, Te)-
k=1
Data set D = (Xi,...,Xy) are i.i.d. samples from this generating process.
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Equivalent representation via mixing measure
Define the discrete probability measure
K
G == Zﬂ'k(s(z,k
k=1
where d4, is an atom at ¢y

The mixture model is define as follows:

On = (n,x,) ~ G
Xnl0n ~  P(:|6)

Each 0, is equal to the mean/variance of the cluster associated with data X,. G
is called a mixing measure.
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Inference

Setup: Given data D = {Xj, ..., Xy} assumed iid from a mixture model.
{Zi,...,2Zn} are associated (latent) cluster assignment variables.

Goal:
@ Estimate parameters 6 = (m, p, X).

@ Estimate cluster assigment via calculation of conditional probability of
cluster labels P(Z,|X,)

Long Nguyen (Univ of Michigan)
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Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der
Vaart, 2000)
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Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der
Vaart, 2000)

Likelihood function is a function of parameter:

N

L(6|Data) = P(Datalf) =[] P(X.|0).
n=1
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Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der
Vaart, 2000)

Likelihood function is a function of parameter:

N

L(6|Data) = P(Datalf) =[] P(X.|0).
n=1
MLE gives the estimate:
Oy = arg max L(6|Data)

N
= arg mgxz log P(X,|6).

n=1
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Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der
Vaart, 2000)
Likelihood function is a function of parameter:

N
L(6|Data) = P(Datalf) =[] P(X.|0).
n=1
MLE gives the estimate:
Oy = arg max L(6|Data)

N
= argmax Z log P(X,|6).

n=1

A fundamental theorem in asymptotic statistics
Under regularity conditions, the maximum likelihood estimator is consistent and
asymptotically efficient.

l.e., assuming that X1, ..., Xy "<’ P(X|6%), then 8 — 6* in probability (or
almost surely), as N — oo.
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MLE for Gaussian mixtures (cont)

Recall the mixture density:

K
P(X10) = > meN(X |k, L)
k=1
N K
T, by X = arg maxz Iog{z TeN(Xa |k, Zk) }-
n=1 k=1

It is possible but cubersome to solve this optimization directly, a more practically
convenient approach is via the EM (Expectation-Maximization) algorithm.
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EM algorithm for Gaussian mixtures

Intuition

@ For each data point X, if Z, is known for all n=1,... N, it would be easy
to estimate the “cluster’ means and covariances fiy, 2.

@ But Z,'s are hidden — perhaps, we can "fill-in" the latent variable Z, by an
estimate, such as the conditional expectation E(Z,|X,). This can be done if
all parameters are known.

@ Classic “chicken-and-egg" situation!
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EM algorithm for Gaussian mixture

1. Initialize {uk,Zk,wk}le arbitrarily.
2. Repeat (a) and (b) until convergence:

(@) For k=1,...,K, n=1,..., N, calculate conditional expectation of labels:

Th — P(Z = K| X,)
P(Xa|Z=k)P(Z=k)

T K P(Xa|Z=k)P(Z=k)
__ mN(Xo|p,Zk)
SR N (Xal e, Z) ©

(b) Update for k =1,...,K:

N k
En:1 TnXn
k
17n

—

Mk

S
5, o D maCam)ba—p

)T

Lo Z'n%l
Tk —— 3 DoneiTn-

k I
Th

This algorithm is a “soft version” that generalizes the K-means algorithm!
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lllustration of EM algorithm
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lllustration of EM algorithm
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lllustration of EM algorithm
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lllustration of EM algorithm
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What does this algorithm really do?

We will show that this algorithm ultimately obtains a local optimum of the
likelihood function. l.e., it is indeed an MLE method.
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What does this algorithm really do?

We will show that this algorithm ultimately obtains a local optimum of the
likelihood function. l.e., it is indeed an MLE method.

Suppose that we have “full data (complete data)”’ D. = {(Z,, X,)N_,}.
Then we can calculate the complete log-likelihood function:

/c(9|Dc) = logP(Dc|0)
N
= Y log P(Xy, Z,|0)
n=1
N

- ;Iog{lnl TN (Xa 1k, i) }

N K

= ZZZ,’: |Og{7TkN(Xn|;ulkazk)}

1 k=1

n

Zy(log m + log N(Xa|puk, Ti))-

I
M=
M=

3
Il
—
==
Il
—
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To estimate the parameters, we may wish to optimize the complete log-likelihood

if we actually have full data (Z,, X,)V_;.

Since Z,'s are actually latent, we settle for conditional expectation. In fact,

Easy exercise

The updating step (b) of the EM algorithm described earlier optimizes the
conditional expectation of the complete log-likelhood:

0 := arg maxE[l.(0|Dc)| X, . . ., Xn)],

where E[/.(0]Dc)| X1, ..., Xn] = Z IZk 1 TX(log 7k + log N(Xi |1k, Zk))-

(Proof by taking gradient with respect to parameters and setting to 0).
Compare this to optimizing the original likelihood function:

1(|D) = Zlog{ZmN (Xa Iuk,zk)}

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012
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Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:
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Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

EM algorithm for Gaussian mixtures

L. Initialize randomly 6 = {puk, Tx, T ;.

2. Repeat (a) and (b) until convergence:

(a) "E-step™ given current estimate of 8, compute E[/.(6|D.)|D].
(b) “M-step”: update 6 by maximizing E[l.(6|D.)|D];
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Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

EM algorithm for Gaussian mixtures

L. Initialize randomly 6 = {puk, Tx, T ;.

2. Repeat (a) and (b) until convergence:

(a) "E-step™ given current estimate of 8, compute E[/.(6|D.)|D].
(b) “M-step”: update 6 by maximizing E[l.(6|D.)|D];

It remains to show that maximizing the expected complete log-likelihood is
equivalent to maximizing the log-likelihood function ...
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EM algorithm for latent variable models
A model with latent variables abstractly defined as follows:

Z ~ P(0)
X|Z ~ P(-|Z,0).
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EM algorithm for latent variable models
A model with latent variables abstractly defined as follows:

Z ~ P([6)
X|Z ~ P(|Z,6).
This type of model includes
@ mixture models, hierarchical models (will see later in this lecture)

@ hidden Markov models, Kalman filters, etc

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 29 / 86



EM algorithm for latent variable models
A model with latent variables abstractly defined as follows:

Z~ P(:|0)
X|Z ~ P(|Z,6).
This type of model includes
@ mixture models, hierarchical models (will see later in this lecture)
@ hidden Markov models, Kalman filters, etc

Recall the log-likelihood function for observed data:

N
I(6]D) = log p(D|0) =) _ log p(Xy|6)

and the log-likelihood function for the complete data:

N
Ic(6]Dc) = log p(Dc|0) = > _ log p(Xa, Z|6).

n=1
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EM algorithm maximizes the likelihood

EM algorithm for latent variable models

1. Initialize randomly 6.

2. Repeat (a) and (b) until convergence:

(a) "E-step™ given current estimate of 8, compute E[/.(0|D.)|D].
(b) “M-step”: update 6 by maximizing E[l.(6|D.)|D];
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EM algorithm maximizes the likelihood

EM algorithm for latent variable models

1. Initialize randomly 6.

2. Repeat (a) and (b) until convergence:

(a) "E-step™ given current estimate of 8, compute E[/.(0|D.)|D].
(b) “M-step”: update 6 by maximizing E[l.(6|D.)|D];

Theorem

The EM algorithm is a coordinatewise hill-climbing algorithm with respect to the
likelihood function.

For proof, see hand-written notes.
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Outline

© Bayesian estimation
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Bayesian estimation

In a Bayesian approach, parameters § = (7, 1, X) are assumed to be random
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Bayesian estimation

In a Bayesian approach, parameters § = (7, 1, X) are assumed to be random

There needs to be a prior distribution for 0
Consequentially we obtain a Bayesian mixture model
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Bayesian estimation

In a Bayesian approach, parameters § = (7, 1, X) are assumed to be random

There needs to be a prior distribution for 0
Consequentially we obtain a Bayesian mixture model

Inference boils down to calculation of posterior probability:

Bayes' Rule

P(f|Data) = P(0|X)
P(68)P(X|0)

J P(0)P(X|0)d8

posterior o< prior x likelihood
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Prior distributions

™ = (7['1,

...,Tl'K)
Hiy--- 5 MK
1,00, 2K
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Prior distributions

Tl':(7T1,...,7TK) ~ Dir(a)
M1y ooy UK ™ N(Oal)
21,...,2;( ~ IW(\U,m)

A million dollar question: how to choose prior distributions?
(such as Dirichlet, Normal, Inverse-Wishart, . ..)
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Prior distributions

Tl'=(7T1,...,7TK) ~ Dir(a)
Ry 07 G N(Oal)
21,...,2;( ~ IW(\U,m)

A million dollar question: how to choose prior distributions?
(such as Dirichlet, Normal, Inverse-Wishart, . ..)

...the pure Bayesian viewpoint
... the pragmatic viewpoint: computational convenience via conjugacy
... the theoretical viewpoint: posterior asymptotics
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Dirichlet distribution
Let w = (7T1,

.,TK) be a point in the (K — 1)-simplex
@ie,0<m <1, and Zle =1
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Dirichlet distribution
Let m = (m1,...,7K) be a point in the (K — 1)-simplex

@ie,0< <1, and Eszl =1

Let & = (aq,...,ak) be a set of parameters, where a > 0

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 34 / 86



Dirichlet distribution
Let m = (m1,...,7K) be a point in the (K — 1)-simplex
@ie,0<m <1, and Zle =1

Let & = (aq,...,ak) be a set of parameters, where a > 0
The Dirichlet density is defined as

P(7r|a) (Zk 1ak) a1 1 ﬂ_aK—l.

- Hk 1r(04k) o

o Emy = ak/(Zf:l )
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Multinomial-Dirichlet conjugacy
Let w ~ Dir(a).

Let Z ~ Multinomial(x), i.e. P(Z = k|w) =m for k=1,..., K.
Write Z as indicator vector Z = (Z...Zk).
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Multinomial-Dirichlet conjugacy

Let w ~ Dir(a).

Let Z ~ Multinomial(x), i.e. P(Z = k|w) =m for k=1,..., K.
Write Z as indicator vector Z = (Z...Zk).

Then the posterior probability of 7 is:

P(mw|Z) « P(w)P(Z|m)

x (el e x (o xR
71'?1_1 .. .W%K_l

a1+2Zt—1 ax+ZF—1
T 9% s

which is again a Dirichlet density with modified parameter: Dir(a + Z)
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Multinomial-Dirichlet conjugacy

Let w ~ Dir(a).

Let Z ~ Multinomial(x), i.e. P(Z = k|w) =m for k=1,..., K.
Write Z as indicator vector Z = (Z...Zk).
Then the posterior probability of 7 is:
P(w|Z) o« P(m)P(Z|~)
x (el e x (o xR
o Tt gt

_ a1+2Zt—1 ax+ZF—1
= m C T s

which is again a Dirichlet density with modified parameter: Dir(« + Z)

We say Multinomial-Dirichlet is a conjugate pair

Other conjugate pairs: Normal-Normal (for mean variable 1), Normal-Inverse

Wishart (for covariance matrix X), etc
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Bayesian mixture model

Xn‘Zn:k ~ N(Mkazk) l:[l

T
. . W
Z,|m  ~ Multinomial(r) 1o, 20
7 ~ Dir(a) \‘I e

pilpo, Lo~ N(puo, Xo)
v o~ TW(V, m). AN

(a, 1o, Xo, V) are non-random parameters
(or they may be random and assigned with prior distributions as well)
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Posterior inference

Posterior inference is about calculating conditional probability of latent variables
and model parameters

i.e., P((Zn)nN:p (7‘(‘k7 Mk Zk)ff:l|X1, o ,XN)

Long Nguyen (Univ of Michigan)
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Posterior inference

Posterior inference is about calculating conditional probability of latent variables
and model parameters

i.e., P((Zn)nN:p (7‘(‘k7 Mk Zk)ff:l|X1, o ,XN)

This is usually difficult computationally
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Posterior inference

Posterior inference is about calculating conditional probability of latent variables
and model parameters

e, P(( )n 17(7Tk7/~‘bkvzk)k 1|X17'-~7XN)

This is usually difficult computationally

An approach is via sampling, exploiting conditional independence
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Posterior inference

Posterior inference is about calculating conditional probability of latent variables

and model parameters
e, P(( )n 17(7Tk7/~‘bkvzk)k 1|X17"~7XN)

This is usually difficult computationally

An approach is via sampling, exploiting conditional independence

At this point we take a detour, discussing a general modeling and inference
formalism known as graphical models
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Directed graphical models

Given a graph G = (V, ), where each node v € V is associated with a random
variable X, :

X4
X»

X
X, §

X; Xs

The joint distribution on collection of variables X, = {X, : v € V} factorizes
accoding to the “parent-of” relation defined by directed edges &:

P(XV) = H P(Xv|Xparents(v))
veV
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Conditional independence

Xy
Xz

X
X, g

X3 X

Observed variables are shaded
It can be shown that X; L {Xy, X5, Xs| X2, X3}.

Moreover we read off all such conditional independence from the graph structure.
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Basic conditional independence structure
“chain structure™ X L Z|Y

X Y z X Y z

Oo—0—0 O—@—0

“causal structure”: X L Z|Y
Y Y
X VA X Z

“explanation-away: X L Z (marginally) but X [ Z|Y

X z
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“Explanation-away”

aliens = “Alice was abducted by aliens watch
aliens”

watch = “forgot to set watch

alarm before bed”

late = “Alice is late for class”

late

aliens 1. watch

aliens )} watch | late
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Condionally i.i.d.

“Conditional iid (identically and independently distributed)”: this is represented by
a plate notation that allows subgraphs to be replicated:

2l e -1

Note that this graph represents a mixture distribution for observed variables
(Xl, ce ,XN)Z

P(X1,..., Xy) = /P(Xl,...,XNIG)dP(G)
_ / [T Pexio)ar(o)
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Gibbs sampling

A Markov chain Monte Carlo (MCMC) sampling method

Consider a collection of variables, say Xi, ..., Xy with a joint distribution
P(Xi,...,Xn) (which may be a conditional joint distribution in our specific
problem)

A stationary Markov chain is a sequence of X" = (X{,..., X},) for t =1,2,...
such that given X*, random variable X*™ is conditionally independent of all
variables before t, and

P(X™|X") is invariant with respect to t

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 43 / 86



Gibbs sampling (cont)

Gibbs sampling method sets up the Markov chain as follows

@ at step t = 1, initialize X! to arbitrary values
@ at step t, choose n randomly among 1,..., N
@ draw a sample for X! from P(X,|X1,..., Xo—1, Xot1, -+, Xn)

@ iterate

A fundamental theorem of Markov chain theory

Under mild conditions (ensuring ergodicity), X' converges in the limit to the joint
distribution of X, namely P(Xi,..., Xy)
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Back to posterior inference

The goal is the sample from the (conditional) joint distribution
P((Zn)rlyzla (ﬂ—kv Kk, zk)l,<<:1|)<17 s 7XN)

By Gibbs sampling, it is sufficient to be able to sample from conditional
distributions of each of the latent variables and parameters given everything else
(and conditionally on the data)

We will see that conditional independence helps in a big way
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Sample mr:

P(m|p, X, Zy...2y, Data) = P(w|Z1...2n)
1 (conditional independence)
x P(Z...Z,|7)P(m|c)

= Dir(as + nm, a2 + o, ...,akx + ng),

where n; = SN 1z, =)).

n=1

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012 46 / 86



Sample mr:

P(m|p, X, Zy...2y, Data) = P(w|Z1...2n)
1 (conditional independence)
x P(Z...Z,|7)P(m|c)

= Dir(as + nm, a2 + o, ...,akx + ng),

where n; = SN 1z, =)).

n=1

Sample Z;:

P(Z, = kl|everything else, including data) = P(Z, = k|X,, 7, p, X)
1 (conditional independence)
TN (Xp |k, Zk)
Sk meN (Xl i)
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Sample pu:

P(H’k|#’07 Z07 Z’ X’ z)

P(1k| o, o, ks { Zn, Xp such that Z, = k})
o P({Xy: Zy = k}|pk, Z) Pk 110, Xo)

T Bayes' Rule

[T e -

n:Z,=k

N~

(Xa — Nk)T):k_l(Xn - ﬂk)}

1 _
X exp —§(Mk — p10) "Eo (1 — o)
1 . ~ -1 .
X exp _E(Hk — 1) TSk (pk — Hk)
N(4i, %)
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Here,

-1
Yo =Xyt mIl

N
where n, = Z 1(Z,=k)
n=1

~ —1 - _ _
paP uk:ZOIMO+Zk1 Z X
Xn:Zn=k

Hence, fik = Sk (S5 o + Tt Yox .z —i Xn)-
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Here,

-1
Yo =Xyt mIl

N
where n, = Z 1(Z,=k)
n=1

~ —1 - _ _
paP Mk:ZOIMO+Zk1 Z X
Xn:Zn=k

Hence, fik = Sk (S5 o + Tt Yox .z —i Xn)-

Notice that if ny — 0o, then ¥, — 0.
So, fix — nlk Y nz—k Xn — 0. (That is, the prior is taken over by data!)
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To sample X, we use inverse Wishart distribution (a generalization of the
chi-square distribution to multivariate cases) as prior:

B~ WYV, m)e B~ WV, m)
B,V : p x p PSD matrices, m : degree of freedom

Inverse-Wishart density:

—(n+p+1)

P(BIW, m) oc [W[[%]|BI| ™= exp—tr(VB~/2)

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012

49 / 86



To sample X, we use inverse Wishart distribution (a generalization of the
chi-square distribution to multivariate cases) as prior:

B~ WYV, m)e B~ WV, m)
B,V : p x p PSD matrices, m : degree of freedom

Inverse-Wishart density:

—(n+p+1)

P(BIW, m) oc [W[[%]|BI| ™= exp—tr(VB~/2)

Assume that, as a prior for ¥4, k=1,.... K,

Y|V, m o~ IW(V, m).
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So the posterior distribution for X takes the form:

P(zk|w7 m, p, Pi, Z, Data)
= 'D(Zk|w7 m, [k, {Xn 1Ly = k})
< [T PXalk ) x P(Zi|W, m)

n:Z,=k
1 1 B
O( z eXp{ > T (X — ) (X uk)T]}
||Zk|| : n:Z,=k
m m+p+1 1 _
X[ k]2 exp—itr[\UZkl]
= IWA+V,n+m)
where
N
A= D" (Xo— )Xo — )T, me=>_1(Z, = k)
n:Z,=k n=1
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Summary of Gibbs sampling

Use Gibbs sampling to obtain samples from the posterior distribution
P(ﬂ-’ Z, [22) Z|X1, o aXN)

Sampling algorithm
@ Randomly generate (71, Z(), 1, (1) ¥ (1)
@ Fort=1,..., T, do the following:
(1) draw 7(tt1) ~ P(x|Z®), u(0) ¥ () Data)

(2) draw z‘”” P(Z,|Z%), 1®, (0 7(t+1) Data)
(3) draw u LR P(,uk|,u$f),Z,(,Hl),z(t),w(”l), Data)
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By the fundamental theorem of Markov chain, for t sufficiently large,
70, 7® 1, () 5()) can be viewed as a random sample of the posterior
P(-|Data)
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By the fundamental theorem of Markov chain, for t sufficiently large,
70, 7® 1, () 5()) can be viewed as a random sample of the posterior
P(-|Data)

Suppose that we have drawn samples from the posterior distribution, posterior
probabilities can be obtained via Monte Carlo approximation
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By the fundamental theorem of Markov chain, for t sufficiently large,
70, 7® 1, () 5()) can be viewed as a random sample of the posterior
P(-|Data)

Suppose that we have drawn samples from the posterior distribution, posterior
probabilities can be obtained via Monte Carlo approximation

E.g., posterior probability of the cluster label for data point X,:

P(Z,|Data) ~ Y 0z

T—-—s+1
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Comparing Gibbs sampling and EM algorithm

Gibbs can be viewed as a stochastic version of the EM algorithm

EM algorithm

1. E step: given current value of
parameter #, calculate conditional
expectation of latent variables Z
2. M step: given the conditional
expectations of Z, update 6 by
maximizing the expected
complete log-likelihood function

Gibbs sampling

1. given current values of 6,
sample Z

2. given current values of Z,
sample (random) @
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Outline

@ Hierarchical Mixture
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Recall our Bayesian mixture model: for each n=1,... N, k=1,...

XolZy =i ~ N(u,%)), v U
Zp|m  ~ Multinomial(r) 10, Xo °
m ~ Dir(a) ?
pipo, Xo  ~  N(po, Xo) N
SV~ IW(Y, m). N
u N
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Recall our Bayesian mixture model: for each n=1,... N, k

Xp|Zy = i
Zy|m

P Hos Xo
YW

N(ui, i), \

Multinomial(7) 10, Xo
Dir(ax) \ZI

N (10, Xo)
IW(W, m).

N

We may assume further that parameters (v, po, Xo, W) are may be random and
assigned by prior distributions

Thus we obtain a hierarchical model in which parameters appear as latent random

variables

Long Nguyen (Univ of Michigan)
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Exchangeability
The existence of latent variables can be motivated by De Finetti's theorem

Classical statistics often relies on assumption of i.i.d. data Xi,..., Xy with
respect to some probability model parameterized by 6 (non-random)

However, if Xi,..., Xy are exchangeable, then De Finetti's theorem establishes
the existence of a latent random variable 6 such that, Xi,..., Xy are
conditionally i.i.d. given 6

This theorem is regarded by many as one of the results that provide the
mathematical foundation for Bayesian statistics
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Definition
Let / be a countable index set. A sequence (X; : i € I) (finite or infinite) is
exchangeable if for any permutation p of /

(Xo(i))iel ¥ (X)ier
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Definition
Let / be a countable index set. A sequence (X; : i € I) (finite or infinite) is
exchangeable if for any permutation p of /

(Xo(i))iel ¥ (X)ier

De Finetti's theorem

If (X1, .., Xp, ...) is an infinite exchangeable sequence of random variables on
some probability space then there is a random variable 6 ~ 7 such that
X1, ..., Xy, ... are iid conditionally on 8. That is, for all n

P(Xt, 000 Xy ) = /HP(X,-|6) dr(0)

Remarks
@ Exchangeability is a weaker assumption than iid.

@ 0 may be (generally) an infinite dimensional variable
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Latent Dirichlet allocation/ Finite admixture

Developed by Pritchard et al (2000), Blei et al (2001)

Widely applicable to data such as texts, images and biological data (Google
Scholar has 12000 citations)

A canonical and simple example of hierarchical mixture model for discrete data
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Latent Dirichlet allocation/ Finite admixture

Developed by Pritchard et al (2000), Blei et al (2001)

Widely applicable to data such as texts, images and biological data (Google
Scholar has 12000 citations)

A canonical and simple example of hierarchical mixture model for discrete data
Some jargons:

Basic building blocks are words represented by random variables, say W, where
W e {1,...,V}. Vis the length of the vocabulary.

A document a sequence of words denoted by W = (W, ..., Wy).
—1 —m

A corpus is a collection of documents (W", ..., W ).

General problems: Given a collection of documents, can we infer the topics that
the documents may be clustered around?
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Early modeling attempts

Unigram Model: All documents in corpus share the same “topic”. l.e.,

For any document W = (W4, ..., Wy),

W]_7 ceey WN ~ Mult(&)

Wy
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Mixture of Unigram Model: Each document W is associated with a latent "topic”
variable Z. l.e.,

For each d = 1,..., m, generate document W = (W, ..., Wy) as follows:

Z ~ Mult(6)

Wi, ., Wyl Z =k 2 Mult(8,)
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Latent Dirichlet allocation model
Assume the following:

@ The words within each document are exchangeable — this is the 'bag of
words' assumption

@ The documents within each corpus are exchangeable
@ A document may be associated with K topics

@ Each word within a document is associated with any topics
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Latent Dirichlet allocation model
Assume the following:

@ The words within each document are exchangeable — this is the 'bag of
words' assumption

@ The documents within each corpus are exchangeable
@ A document may be associated with K topics

@ Each word within a document is associated with any topics

For d =1,..., M, generate document W = (W4, ..., Wy) as follows:
@ draw 6 ~ Dir(ay, ..., ak),
@ foreachn=1,.... N,

Z, ~ Mult(0) ie. P(Z,=k|0) =0,

W,Z, % Mult(8) ie. P(W, =j|Z, = k,B8) = B, 3 € RK*V
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Geometric illustration

Each x dot in the topic polytope (topic simplex in illustration) corresponds to the
word frequency vector for a random document

Extreme points of the topic polytope (e.g., topic 1, topic 2,...) in RHS are
represented by vectors 3, for k = 1,2,... in the hierarchical model in LHS

Bi = (Birs- - Buv)
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Posterior inference

The goal of inference includes:

@ Compute the posterior distribution, P(6, Z|W, a, 3) for each document
W= (W,...,Wy)

—M

@ Estimating «, 3 from the data, e.g., corpus of M documents Wl, oW

Y
Both of the above are relatively easy to do using Gibbs Sampling, or
Metropolis-Hastings, which will be left as an exercise.

Unfortunately a sampling algorithm may be extremely slow (to achieve
convergence), this motivate a fast deterministic algorithm for posterior inference.
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The posterior can be rewritten as

P0,ZIW,a,pB) =

Long Nguyen (Univ of Michigan)
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,Z,W,O[, )

P(Wla, 5)



The posterior can be rewritten as

— P(6,Z, W
PW.2IW,a,) = 020 0)
P(Wla, )
The numerator can be computed easily:
N
P(0,Z,W,a,3) = P(0)a) H P(Z,|0)P(W,|Z,, 5)
n=1
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The posterior can be rewritten as

P6,Z,W,a,3)

P0,ZIW,a,pB) = P(Wia. 5)

The numerator can be computed easily:

N
P(0,2,W,a,B8) = P(0|c) [ | P(Za0)P(W,| Z,, B)

n=1

Unfortunately, the denominator is difficult:

P(Wa, 3) = /P&ZW|aﬁ)

Z,0

N K VvV
/ rK(ZOék) Hgak 1H [ZH (B Byg) e J}] do
IT M(ax) k=1 n=1 | k=1j=1
k=1

Long Nguyen (Univ of Michigan) Clustering, mixture models & BNP VIASM, Hanoi 2012

64 / 86



Variational inference

This is an alternative to sampling-based inference.

The main spirit is to turn a difficult computation problem into an optimization
problem, one which can be modified /simplified.

We consider the simplest form of variational inference, known as “mean-field”
approximation:

@ Consider a family of tractable distributions Q = {q(8, Z|W, o, 3)}

@ Choose the one in Q, that is closest to the true posterior:

q* = argminKL(ql||p(8, Z|W, o, B))
qeQ

@ Use g* instead of the true parameter g € Q
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In mean-field approximation, @ taken to be the family of "factorized"
distributions, i.e.:

q(0, ZIW,, ¢) = q(0| W, 1)Ly q(Z,|W, )
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In mean-field approximation, @ taken to be the family of "factorized"
distributions, i.e.:

q(0, Z|W,~,¢) = q(0|W,y)Nq(Z,|W, ¢)

Optimization is performed with rspect to variational parameters (7, ¢)

Underge Q,forn=1,... . N;k=1,... K,

P(Z, = kW, ¢n) = dnk
0]y ~ Dir(v),v € R

The optimization of variational parameters can be achieved by implementing a
simple system of updating equations.
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Mean-field algorithm

1. Initialize ¢, ~ arbitrarily.
2. Keep updating until convergence:

bk X Brw, exp{Eq[log Ok 7]}

Yk = Ok +Z¢)nk-

In the first updating equation, we use a fact of Dirichlet distribution: if
0 = (61,...,0k) ~ Dir(vy), then

Eflog fx|y] = W(vk) — Zw)

where V is the digamma function:

_dlogl  T'(x)
Vix) = d«  T(x)’
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Derivation of the mean-field approximation

Jensen's Inequality

log P(W|a, ) = |og/92P(o, Z, W|a, 3)do
= log /ZM (6,2)do

P(8,Z,W|a, 3)
> 0,Z)log —————"-2d0
= E,logP(0, Z,W|a,6) — Eglogq(6,2)

= L(v,¢i0, )

The gap of the bound:

log P(W|a, B) — L(v, ¢; o, B) = KL(q(8, Z)||P(8, Z|W, , B)).
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So g* solves the following maximization:

max L(y, ¢; o, B).
V¢
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So g* solves the following maximization:
q g

mz;)x L(y, ¢; o, B).

s

Note that

N
08 P(6, 2. Wla. 5) = log P(6la) + Y Iog P(Z6) + o P(W4120,5) )

n=1
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So g* solves the following maximization:
q g

mz;)x L(y, ¢; o, B).

7,
Note that
N
log P(6,Z, W|a, ) = log P(6]a) + Z ( log P(Z,|0) + log P(W,|Z,, ﬁ))
n=1
So,
N
L(v,¢;a,8) = EgqlogP (0lar) + Z{Eq log P(Z,|0) + Eq log P(W,|Z,, 3)}
n=1

—Eq log q(6]7) — ZE log q (Zs| ) -
n=1
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Let's go over each term in the previous expression:

K
log P (0lar) = Mﬂefk‘l,
[T T (ou) k=t

k=1
K K

log P (fla) = Z (ak—1) log Ok + log T (Z ak) - Z log I (cvk) s
k=1 k=1

K K
Eglog P(0la) = 3 (o 1) (wm) v (Z fy))
+logl (Zak) - Zlogr(ak).
k=1
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Next term:

K
P(z.lo) = T[o%",
K
log P(Z,|0) = 1(Z,=k)log b,
K K
Eqlog P(Zs|0) = > ém (w (W) — Vv <Zw>> :
k=1 k=1

And next:

log P (Wa|Zn, B)

|Og H H /Bk_j Wh=jZ=k) )

k=1 j=1

K V
Eqlog P(Z,0) = > > 1(Z, = k)log Bi.

k=1 j=1
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And next:

a(0ly) = L2 T op,
EE;F(Vk)kzl

SO,

Eq log q(6]7) Z k—1< 'Yk)_w(Z'Yk))

k=1

+ log F(Z Vi) — Z log I'()-
k=1 k=1
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And next:

a(0ly) = L2 T op,
k; (k) k=1

so,
K K
E, log q(0]7) Z Yk — 1) ( () — v <Z’Yk>>
k=1 k=1
+ log F(Z Vi) — Z log I'()-
k=1 k=1
And next:

K
d(Zoldn) = [] 057,
k=1

K
So Eq log q(Znhn) = E ®nk log Pnk.
k=1
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To summarize, we maximize the lower bound of the likelihood function:

L(v, ¢; o, B) := Eq[log P(6, Z, W/, B)] — Eg[log q(6, Z)]

with respect to variational parameters satisfying constraints, for all
n=1....,.N;k=1,....K

K
Z (rbnk =1,
k=1

(bnk Z 07
vk > 0.
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To summarize, we maximize the lower bound of the likelihood function:
L(v, ¢; o, B) := Eq4llog P(8, Z, W|a, B)] — Eq4llog q(0, Z)]

with respect to variational parameters satisfying constraints, for all
n=1....,.N;k=1,....K

K
Z ¢nk =1,
k=1

¢nk Z 07
Yk = 0.

L decomposes nicely into a sum, which admits simple gradient-based update
equations:

k
Fix 7, maximize w.rt. ¢, = dnk o B, exp(V (k) — \I/(Z 7)),
k=1
N
Fix ¢, maximize w.r.t. v, = v = ax+ Z¢nk_
n=1
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Variational EM algorithm

It remains to estimate parameters o and [,

M

Data D = set of documents {Wl,Wz, LW

M

Log-likelihood L(D) =) log p(Wa|ev, )
d=1
M

=2 L(ve: dala, B) + KL(q[|P(6,2|D; o, 5))
d=1

EM algorithm involves alternating between E step and M step until convergence:

Variational E step
Foreachd =1,..., M, let (74, ¢q) := arg max L(vd, Pa; @, ).

M step
Solve (o, ) = arg max Egﬂzl L(vd, ¢dlcx, B).
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Example
An example article from the AP corpus (Blei et al, 2003)

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co.,New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical rescarch, education
and the social services” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.000 for its new building. which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive 5400000 each. The Juilliard School, where music and
the performing arts are taught, will get $250.000. The Hearst Foundation. aleading supporter
of the Lincoln Center Consolidated Corporate Fund. will make its usual annual $100.000
donation, too.

“Arts” “Budgets” “Children” “Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY

ODEDR A ONE " TATE
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Example

An example article from Science corpus (1880-2002) (Blei & Lafferty, 2009)

Chance and Statistical Significance in Protein and

DNA Sequence Analysis

Samuel Karlin and Volker Brendel

Top words from the top topics (by term score) Expected toplc proportions
sequence residues  computer
reglon binding methods
per domalns number P
Identified hellx wo -3
fragments cys principle
wo reglons design o
genes structure access 3
three terminus processing
cdna terminal advantage |
analysis shte 8 I P

Abstract with the most likely toplc assignments

roaches help in the BETESRTINENGH of
recent

nucleic acid sequence|

nfigurations in protein and
methods are discussed: (i) score-

[B&Séd sequence analysis that provides a for characterizing anomalies in |6ga|
for (ii) quantile amino
acid usage that reveal general compositional in proteins and evolutionary

and (iii) r-scan [Sialisties]that can be| 0 the analysis of Spacings of sequence
markers.

Top Ten Simllar Documents

Exhaustive Maiching of the Entire Protein Sequence Database

How Big Is the Universe of Exons?

Counting and Discounting the Universe of Exons

Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Profein Databases
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Variations of the same theme
Graphical model for dynamic topic modeling (Blei & Lafferty, 2009)

04

Zin

Wan

A

@—C—0O+0O

al®

04
Zin
Win
O N
D

Ber

O

FIGURE 8. A graphical model representation of a dynamic
topic model (for three time slices). Each topic’s parameters
[: i evolve over time.
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Evolution of two topics from the dynamic model fitted to the Science archive
(1880-2002)

1680 1900 1960
energy energy energy
molecules molecules electron
atoms atoms particles
molecular matter electrons
matter atomic nuclear

1980
energy
electron
particles
ion
electrons

“Mass and Energy" (1907)

1890 1970
molecules energy energy
energy theory electrons electron
atoms atoms atoms particles
molecular atom atom electrons
maiter molecule: electron state
o "The Wave Properties . .
g of Electrons™ (1930) The Z Boson" (1990)
& Achemy" (1691)
0
S "Structure of the 1 N
P Proton" (1974) ‘Quantum Criticality:
) Competing Ground States
g_ "Nuclear Fission" (1940) in Low Dimensions” (2000)
o
o

atomic

quantum

molecular

Topic score

1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

1940 1960 1980 2000

war united nuclear european
states states soviet soviet united
united united states weapons nuclear
france american nuclear states states
british international international united countries
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Outline

9 Dirichlet processes and nonparametric Bayes
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See hand-written notes.
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Outline

G Asymptotic theory
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See hand-written notes.
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Outline
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For Part 4:
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J. Pritchard, M. Stephen & P. Donnelly, Inference of population structure using
multilocus genotype data. Genetics, 2000.
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For Part 5, 6:
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and practices. Cambridge University Press, 2010.

M. 1. Jordan, Dirichlet processes, Chinese restaurant processes and all that. NIPS 2005
Tutorial, 2005.

Y. W. Teh, M. |. Jordan, D. Blei & M. Beal. Hierarchical Dirichlet Processes, Journal of
American Statistical Association, 2006.
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