# Clustering problems, mixture models and Bayesian nonparametrics 

Nguyễn Xuân Long

Department of Statistics<br>Department of Electrical Engineering and Computer Science<br>University of Michigan

Vietnam Institute of Advanced Studies of Mathematics (VIASM), 30 Jul - 3 Aug 2012

## Outline

(1) Clustering problem

- K-means algorithm
(2) Finite mixture models
- Expectation Maximization algorithm
(3) Bayesian estimation
- Gibbs sampling
(4) Hierarchical Mixture
- Latent Dirichlet Allocation
- Variational inference
(5) Dirichlet processes and nonparametric Bayes
- Hierarchical Dirichlet processes
(6) Asymptotic theory
- Geometry of space of probability measures
- Posterior concentration theorems
(7) References


## What about ...

"Something old, something new, something borrowed, something blue ..."

All these techniques center around clustering problems, but they illustrate a fairly large body of work in modern statistics and machine learning

- Part 1, 2, 3 focus on aspects of algorithms, optimization and stochastic simulations
- Part 4 is an in-depth excursion into the world of statistical modeling
- Part 5 has a good dose of probability theory and stochastic processes
- Part 6 delves deeper into the statistical theory


## A basic clustering problem

Suppose we have data set $D=\left\{X_{1}, \ldots, X_{N}\right\}$ in some space. How do we subdivide these data points to clusters?


## A basic clustering problem

Suppose we have data set $D=\left\{X_{1}, \ldots, X_{N}\right\}$ in some space. How do we subdivide these data points to clusters?


Data points may represent scientific measurements, business transactions, text documents, images

## Example: Clustering of images



The Evolution of Moral Models
This is the 13th in the series "Religion and Science: A Beautiful Friendship".
Published on July 18, 2012 by Robert W. Fuller, Ph.D. in Somebodies and Nobodies


When religion has committed itself to a particular science model, it has often been left behind as the public embraced a new model. That's the position in which the Catholic Church found itself in defending Ptolemy's geocentric model of the solar system against the simpler heliocentric model of Copernicus. It's the situation in which supporters of "creationism"-and its offspring, "intelligent design"-find themselves today.

The Evolution of Moral Models
This is the 13th in the series "Religion and Science: A Beautiful Friendship".
Published on July 18, 2012 by Robert W. Fuller, Ph.D. in Somebodies and Nobodies


When religion has committed itself to a particular science model, it has often been left behind as the public embraced a new model. That's the position in which the Catholic Church found itself in defending Ptolemy's geocentric model of the solar system against the simpler heliocentric model of Copernicus. It's the situation in which supporters of "creationism"-and its offspring, "intelligent design"-find themselves today.

## Are Men Shallow?

A wealthy man's high dating standards may have an evolutionary basis.
Published on July 19, 2012 by Vinita Mehta, Ph.D., Ed.M. in Head Games

Does a man with money think he's a more worthy catch? Stereotypes have long depicted rich men as coveted romantic partners. Now, a new study further investigates how much truth there is to this supposed bias - and its evolutionary underpinnings.

## Example: A data point is an article in Psychology Today

The Evolution of Moral Models
This is the 13th in the series "Religion and Science: A Beautiful Friendship".
Published on July 18, 2012 by Robert W. Fuller, Ph.D. in Somebodies and Nobodies


When religion has committed itself to a particular science model, it has often been left behind as the public embraced a new model. That's the position in which the Catholic Church found itself in defending Ptolemy's geocentric model of the solar system against the simpler heliocentric model of Copernicus. It's the situation in which supporters of "creationism"-and its offspring, "intelligent design"-find themselves today.

Are Men Shallow?<br>A wealthy man's high dating standards may have an evolutionary basis.<br>Published on July 19, 2012 by Vinita Mehta, Ph.D., Ed.M. in Head Games

Does a man with money think he's a more worthy catch? Stereotypes have long depicted rich men as coveted romantic partners. Now, a new study further investigates how much truth there is to this supposed bias - and its evolutionary underpinnings.

# Learning Disabilities in Adulthood 

Barriers to proper accomodations
Published on July 20, 2012 by Becky Ready, Ph.D. in Your Quality of Life

Children with learning disabilities grow up to adults with learning disabilities. Learning disabilities are life-long disorders that have tremendous impact on one's educational and occupational achievement. Persons with learning disabilities are bright and multi-talented and capable of great accomplishment with the proper supports and accommodations.

Access to accommodations often relies on a neuropsychological assessment that includes, but is not

## Obtain "clusters" organized by certain topics:

```
response ; stimulus ; reinforcement
speech; reading; words
action; social; self
group; iq;intelligence a; model; memory
hippocampus; growth; hippocampal
numerals; catastrophe ; stream
rod;categorizer ; child
sex;emotions; gender
reasoning;attitude;consistency self;social;psychology
genetic; scenario; adaptations
color;image;monocular
    motion ; visual ; binocular
conditioning; stress; behavioral
    drug; food ; brain
```


## K-means algorithm

maintain two kinds of variables:

$$
\begin{cases}\text { cluster means: } \mu_{k}, & k=1, \ldots, K ; \\ \text { cluster assigment: } Z_{n}^{k} \in\{0,1\}, & n=1, \ldots, N .\end{cases}
$$ number of clusters $K$ assumed known.

## K-means algorithm

maintain two kinds of variables:

$$
\begin{cases}\text { cluster means: } \mu_{k}, & k=1, \ldots, K ; \\ \text { cluster assigment: } Z_{n}^{k} \in\{0,1\}, & n=1, \ldots, N .\end{cases}
$$

number of clusters $K$ assumed known.

## Algorithm

1. Initialize $\left\{\mu_{k}\right\}_{k=1}^{K}$ arbitrarily.
2. Repeat (a) and (b) until convergence:
(a) update for all $n=1, \ldots, N$ :

$$
Z_{n}^{k}:= \begin{cases}1, & \text { if } k=\arg \min _{i \leq K}\left\|X_{n}-\mu_{i}\right\|, \\ 0, & \text { otherwise. }\end{cases}
$$

(b) update for all $k=1, \ldots, K$ :

$$
\mu_{k}=\frac{\sum_{n=1}^{N} Z_{n}^{k} X_{n}}{\sum_{n=1}^{N} Z_{n}^{k}}
$$

## Illustration

$$
K=2
$$



## Illustration

$K=2$


## What does all this mean?

## What does all this mean?

Operational/mechanical/algebraic meaning: It is easy to show that
K-means algorithm obtains a (locally) optimal solution to optimization problem:

$$
\min _{\{\mathbf{Z}, \boldsymbol{\mu}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} Z_{n}^{k}\left\|X_{n}-\mu_{k}\right\|^{2}
$$

## What does all this mean?

Operational/mechanical/algebraic meaning: It is easy to show that
K-means algorithm obtains a (locally) optimal solution to optimization problem:

$$
\min _{\{Z, \mu\}} \sum_{n=1}^{N} \sum_{k=1}^{K} Z_{n}^{k}\left\|X_{n}-\mu_{k}\right\|^{2} .
$$

(Much) harder questions:
Why this optimization?
Does this give us the "true" clusters?
What if our assumptions are wrong?
What is the best possible algorithm for learning clusters?

## What does all this mean?

Operational/mechanical/algebraic meaning: It is easy to show that
K-means algorithm obtains a (locally) optimal solution to optimization problem:

$$
\min _{\{Z, \mu\}} \sum_{n=1}^{N} \sum_{k=1}^{K} Z_{n}^{k}\left\|X_{n}-\mu_{k}\right\|^{2} .
$$

(Much) harder questions:
Why this optimization?
Does this give us the "true" clusters?
What if our assumptions are wrong?
What is the best possible algorithm for learning clusters? How can we be certain of the "truth" from empirical data?

## Statistical inference a.k.a. learning:

Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out pattern/law/value of certain phenomenon from empirical data

- the pattern is parameterized by $\theta \in \Theta$, while data are samples $X_{1}, \ldots, X_{N}$


## Statistical inference a.k.a. learning:

Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out pattern/law/value of certain phenomenon from empirical data

- the pattern is parameterized by $\theta \in \Theta$, while data are samples $X_{1}, \ldots, X_{N}$

An inference procedure is called an estimator in mathematical statistics. It may be formalized as an algorithm, thus a learning algorithm in machine learning. Mathematically, it is a mapping from data to an estimate for $\theta$ :

$$
X_{1}, \ldots, X_{N} \mapsto T\left(X_{1}, \ldots, X_{N}\right) \in \Theta
$$

## Statistical inference a.k.a. learning:

## Learning "true" patterns from data

Statistical inference is concerned with procedures for extracting out pattern/law/value of certain phenomenon from empirical data

- the pattern is parameterized by $\theta \in \Theta$, while data are samples $X_{1}, \ldots, X_{N}$

An inference procedure is called an estimator in mathematical statistics. It may be formalized as an algorithm, thus a learning algorithm in machine learning. Mathematically, it is a mapping from data to an estimate for $\theta$ :

$$
X_{1}, \ldots, X_{N} \mapsto T\left(X_{1}, \ldots, X_{N}\right) \in \Theta
$$

The output of the learning algorithm, $T(X)$, is an estimate of the unknown "truth" $\theta$.

## What, How, Why

In clustering problem $\theta$ represents the variables used to describe cluster means and cluster assigments $\theta=\left\{\theta_{k} ; Z_{n}^{k}\right\}$, as well as number of clusters $K$

What is the "right" inference procedure?

- traditionally studied by statisticians

How to achieve this learning procedure in a computationally efficient manner?

- traditionally studied by computer scientists

Why is the procedure both "right" and "efficient"?

- how much data and how much computations do we need
- these questions drive asymptotic statistics and learning theory

We use clustering as a case study to illustrate these rather fundamental questions in statistics and machine learning, also because of

- vast range of modern applications
- fascinating recent research in algorithms and statistical theory motivated this type of problems
- interest links connecting optimization and numerical analysis to complex statistical modeling, probability theory and stochastic processes


## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation

4 Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes

6 Asymptotic theory
(7) References

## Roles of probabilistic models

In order to infer about $\theta$ from data $X$, a probabilistic model is needed to provide the "glue" linking $\theta$ to $X$

## Roles of probabilistic models

In order to infer about $\theta$ from data $X$, a probabilistic model is needed to provide the "glue" linking $\theta$ to $X$

A model is specified in the form of a probability distribution $P(X \mid \theta)$

## Roles of probabilistic models

In order to infer about $\theta$ from data $X$, a probabilistic model is needed to provide the "glue" linking $\theta$ to $X$

A model is specified in the form of a probability distribution $P(X \mid \theta)$
Given the same probability model, statisticians may still disagree on how to proceed; there are two broadly categorized approaches to inference: frequentist and Bayes

## Roles of probabilistic models

In order to infer about $\theta$ from data $X$, a probabilistic model is needed to provide the "glue" linking $\theta$ to $X$

A model is specified in the form of a probability distribution $P(X \mid \theta)$
Given the same probability model, statisticians may still disagree on how to proceed; there are two broadly categorized approaches to inference: frequentist and Bayes

- these two viewpoints are consistent mathematically, but can be wildly incompatible in terms of interpretation
- both are interesting and useful in different inferential situations
- roughly speaking, a frequentist method assumes that $\theta$ is a non-random unknown parameter, while a Bayesian method always treats $\theta$ as a random variable
- frequentists view data $X$ as infinitely available as independent replicates, while a Bayesian does not worry about the data he hasn't seen (he cares more about $\theta$ )


## Model-based clustering

Assume that data are generated according to a random process:

- pick one of $K$ clusters from a distribution $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$
- generate a data point from a cluster-specific probability distribution


## Model-based clustering

Assume that data are generated according to a random process:

- pick one of $K$ clusters from a distribution $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$
- generate a data point from a cluster-specific probability distribution

This yields a mixture model:

$$
P(X \mid \phi)=\sum_{k=1}^{K} \pi_{k} P\left(X \mid \phi_{k}\right),
$$

where the collection of parameters is $\theta=(\boldsymbol{\pi}, \boldsymbol{\phi})$;
$\boldsymbol{\pi}=\pi_{k}$ 's are mixing probabilities, $\phi=\left(\phi_{1}, \ldots, \phi_{K}\right)$ are the parameters associated with the $K$ clusters.

## Model-based clustering

Assume that data are generated according to a random process:

- pick one of $K$ clusters from a distribution $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$
- generate a data point from a cluster-specific probability distribution

This yields a mixture model:

$$
P(X \mid \phi)=\sum_{k=1}^{K} \pi_{k} P\left(X \mid \phi_{k}\right),
$$

where the collection of parameters is $\theta=(\boldsymbol{\pi}, \boldsymbol{\phi})$;
$\boldsymbol{\pi}=\pi_{k}$ 's are mixing probabilities, $\phi=\left(\phi_{1}, \ldots, \phi_{K}\right)$ are the parameters associated with the $K$ clusters.

We still need to specify the cluster-specific distributions $P\left(X \mid \phi_{k}\right)$ for each $k$.

Example: for Gaussian mixtures, $\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right)$ and $P\left(X \mid \phi_{k}\right)$ is a Gaussian distribution with mean $\mu_{k}$ and covariance matrix $\Sigma_{k}$.


Example: for Gaussian mixtures, $\phi_{k}=\left(\mu_{k}, \Sigma_{k}\right)$ and $P\left(X \mid \phi_{k}\right)$ is a Gaussian distribution with mean $\mu_{k}$ and covariance matrix $\Sigma_{k}$.


Why Gaussians? What is $K$, the number of Gaussians subpopulations?

## Representation via latent variables

For each data point $X$, introduce a latent variable $Z \in\{1, \ldots, K\}$ that indicates which subpopulation $X$ is associated with.

Generative model

$$
\begin{gathered}
Z \sim \operatorname{Multinomial}(\pi), \\
X \mid Z=k \sim N\left(\mu_{k}, \Sigma_{k}\right) .
\end{gathered}
$$

## Representation via latent variables

For each data point $X$, introduce a latent variable $Z \in\{1, \ldots, K\}$ that indicates which subpopulation $X$ is associated with.

## Generative model

$$
\begin{gathered}
Z \sim \operatorname{Multinomial}(\boldsymbol{\pi}), \\
X \mid Z=k \sim N\left(\mu_{k}, \Sigma_{k}\right) .
\end{gathered}
$$

Marginalizing out the latent $Z$, we obtain:

$$
\begin{aligned}
P(X \mid \theta) & =\sum_{k=1}^{K} P(X \mid Z=k, \theta) P(Z=k \mid \theta) \\
& =\sum_{k=1}^{K} \pi_{k} N\left(X \mid \mu_{k}, \Sigma_{k}\right) .
\end{aligned}
$$

## Representation via latent variables

For each data point $X$, introduce a latent variable $Z \in\{1, \ldots, K\}$ that indicates which subpopulation $X$ is associated with.

## Generative model

$$
\begin{gathered}
Z \sim \operatorname{Multinomial}(\boldsymbol{\pi}), \\
X \mid Z=k \sim N\left(\mu_{k}, \Sigma_{k}\right) .
\end{gathered}
$$

Marginalizing out the latent $Z$, we obtain:

$$
\begin{aligned}
P(X \mid \theta) & =\sum_{k=1}^{K} P(X \mid Z=k, \theta) P(Z=k \mid \theta) \\
& =\sum_{k=1}^{K} \pi_{k} N\left(X \mid \mu_{k}, \Sigma_{k}\right)
\end{aligned}
$$

Data set $D=\left(X_{1}, \ldots, X_{N}\right)$ are i.i.d. samples from this generating process.

## Equivalent representation via mixing measure

Define the discrete probability measure

$$
G=\sum_{k=1}^{K} \pi_{k} \delta_{\phi_{k}}
$$

where $\delta_{\phi_{k}}$ is an atom at $\phi_{k}$

The mixture model is define as follows:

$$
\begin{aligned}
\theta_{n}:=\left(\mu_{n}, \Sigma_{n}\right) & \sim G \\
X_{n} \mid \theta_{n} & \sim P\left(\cdot \mid \theta_{n}\right)
\end{aligned}
$$

Each $\theta_{n}$ is equal to the mean/variance of the cluster associated with data $X_{n}$. $G$ is called a mixing measure.

## Inference

Setup: Given data $D=\left\{X_{1}, \ldots, X_{N}\right\}$ assumed iid from a mixture model. $\left\{Z_{1}, \ldots, Z_{N}\right\}$ are associated (latent) cluster assignment variables.

Goal:

- Estimate parameters $\theta=(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$.
- Estimate cluster assigment via calculation of conditional probability of cluster labels $P\left(Z_{n} \mid X_{n}\right)$


## Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der Vaart, 2000)

## Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der Vaart, 2000)
Likelihood function is a function of parameter:

$$
L(\theta \mid \text { Data })=P(\text { Data } \mid \theta)=\prod_{n=1}^{N} P\left(X_{n} \mid \theta\right)
$$

## Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der Vaart, 2000)
Likelihood function is a function of parameter:

$$
L(\theta \mid \text { Data })=P(\text { Data } \mid \theta)=\prod_{n=1}^{N} P\left(X_{n} \mid \theta\right)
$$

MLE gives the estimate:

$$
\begin{aligned}
\hat{\theta}_{N} & :=\arg \max _{\theta} L(\theta \mid \text { Data }) \\
& =\arg \max _{\theta} \sum_{n=1}^{N} \log P\left(X_{n} \mid \theta\right)
\end{aligned}
$$

## Maximum likelihood estimation

A frequentist method for estimation going back to Fisher (see, e.g., van der Vaart, 2000)
Likelihood function is a function of parameter:

$$
L(\theta \mid \text { Data })=P(\text { Data } \mid \theta)=\prod_{n=1}^{N} P\left(X_{n} \mid \theta\right)
$$

MLE gives the estimate:

$$
\begin{aligned}
\hat{\theta}_{N} & :=\arg \max _{\theta} L(\theta \mid \text { Data }) \\
& =\arg \max _{\theta} \sum_{n=1}^{N} \log P\left(X_{n} \mid \theta\right)
\end{aligned}
$$

## A fundamental theorem in asymptotic statistics

Under regularity conditions, the maximum likelihood estimator is consistent and asymptotically efficient.
I.e., assuming that $X_{1}, \ldots, X_{N} \stackrel{\text { i.i.d }}{\sim} P\left(X \mid \theta^{*}\right)$, then $\theta_{N} \rightarrow \theta^{*}$ in probability (or almost surely), as $N \rightarrow \infty$.

## MLE for Gaussian mixtures (cont)

Recall the mixture density:

$$
\begin{gathered}
P(X \mid \theta)=\sum_{k=1}^{K} \pi_{k} N\left(X \mid \mu_{k}, \Sigma_{k}\right) \\
\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}:=\arg \max \sum_{n=1}^{N} \log \left\{\sum_{k=1}^{K} \pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right\} .
\end{gathered}
$$

It is possible but cubersome to solve this optimization directly, a more practically convenient approach is via the EM (Expectation-Maximization) algorithm.

## EM algorithm for Gaussian mixtures

## Intuition

- For each data point $X_{n}$, if $Z_{n}$ is known for all $n=1, \ldots, N$, it would be easy to estimate the "cluster" means and covariances $\mu_{k}, \Sigma_{k}$.
- But $Z_{n}$ 's are hidden - perhaps, we can "fill-in" the latent variable $Z_{n}$ by an estimate, such as the conditional expectation $\mathbb{E}\left(Z_{n} \mid X_{n}\right)$. This can be done if all parameters are known.
- Classic "chicken-and-egg" situation!


## EM algorithm for Gaussian mixture

1. Initialize $\left\{\mu_{k}, \Sigma_{k}, \pi_{k}\right\}_{k=1}^{K}$ arbitrarily.
2. Repeat (a) and (b) until convergence:
(a) For $k=1, \ldots, K, n=1, \ldots, N$, calculate conditional expectation of labels:

$$
\begin{aligned}
\tau_{n}^{k} & \longleftarrow P\left(Z=k \mid X_{n}\right) \\
& =\frac{P\left(X_{n} \mid Z=k\right) P(Z=k)}{\sum_{k=1}^{K} P\left(X_{n} \mid Z=k\right) P(Z=k)} \\
& =\frac{\pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{k=1}^{K} \pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)} .
\end{aligned}
$$

(b) Update for $k=1, \ldots, K$ :

$$
\begin{aligned}
& \mu_{k} \longleftarrow \frac{\sum_{n=1}^{N} \tau_{n}^{k} x_{n}}{\sum_{n=1}^{N} \tau_{n}^{k}}, \\
& \sum_{k} \longleftarrow \frac{\sum_{n=1}^{N} \tau_{n}^{k}\left(x_{n}-\mu_{k}\right)\left(x_{n}-\mu_{k}\right)^{T}}{\sum_{n=1}^{N} \tau_{n}^{k}}, \\
& \pi_{k} \longleftarrow \frac{1}{N} \sum_{n=1}^{N} \tau_{n}^{k} .
\end{aligned}
$$

This algorithm is a "soft version" that generalizes the K-means algorithm!

## Illustration of EM algorithm



## What does this algorithm really do?

We will show that this algorithm ultimately obtains a local optimum of the likelihood function. I.e., it is indeed an MLE method.

## What does this algorithm really do?

We will show that this algorithm ultimately obtains a local optimum of the likelihood function. I.e., it is indeed an MLE method.
Suppose that we have "full data (complete data)" $D_{c}=\left\{\left(Z_{n}, X_{n}\right)_{n=1}^{N}\right\}$. Then we can calculate the complete log-likelihood function:

$$
\begin{aligned}
I_{c}\left(\theta \mid D_{c}\right) & =\log P\left(D_{c} \mid \theta\right) \\
& =\sum_{n=1}^{N} \log P\left(X_{n}, Z_{n} \mid \theta\right) \\
& =\sum_{n=1}^{N} \log \left\{\prod_{k=1}^{K}\left(\pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right)^{Z_{n}^{k}}\right\} \\
& =\sum_{n=1}^{N} \sum_{k=1}^{K} Z_{n}^{k} \log \left\{\pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right\} \\
& =\sum_{n=1}^{N} \sum_{k=1}^{K} Z_{n}^{k}\left(\log \pi_{k}+\log N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right)
\end{aligned}
$$

To estimate the parameters, we may wish to optimize the complete log-likelihood if we actually have full data $\left(Z_{n}, X_{n}\right)_{n=1}^{N}$.
Since $Z_{n}$ 's are actually latent, we settle for conditional expectation. In fact,

## Easy exercise

The updating step (b) of the EM algorithm described earlier optimizes the conditional expectation of the complete log-likelhood:

$$
\left.\theta:=\arg \max \mathbb{E}\left[I_{c}\left(\theta \mid D_{c}\right) \mid X_{1}, \ldots, X_{N}\right)\right],
$$

where $\mathbb{E}\left[I_{c}\left(\theta \mid D_{c}\right) \mid X_{1}, \ldots, X_{N}\right]=\sum_{n=1}^{N} \sum_{k=1}^{K} \tau_{n}^{k}\left(\log \pi_{k}+\log N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right)$.
(Proof by taking gradient with respect to parameters and setting to 0 ). Compare this to optimizing the original likelihood function:

$$
I(\theta \mid D)=\sum_{n=1}^{N} \log \left\{\sum_{i=1}^{K} \pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)\right\}
$$

## Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

## Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

## EM algorithm for Gaussian mixtures

1. Initialize randomly $\theta=\left\{\mu_{k}, \Sigma_{k}, \pi_{k}\right\}_{k=1}^{K}$.
2. Repeat (a) and (b) until convergence:
(a) "E-step": given current estimate of $\theta$, compute $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$.
(b) "M-step": update $\theta$ by maximizing $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$;

## Summary

Rewrite the EM algorithm as maximization of expected complete log-likelihood:

## EM algorithm for Gaussian mixtures

1. Initialize randomly $\theta=\left\{\mu_{k}, \Sigma_{k}, \pi_{k}\right\}_{k=1}^{K}$.
2. Repeat (a) and (b) until convergence:
(a) "E-step": given current estimate of $\theta$, compute $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$.
(b) "M-step": update $\theta$ by maximizing $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$;

It remains to show that maximizing the expected complete log-likelihood is equivalent to maximizing the log-likelihood function...

## EM algorithm for latent variable models

A model with latent variables abstractly defined as follows:

$$
\begin{array}{r}
Z \sim P(\cdot \mid \theta) \\
X \mid Z \sim P(\cdot \mid Z, \theta) .
\end{array}
$$

## EM algorithm for latent variable models

A model with latent variables abstractly defined as follows:

$$
\begin{array}{r}
Z \sim P(\cdot \mid \theta) \\
X \mid Z \sim P(\cdot \mid Z, \theta) .
\end{array}
$$

This type of model includes

- mixture models, hierarchical models (will see later in this lecture)
- hidden Markov models, Kalman filters, etc


## EM algorithm for latent variable models

A model with latent variables abstractly defined as follows:

$$
\begin{array}{r}
Z \sim P(\cdot \mid \theta) \\
X \mid Z \sim P(\cdot \mid Z, \theta) .
\end{array}
$$

This type of model includes

- mixture models, hierarchical models (will see later in this lecture)
- hidden Markov models, Kalman filters, etc

Recall the log-likelihood function for observed data:

$$
I(\theta \mid D)=\log p(D \mid \theta)=\sum_{n=1}^{N} \log p\left(X_{n} \mid \theta\right)
$$

and the log-likelihood function for the complete data:

$$
I_{C}\left(\theta \mid D_{C}\right)=\log p\left(D_{C} \mid \theta\right)=\sum_{n=1}^{N} \log p\left(X_{n}, Z_{n} \mid \theta\right)
$$

## EM algorithm maximizes the likelihood

EM algorithm for latent variable models

1. Initialize randomly $\theta$.
2. Repeat (a) and (b) until convergence:
(a) "E-step": given current estimate of $\theta$, compute $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$.
(b) "M-step": update $\theta$ by maximizing $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$;

## EM algorithm maximizes the likelihood

EM algorithm for latent variable models

1. Initialize randomly $\theta$.
2. Repeat (a) and (b) until convergence:
(a) "E-step": given current estimate of $\theta$, compute $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$.
(b) "M-step": update $\theta$ by maximizing $E\left[I_{c}\left(\theta \mid D_{c}\right) \mid D\right]$;

## Theorem

The EM algorithm is a coordinatewise hill-climbing algorithm with respect to the likelihood function.

For proof, see hand-written notes.

## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation

4 Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes

6 Asymptotic theory
(7) References

## Bayesian estimation

In a Bayesian approach, parameters $\theta=(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ are assumed to be random

## Bayesian estimation

In a Bayesian approach, parameters $\theta=(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ are assumed to be random

There needs to be a prior distribution for $\theta$
Consequentially we obtain a Bayesian mixture model

## Bayesian estimation

In a Bayesian approach, parameters $\theta=(\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$ are assumed to be random

There needs to be a prior distribution for $\theta$
Consequentially we obtain a Bayesian mixture model

Inference boils down to calculation of posterior probability:

## Bayes' Rule

$$
\begin{aligned}
P(\theta \mid \text { Data }) & \equiv P(\theta \mid X) \\
& =\frac{P(\theta) P(X \mid \theta)}{\int P(\theta) P(X \mid \theta) d \theta} \\
\text { posterior } & \propto \text { prior } \times \text { likelihood }
\end{aligned}
$$

## Prior distributions

$$
\begin{aligned}
\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
\mu_{1}, \ldots, \mu_{K} & \sim \mathrm{~N}(\mathbf{0}, \mathbf{I}) \\
\Sigma_{1}, \ldots, \Sigma_{K} & \sim \operatorname{IW}(\Psi, m)
\end{aligned}
$$

## Prior distributions

$$
\begin{aligned}
\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
\mu_{1}, \ldots, \mu_{K} & \sim \mathrm{~N}(\mathbf{0}, \mathbf{I}) \\
\Sigma_{1}, \ldots, \Sigma_{K} & \sim \operatorname{IW}(\Psi, m)
\end{aligned}
$$

A million dollar question: how to choose prior distributions? (such as Dirichlet, Normal, Inverse-Wishart, ...)

## Prior distributions

$$
\begin{aligned}
\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right) & \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
\mu_{1}, \ldots, \mu_{K} & \sim \mathrm{~N}(\mathbf{0}, \mathbf{I}) \\
\Sigma_{1}, \ldots, \Sigma_{K} & \sim \operatorname{IW}(\Psi, m)
\end{aligned}
$$

A million dollar question: how to choose prior distributions? (such as Dirichlet, Normal, Inverse-Wishart, ...)
... the pure Bayesian viewpoint
... the pragmatic viewpoint: computational convenience via conjugacy
... the theoretical viewpoint: posterior asymptotics

## Dirichlet distribution

Let $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right)$ be a point in the $(K-1)$-simplex

- i.e., $0 \leq \pi_{k} \leq 1$, and $\sum_{k=1}^{K}=1$


## Dirichlet distribution

Let $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right)$ be a point in the ( $K-1$ )-simplex

- i.e., $0 \leq \pi_{k} \leq 1$, and $\sum_{k=1}^{K}=1$

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ be a set of parameters, where $\alpha_{k}>0$

## Dirichlet distribution

Let $\boldsymbol{\pi}=\left(\pi_{1}, \ldots, \pi_{K}\right)$ be a point in the ( $K-1$ )-simplex

- i.e., $0 \leq \pi_{k} \leq 1$, and $\sum_{k=1}^{K}=1$

Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$ be a set of parameters, where $\alpha_{k}>0$ The Dirichlet density is defined as

$$
P(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \pi_{1}^{\alpha_{1}-1} \ldots \pi_{K}^{\alpha_{K}-1} .
$$

- $\mathbb{E} \pi_{k}=\alpha_{k} /\left(\sum_{k=1}^{K} \alpha_{k}\right)$


## Multinomial-Dirichlet conjugacy

Let $\boldsymbol{\pi} \sim \operatorname{Dir}(\boldsymbol{\alpha})$.
Let $Z \sim \operatorname{Multinomial}(\boldsymbol{\pi})$, i.e. $P(Z=k \mid \boldsymbol{\pi})=\pi_{k}$ for $k=1, \ldots, K$. Write $Z$ as indicator vector $Z=\left(Z^{1} \ldots Z^{k}\right)$.

## Multinomial-Dirichlet conjugacy

Let $\boldsymbol{\pi} \sim \operatorname{Dir}(\boldsymbol{\alpha})$.
Let $Z \sim \operatorname{Multinomial}(\boldsymbol{\pi})$, i.e. $P(Z=k \mid \boldsymbol{\pi})=\pi_{k}$ for $k=1, \ldots, K$.
Write $Z$ as indicator vector $Z=\left(Z^{1} \ldots Z^{k}\right)$.
Then the posterior probability of $\pi$ is:

$$
\begin{aligned}
P(\boldsymbol{\pi} \mid Z) & \propto P(\boldsymbol{\pi}) P(Z \mid \boldsymbol{\pi}) \\
& \propto\left(\pi_{1}^{\alpha_{1}-1} \ldots \pi_{K}^{\alpha_{\kappa}-1}\right) \times\left(\pi_{1}^{Z^{1}} \ldots \pi_{K}^{Z^{k}}\right) \\
& \propto \pi_{1}^{\alpha_{1}-1} \ldots \pi_{K}^{\alpha_{\kappa}-1} \\
& =\pi_{1}^{\alpha_{1}+Z^{1}-1} \ldots \pi_{K}^{\alpha_{\kappa}+Z^{\kappa}-1},
\end{aligned}
$$

which is again a Dirichlet density with modified parameter: $\operatorname{Dir}(\alpha+Z)$

## Multinomial-Dirichlet conjugacy

Let $\boldsymbol{\pi} \sim \operatorname{Dir}(\boldsymbol{\alpha})$.
Let $Z \sim \operatorname{Multinomial}(\pi)$, i.e. $P(Z=k \mid \pi)=\pi_{k}$ for $k=1, \ldots, K$.
Write $Z$ as indicator vector $Z=\left(Z^{1} \ldots Z^{k}\right)$.
Then the posterior probability of $\pi$ is:

$$
\begin{aligned}
P(\boldsymbol{\pi} \mid Z) & \propto P(\boldsymbol{\pi}) P(Z \mid \boldsymbol{\pi}) \\
& \propto\left(\pi_{1}^{\alpha_{1}-1} \ldots \pi_{K}^{\alpha_{K}-1}\right) \times\left(\pi_{1}^{Z^{1}} \ldots \pi_{K}^{Z^{k}}\right) \\
& \propto \pi_{1}^{\alpha_{1}-1} \ldots \pi_{K}^{\alpha_{K}-1} \\
& =\pi_{1}^{\alpha_{1}+Z^{1}-1} \ldots \pi_{K}^{\alpha_{K}+Z^{k}-1},
\end{aligned}
$$

which is again a Dirichlet density with modified parameter: $\operatorname{Dir}(\alpha+Z)$
We say Multinomial-Dirichlet is a conjugate pair
Other conjugate pairs: Normal-Normal (for mean variable $\mu$ ), Normal-Inverse Wishart (for covariance matrix $\Sigma$ ), etc

## Bayesian mixture model

$$
\begin{aligned}
X_{n} \mid Z_{n}=k & \sim \mathrm{~N}\left(\mu_{k}, \Sigma_{k}\right) \\
Z_{n} \mid \pi & \sim \operatorname{Multinomial}(\pi) \\
\pi & \sim \operatorname{Dir}(\alpha) \\
\mu_{i} \mid \mu_{0}, \Sigma_{0} & \sim \operatorname{N}\left(\mu_{0}, \Sigma_{0}\right) \\
\Sigma_{i} \mid \psi & \sim \operatorname{IW}(\Psi, m)
\end{aligned}
$$


( $\alpha, \mu_{0}, \Sigma_{0}, \Psi$ ) are non-random parameters (or they may be random and assigned with prior distributions as well)

## Posterior inference

Posterior inference is about calculating conditional probability of latent variables and model parameters
i.e., $P\left(\left(Z_{n}\right)_{n=1}^{N},\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K} \mid X_{1}, \ldots, X_{N}\right)$

## Posterior inference

Posterior inference is about calculating conditional probability of latent variables and model parameters
i.e., $P\left(\left(Z_{n}\right)_{n=1}^{N},\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K} \mid X_{1}, \ldots, X_{N}\right)$

This is usually difficult computationally

## Posterior inference

Posterior inference is about calculating conditional probability of latent variables and model parameters
i.e., $P\left(\left(Z_{n}\right)_{n=1}^{N},\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K} \mid X_{1}, \ldots, X_{N}\right)$

This is usually difficult computationally

An approach is via sampling, exploiting conditional independence

## Posterior inference

Posterior inference is about calculating conditional probability of latent variables and model parameters
i.e., $P\left(\left(Z_{n}\right)_{n=1}^{N},\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K} \mid X_{1}, \ldots, X_{N}\right)$

This is usually difficult computationally

An approach is via sampling, exploiting conditional independence

At this point we take a detour, discussing a general modeling and inference formalism known as graphical models

## Directed graphical models

Given a graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where each node $v \in \mathcal{V}$ is associated with a random variable $X_{v}$ :


The joint distribution on collection of variables $X_{\mathcal{V}}=\left\{X_{v}: v \in \mathcal{V}\right\}$ factorizes accoding to the "parent-of" relation defined by directed edges $\mathcal{E}$ :

$$
P\left(X_{\mathcal{V}}\right)=\prod_{v \in \mathcal{V}} P\left(X_{v} \mid X_{\text {parents }(v)}\right)
$$

## Conditional independence



Observed variables are shaded
It can be shown that $X_{1} \perp\left\{X_{4}, X_{5}, X_{6} \mid X_{2}, X_{3}\right\}$.
Moreover we read off all such conditional independence from the graph structure.

## Basic conditional independence structure

 "chain structure": $X \perp Z \mid Y$
"causal structure": $X \perp Z \mid Y$

"explanation-away": $X \perp Z$ (marginally) but $X \not \perp Z \mid Y$


VIASM, Hanoi 2012

## "Explanation-away"

aliens $=$ "Alice was abducted by aliens"
watch $=$ "forgot to set watch
alarm before bed"
late $=$ "Alice is late for class"


$$
\begin{gathered}
\text { aliens } \perp \text { watch } \\
\text { aliens } \not \perp \text { watch } \mid \text { late }
\end{gathered}
$$

## Condionally i.i.d.

"Conditional iid (identically and independently distributed)": this is represented by a plate notation that allows subgraphs to be replicated:


Note that this graph represents a mixture distribution for observed variables $\left(X_{1}, \ldots, X_{N}\right)$ :

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{N}\right) & =\int P\left(X_{1}, \ldots, X_{N} \mid \theta\right) d P(\theta) \\
& =\int \prod_{i=1}^{N} P\left(X_{i} \mid \theta\right) d P(\theta)
\end{aligned}
$$

## Gibbs sampling

A Markov chain Monte Carlo (MCMC) sampling method

Consider a collection of variables, say $X_{1}, \ldots, X_{N}$ with a joint distribution $P\left(X_{1}, \ldots, X_{N}\right)$ (which may be a conditional joint distribution in our specific problem)

A stationary Markov chain is a sequence of $\mathbf{X}^{t}=\left(X_{1}^{t}, \ldots, X_{N}^{t}\right)$ for $t=1,2, \ldots$ such that given $\mathbf{X}^{t}$, random variable $\mathbf{X}^{t+1}$ is conditionally independent of all variables before $t$, and

$$
P\left(\mathbf{X}^{t+1} \mid \mathbf{X}^{t}\right) \text { is invariant with respect to } t
$$

## Gibbs sampling (cont)

Gibbs sampling method sets up the Markov chain as follows

- at step $t=1$, initialize $\mathbf{X}^{1}$ to arbitrary values
- at step $t$, choose $n$ randomly among $1, \ldots, N$
- draw a sample for $X_{n}^{t}$ from $P\left(X_{n} \mid X_{1}, \ldots, X_{n-1}, X_{n+1}, \ldots, X_{N}\right)$
- iterate


## A fundamental theorem of Markov chain theory

Under mild conditions (ensuring ergodicity), $\mathbf{X}^{t}$ converges in the limit to the joint distribution of $\mathbf{X}$, namely $P\left(X_{1}, \ldots, X_{N}\right)$

## Back to posterior inference

The goal is the sample from the (conditional) joint distribution $P\left(\left(Z_{n}\right)_{n=1}^{N},\left(\pi_{k}, \mu_{k}, \Sigma_{k}\right)_{k=1}^{K} \mid X_{1}, \ldots, X_{N}\right)$

By Gibbs sampling, it is sufficient to be able to sample from conditional distributions of each of the latent variables and parameters given everything else (and conditionally on the data)

We will see that conditional independence helps in a big way

Sample $\pi$ :

$$
\begin{aligned}
P\left(\boldsymbol{\pi} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, Z_{1} \ldots Z_{N}, \text { Data }\right) & =P\left(\boldsymbol{\pi} \mid Z_{1} \ldots Z_{N}\right) \\
& \uparrow \text { (conditional independence) } \\
& \propto P\left(Z_{1} \ldots Z_{n} \mid \boldsymbol{\pi}\right) P(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \\
& =\operatorname{Dir}\left(\alpha_{1}+n_{1}, \alpha_{2}+n_{2}, \ldots, \alpha_{K}+n_{K}\right),
\end{aligned}
$$

where $n_{j}=\sum_{n=1}^{N} \mathbb{I}\left(Z_{n}=j\right)$.

Sample $\pi$ :

$$
\begin{aligned}
P\left(\boldsymbol{\pi} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}, Z_{1} \ldots Z_{N}, \text { Data }\right) & =P\left(\boldsymbol{\pi} \mid Z_{1} \ldots Z_{N}\right) \\
& \uparrow \text { (conditional independence) } \\
& \propto P\left(Z_{1} \ldots Z_{n} \mid \boldsymbol{\pi}\right) P(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \\
& =\operatorname{Dir}\left(\alpha_{1}+n_{1}, \alpha_{2}+n_{2}, \ldots, \alpha_{K}+n_{K}\right),
\end{aligned}
$$

where $n_{j}=\sum_{n=1}^{N} \mathbb{I}\left(Z_{n}=j\right)$.

Sample $Z_{n}$ :
$P\left(Z_{n}=k \mid\right.$ everything else, including data $)=P\left(Z_{n}=k \mid X_{n}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$
$\uparrow$ (conditional independence)
$=\frac{\pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)}{\sum_{k=1}^{K} \pi_{k} N\left(X_{n} \mid \mu_{k}, \Sigma_{k}\right)}$.

Sample $\mu_{k}$ :

$$
\begin{aligned}
& P\left(\mu_{k} \mid \mu_{0}, \Sigma_{0}, \mathbf{Z}, \mathbf{X}, \boldsymbol{\Sigma}\right) \\
= & P\left(\mu_{k} \mid \mu_{0}, \Sigma_{0}, \Sigma_{k},\left\{Z_{n}, X_{n} \text { such that } Z_{n}=k\right\}\right) \\
\propto & P\left(\left\{X_{n}: Z_{n}=k\right\} \mid \mu_{k}, \Sigma_{k}\right) P\left(\mu_{k} \mid \mu_{0}, \Sigma_{0}\right) \\
\uparrow & \text { Bayes' Rule } \\
= & \prod_{n: Z_{n}=k} \exp \left\{-\frac{1}{2}\left(X_{n}-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(X_{n}-\mu_{k}\right)\right\} \\
& \times \exp -\frac{1}{2}\left(\mu_{k}-\mu_{0}\right)^{T} \Sigma_{0}^{-1}\left(\mu_{k}-\mu_{0}\right) \\
\propto & \exp -\frac{1}{2}\left(\mu_{k}-\tilde{\mu_{k}}\right)^{T}{\tilde{\Sigma_{k}}}^{-1}\left(\mu_{k}-\tilde{\mu_{k}}\right) \\
\equiv & \mathrm{N}\left(\tilde{\mu_{k}}, \tilde{\Sigma_{k}}\right)
\end{aligned}
$$

Here,

$$
\begin{gathered}
\tilde{\Sigma}_{k}^{-1}=\Sigma_{0}^{-1}+n_{k} \Sigma_{k}^{-1} \\
\text { where } n_{k}=\sum_{n=1}^{N} \mathbf{1}\left(Z_{n}=k\right) \\
\tilde{\Sigma}_{k}^{-1} \tilde{\mu}_{k}=\Sigma_{0}^{-1} \mu_{0}+\Sigma_{k}^{-1} \sum_{X_{n}: Z_{n}=k} X_{n}
\end{gathered}
$$

Hence, $\tilde{\mu_{k}}=\tilde{\Sigma_{k}}\left(\Sigma_{0}^{-1} \mu_{0}+\Sigma_{k}^{-1} \sum_{X_{n}: z_{n}=k} X_{n}\right)$.

Here,

$$
\begin{gathered}
\tilde{\Sigma}_{k}^{-1}=\Sigma_{0}^{-1}+n_{k} \Sigma_{k}^{-1} \\
\text { where } n_{k}=\sum_{n=1}^{N} \mathbf{1}\left(Z_{n}=k\right) \\
\tilde{\Sigma}_{k}^{-1} \tilde{\mu}_{k}=\Sigma_{0}^{-1} \mu_{0}+\Sigma_{k}^{-1} \sum_{X_{n}: Z_{n}=k} X_{n}
\end{gathered}
$$

Hence, $\tilde{\mu_{k}}=\tilde{\Sigma_{k}}\left(\Sigma_{0}^{-1} \mu_{0}+\Sigma_{k}^{-1} \sum_{X_{n}: Z_{n}=k} X_{n}\right)$.

Notice that if $n_{k} \rightarrow \infty$, then $\tilde{\Sigma}_{k} \rightarrow 0$.
So, $\tilde{\mu_{k}}-\frac{1}{n_{k}} \sum_{n: Z_{n}=k} X_{n} \rightarrow 0$. (That is, the prior is taken over by data!)

To sample $\Sigma_{k}$, we use inverse Wishart distribution (a generalization of the chi-square distribution to multivariate cases) as prior:

$$
\begin{array}{r}
B \sim W^{-1}(\Psi, m) \Leftrightarrow B^{-1} \sim W(\Psi, m) \\
B, \Psi: p \times p \text { PSD matrices, } m \text { : degree of freedom }
\end{array}
$$

Inverse-Wishart density:

$$
P(B \mid \Psi, m) \propto\|\Psi\|^{\frac{m}{2}}\|B\|^{\frac{-(n+p+1)}{2}} \exp -\operatorname{tr}\left(\Psi B^{-1} / 2\right)
$$

To sample $\Sigma_{k}$, we use inverse Wishart distribution (a generalization of the chi-square distribution to multivariate cases) as prior:

$$
\begin{array}{r}
B \sim W^{-1}(\Psi, m) \Leftrightarrow B^{-1} \sim W(\Psi, m) \\
B, \Psi: p \times p \text { PSD matrices, } m \text { : degree of freedom }
\end{array}
$$

Inverse-Wishart density:

$$
P(B \mid \Psi, m) \propto\|\Psi\|^{\frac{m}{2}}\|B\|^{\frac{-(n+p+1)}{2}} \exp -\operatorname{tr}\left(\Psi B^{-1} / 2\right)
$$

Assume that, as a prior for $\Sigma_{k}, k=1, \ldots, K$,

$$
\Sigma_{k} \mid \Psi, m \sim \operatorname{IW}(\Psi, m)
$$

So the posterior distribution for $\Sigma_{k}$ takes the form:

$$
\begin{aligned}
& P\left(\Sigma_{k} \mid \Psi, m, \boldsymbol{\mu}, \mathbf{p i}, \mathbf{Z}, \text { Data }\right) \\
= & P\left(\Sigma_{k} \mid \Psi, m, \mu_{k},\left\{X_{n}: Z_{n}=k\right\}\right) \\
\propto & \prod_{n: Z_{n}=k} P\left(X_{n} \mid \Sigma_{k}, \mu_{k}\right) \times P\left(\Sigma_{k} \mid \Psi, m\right) \\
\propto & \frac{1}{\left\|\Sigma_{k}\right\|^{\frac{n_{k}}{2}}} \exp \left\{\sum_{n: Z_{n}=k}-\frac{1}{2} \operatorname{tr}\left[\Sigma_{k}^{-1}\left(X_{k}-\mu_{k}\right)\left(X_{k}-\mu_{k}\right)^{T}\right]\right\} \\
& \times\|\Psi\|^{\frac{m}{2}}\left\|\Sigma_{k}\right\|^{-\frac{m+p+1}{2}} \exp -\frac{1}{2} \operatorname{tr}\left[\Psi \Sigma_{k}^{-1}\right] \\
= & \operatorname{IW}\left(A+\Psi, n_{k}+m\right)
\end{aligned}
$$

where

$$
A=\sum_{n: Z_{n}=k}\left(X_{n}-\mu_{k}\right)\left(X_{n}-\mu_{k}\right)^{T}, n_{k}=\sum_{n=1}^{N} \mathbb{I}\left(Z_{n}=k\right)
$$

## Summary of Gibbs sampling

Use Gibbs sampling to obtain samples from the posterior distribution $P\left(\boldsymbol{\pi}, \mathbf{Z}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \mid X_{1}, \ldots, X_{N}\right)$

## Sampling algorithm

- Randomly generate $\left(\pi^{(1)}, Z^{(1)}, \mu,{ }^{(1)}, \Sigma^{(1)}\right)$
- For $t=1, \ldots, T$, do the following:
(1) draw $\pi^{(t+1)} \sim P\left(\pi \mid Z^{(t)}, \mu^{(t)}, \Sigma^{(t)}\right.$, Data)
(2) draw $Z_{n}^{(t+1)} \sim P\left(Z_{n} \mid Z_{-n}^{(t)}, \mu^{(t)}, \Sigma^{(t)}, \pi^{(t+1)}\right.$, Data)
(3) draw $\mu_{k}^{(t+1)} \sim P\left(\mu_{k} \mid \mu_{k}^{(t)}, Z_{n}^{(t+1)}, \Sigma^{(t)}, \pi^{(t+1)}\right.$, Data)

By the fundamental theorem of Markov chain, for $t$ sufficiently large, $\left.\pi^{(t)}, Z^{(t)}, \mu,{ }^{(t)}, \Sigma^{(t)}\right)$ can be viewed as a random sample of the posterior $P(\cdot \mid$ Data $)$

By the fundamental theorem of Markov chain, for $t$ sufficiently large, $\left.\pi^{(t)}, Z^{(t)}, \mu,{ }^{(t)}, \Sigma^{(t)}\right)$ can be viewed as a random sample of the posterior $P(\cdot \mid$ Data $)$

Suppose that we have drawn samples from the posterior distribution, posterior probabilities can be obtained via Monte Carlo approximation

By the fundamental theorem of Markov chain, for $t$ sufficiently large, $\left.\pi^{(t)}, Z^{(t)}, \mu,{ }^{(t)}, \Sigma^{(t)}\right)$ can be viewed as a random sample of the posterior $P(\cdot \mid$ Data $)$

Suppose that we have drawn samples from the posterior distribution, posterior probabilities can be obtained via Monte Carlo approximation
E.g., posterior probability of the cluster label for data point $X_{n}$ :

$$
P\left(Z_{n} \mid \text { Data }\right) \approx \frac{1}{T-s+1} \Sigma_{t=s}^{T} \delta_{Z_{n}^{s}}
$$

## Comparing Gibbs sampling and EM algorithm

Gibbs can be viewed as a stochastic version of the EM algorithm

EM algorithm

1. E step: given current value of parameter $\theta$, calculate conditional expectation of latent variables $\mathbf{Z}$
2. M step: given the conditional expectations of $\mathbf{Z}$, update $\theta$ by maximizing the expected complete log-likelihood function

Gibbs sampling

1. given current values of $\theta$, sample Z
2. given current values of $\mathbf{Z}$, sample (random) $\theta$

## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation
(4) Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes

6 Asymptotic theory
(7) References

Recall our Bayesian mixture model: for each $n=1, \ldots, N, k=1, \ldots, K$,

$$
\begin{aligned}
X_{n} \mid Z_{n}=i & \sim \mathrm{~N}\left(\mu_{i}, \Sigma_{i}\right), \\
Z_{n} \mid \pi & \sim \operatorname{Multinomial}(\pi) \\
\pi & \sim \operatorname{Dir}(\boldsymbol{\alpha}) \\
\mu_{1} \mu_{0}, \Sigma_{0} & \sim \mathrm{~N}\left(\mu_{0}, \Sigma_{0}\right) \\
\Sigma_{k} \mid \Psi & \sim \operatorname{IW}(\Psi, m) .
\end{aligned}
$$



Recall our Bayesian mixture model: for each $n=1, \ldots, N, k=1, \ldots, K$,


We may assume further that parameters $\left(\alpha, \mu_{0}, \Sigma_{0}, \Psi\right)$ are may be random and assigned by prior distributions

Thus we obtain a hierarchical model in which parameters appear as latent random variables

## Exchangeability

The existence of latent variables can be motivated by De Finetti's theorem

Classical statistics often relies on assumption of i.i.d. data $X_{1}, \ldots, X_{N}$ with respect to some probability model parameterized by $\theta$ (non-random)

However, if $X_{1}, \ldots, X_{N}$ are exchangeable, then De Finetti's theorem establishes the existence of a latent random variable $\theta$ such that, $X_{1}, \ldots, X_{N}$ are conditionally i.i.d. given $\theta$

This theorem is regarded by many as one of the results that provide the mathematical foundation for Bayesian statistics

## Definition

Let $I$ be a countable index set. A sequence ( $X_{i}: i \in I$ ) (finite or infinite) is exchangeable if for any permutation $\rho$ of $I$

$$
\left(X_{\rho(i)}\right)_{i \in I} \stackrel{\text { law }}{=}\left(X_{i}\right)_{i \in I}
$$

## Definition

Let $I$ be a countable index set. A sequence ( $X_{i}: i \in I$ ) (finite or infinite) is exchangeable if for any permutation $\rho$ of $I$

$$
\left(X_{\rho(i)}\right)_{i \in I} \stackrel{\text { law }}{=}\left(X_{i}\right)_{i \in I}
$$

## De Finetti's theorem

If ( $X_{1}, \ldots, X_{n}, \ldots$ ) is an infinite exchangeable sequence of random variables on some probability space then there is a random variable $\theta \sim \pi$ such that $X_{1}, \ldots, X_{n}, \ldots$ are iid conditionally on $\theta$. That is, for all $n$

$$
P\left(X_{1}, \ldots, X_{n}, \ldots\right)=\int_{\theta} \prod_{i=1}^{n} P\left(X_{i} \mid \theta\right) d \pi(\theta)
$$

Remarks

- Exchangeability is a weaker assumption than iid.
- $\theta$ may be (generally) an infinite dimensional variable


## Latent Dirichlet allocation/ Finite admixture

Developed by Pritchard et al (2000), Blei et al (2001)
Widely applicable to data such as texts, images and biological data (Google Scholar has 12000 citations)

A canonical and simple example of hierarchical mixture model for discrete data

## Latent Dirichlet allocation/ Finite admixture

Developed by Pritchard et al (2000), Blei et al (2001)
Widely applicable to data such as texts, images and biological data (Google Scholar has 12000 citations)

A canonical and simple example of hierarchical mixture model for discrete data
Some jargons:
Basic building blocks are words represented by random variables, say $W$, where $W \in\{1, \ldots, V\} . V$ is the length of the vocabulary.

A document a sequence of words denoted by $\bar{W}=\left(W_{1}, \ldots, W_{N}\right)$.
A corpus is a collection of documents $\left(\bar{W}^{1}, \ldots, \bar{W}^{m}\right)$.
General problems: Given a collection of documents, can we infer the topics that the documents may be clustered around?

## Early modeling attempts

Unigram Model: All documents in corpus share the same "topic". I.e., For any document $\bar{W}=\left(W_{1}, \ldots, W_{N}\right)$,

$$
W_{1}, \ldots, W_{N} \sim \operatorname{Mult}(\theta)
$$



Mixture of Unigram Model: Each document $\bar{W}$ is associated with a latent "topic" variable Z. I.e.,
For each $d=1, \ldots, m$, generate document $\bar{W}=\left(W_{1}, \ldots, W_{N}\right)$ as follows:

$$
\begin{array}{rll}
Z & \sim \operatorname{Mult}(\theta) \\
W_{1}, \ldots, W_{N} \mid Z=k & \stackrel{i i d}{\sim} & \operatorname{Mult}\left(\boldsymbol{\beta}_{k}\right)
\end{array}
$$



Latent Dirichlet allocation model
Assume the following:

- The words within each document are exchangeable - this is the 'bag of words' assumption
- The documents within each corpus are exchangeable
- A document may be associated with $K$ topics
- Each word within a document is associated with any topics

Latent Dirichlet allocation model
Assume the following:

- The words within each document are exchangeable - this is the 'bag of words' assumption
- The documents within each corpus are exchangeable
- A document may be associated with $K$ topics
- Each word within a document is associated with any topics

For $d=1, \ldots, M$, generate document $\bar{W}=\left(W_{1}, \ldots, W_{N}\right)$ as follows:

- draw $\theta \sim \operatorname{Dir}\left(\alpha_{1}, \ldots, \alpha_{K}\right)$,
- for each $n=1, \ldots, N$,

$$
\begin{aligned}
Z_{n} & \sim \operatorname{Mult}(\theta) \text { i.e. } P\left(Z_{n}=k \mid \theta\right)=\theta_{k} \\
W_{n} \mid Z_{n} & \stackrel{i i d}{\sim} \operatorname{Mult}(\boldsymbol{\beta}) \text { i.e. } P\left(W_{n}=j \mid Z_{n}=k, \boldsymbol{\beta}\right)=\beta_{k j}, \beta \in \mathbb{R}^{K \times V}
\end{aligned}
$$

## Geometric illustration



Each $\times$ dot in the topic polytope (topic simplex in illustration) corresponds to the word frequency vector for a random document Extreme points of the topic polytope (e.g., topic 1, topic 2,...) in RHS are represented by vectors $\boldsymbol{\beta}_{k}$ for $k=1,2, \ldots$ in the hierarchical model in LHS

$$
\boldsymbol{\beta}_{k}=\left(\beta_{k 1}, \ldots, \beta_{k V}\right)
$$

## Posterior inference

The goal of inference includes:
(1) Compute the posterior distribution, $P(\theta, Z \mid \bar{W}, \alpha, \beta)$ for each document $\bar{W}=\left(W_{1}, \ldots, W_{N}\right)$
(2) Estimating $\alpha, \beta$ from the data, e.g., corpus of $M$ documents $\bar{W}^{1}, \ldots, \bar{W}^{M}$

Both of the above are relatively easy to do using Gibbs Sampling, or Metropolis-Hastings, which will be left as an exercise. Unfortunately a sampling algorithm may be extremely slow (to achieve convergence), this motivate a fast deterministic algorithm for posterior inference.

The posterior can be rewritten as

$$
P(\theta, Z \mid \bar{W}, \alpha, \beta)=\frac{P(\theta, Z, \bar{W}, \alpha, \beta)}{P(\bar{W} \mid \alpha, \beta)}
$$

The posterior can be rewritten as

$$
P(\theta, Z \mid \bar{W}, \alpha, \beta)=\frac{P(\theta, Z, \bar{W}, \alpha, \beta)}{P(\bar{W} \mid \alpha, \beta)}
$$

The numerator can be computed easily:

$$
P(\theta, Z, \bar{W}, \alpha, \beta)=P(\theta \mid \alpha) \prod_{n=1}^{N} P\left(Z_{n} \mid \theta\right) P\left(W_{n} \mid Z_{n}, \beta\right)
$$

The posterior can be rewritten as

$$
P(\theta, Z \mid \bar{W}, \alpha, \beta)=\frac{P(\theta, Z, \bar{W}, \alpha, \beta)}{P(\bar{W} \mid \alpha, \beta)}
$$

The numerator can be computed easily:

$$
P(\theta, Z, \bar{W}, \alpha, \beta)=P(\theta \mid \alpha) \prod_{n=1}^{N} P\left(Z_{n} \mid \theta\right) P\left(W_{n} \mid Z_{n}, \beta\right)
$$

Unfortunately, the denominator is difficult:

$$
\begin{array}{r}
P(\bar{W} \mid \alpha, \beta)=\int_{Z, \theta} P(\theta, Z, \bar{W} \mid \alpha, \beta)= \\
\int \frac{\Gamma\left(\sum \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \prod_{n=1}^{N}\left[\sum_{k=1}^{K} \prod_{j=1}^{V}\left(\theta_{k} \beta_{k j}\right)^{\mathbb{I}\left\{W_{n}=j\right\}}\right] d \theta
\end{array}
$$

## Variational inference

This is an alternative to sampling-based inference.
The main spirit is to turn a difficult computation problem into an optimization problem, one which can be modified/simplified.
We consider the simplest form of variational inference, known as "mean-field" approximation:

- Consider a family of tractable distributions $Q=\{q(\boldsymbol{\theta}, \mathbf{Z} \mid \bar{W}, \alpha, \beta)\}$
- Choose the one in $Q$, that is closest to the true posterior:

$$
q^{*}=\arg \min _{q \in Q} \mathrm{KL}(q \| p(\boldsymbol{\theta}, \mathbf{Z} \mid \bar{W}, \alpha, \beta))
$$

- Use $q^{*}$ instead of the true parameter $q \in Q$

In mean-field approximation, $Q$ taken to be the family of "factorized" distributions, i.e.:

$$
q(\theta, Z \mid \bar{W}, \gamma, \phi)=q(\theta \mid \bar{W}, \gamma) \Pi_{n=1}^{N} q\left(Z_{n} \mid \bar{W}, \phi\right)
$$

In mean-field approximation, $Q$ taken to be the family of "factorized" distributions, i.e.:

$$
q(\theta, Z \mid \bar{W}, \gamma, \phi)=q(\theta \mid \bar{W}, \gamma) \Pi_{n=1}^{N} q\left(Z_{n} \mid \bar{W}, \phi\right)
$$

Optimization is performed with rspect to variational parameters $(\gamma, \phi)$

Under $q \in Q$, for $n=1, \ldots, N ; k=1, \ldots, K$,

$$
\begin{gathered}
P\left(Z_{n}=k \mid \bar{W}, \phi_{n}\right)=\phi_{n k} \\
\boldsymbol{\theta} \mid \gamma \sim \operatorname{Dir}(\gamma), \gamma \in \mathbb{R}_{+}^{K}
\end{gathered}
$$

The optimization of variational parameters can be achieved by implementing a simple system of updating equations.

## Mean-field algorithm

1. Initialize $\phi, \gamma$ arbitrarily.
2. Keep updating until convergence:

$$
\begin{aligned}
\phi_{n k} & \propto \beta_{k W_{n}} \exp \left\{\mathbb{E}_{q}\left[\log \theta_{k} \mid \gamma\right]\right\} \\
\gamma_{k} & =\alpha_{k}+\sum_{n=1}^{N} \phi_{n k}
\end{aligned}
$$

In the first updating equation, we use a fact of Dirichlet distribution: if $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \sim \operatorname{Dir}(\gamma)$, then

$$
\mathbb{E}\left[\log \theta_{k} \mid \gamma\right]=\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{K} \gamma_{k}\right)
$$

where $\Psi$ is the digamma function:

$$
\Psi(x)=\frac{d \log \Gamma}{d x}=\frac{\Gamma^{\prime}(x)}{\Gamma(x)} .
$$

## Derivation of the mean-field approximation

Jensen's Inequality

$$
\begin{aligned}
\log P(\bar{W} \mid \alpha, \beta) & =\log \int_{\theta} \sum_{Z} P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta) d \theta \\
& =\log \int_{\theta} \sum_{Z} \frac{P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)}{q(\boldsymbol{\theta}, \mathbf{Z})} q(\boldsymbol{\theta}, \mathbf{Z}) d \theta \\
& \geq \int_{\theta} \sum_{Z} q(\boldsymbol{\theta}, \mathbf{Z}) \log \frac{P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)}{q(\boldsymbol{\theta}, \mathbf{Z})} d \theta \\
& =\mathbb{E}_{q} \log P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)-E_{q} \log q(\boldsymbol{\theta}, \mathbf{Z}) \\
& =: L(\gamma, \phi ; \alpha, \beta)
\end{aligned}
$$

The gap of the bound:

$$
\log P(\bar{W} \mid \alpha, \beta)-L(\gamma, \phi ; \alpha, \beta)=\operatorname{KL}(q(\boldsymbol{\theta}, \mathbf{Z})| | P(\boldsymbol{\theta}, \mathbf{Z} \mid \bar{W}, \alpha, \beta))
$$

So $q^{*}$ solves the following maximization:

$$
\max _{\gamma, \phi} L(\gamma, \phi ; \alpha, \beta)
$$

So $q^{*}$ solves the following maximization:

$$
\max _{\gamma, \phi} L(\gamma, \phi ; \alpha, \beta) .
$$

Note that

$$
\log P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)=\log P(\theta \mid \alpha)+\sum_{n=1}^{N}\left(\log P\left(Z_{n} \mid \theta\right)+\log P\left(W_{n} \mid Z_{n}, \beta\right)\right)
$$

So $q^{*}$ solves the following maximization:

$$
\max _{\gamma, \phi} L(\gamma, \phi ; \alpha, \beta)
$$

Note that
$\log P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)=\log P(\theta \mid \alpha)+\sum_{n=1}^{N}\left(\log P\left(Z_{n} \mid \theta\right)+\log P\left(W_{n} \mid Z_{n}, \beta\right)\right)$
So,

$$
\begin{aligned}
L(\gamma, \phi ; \alpha, \beta)= & \mathbb{E}_{q} \log P(\theta \mid \alpha)+\sum_{n=1}^{N}\left\{\mathbb{E}_{q} \log P\left(Z_{n} \mid \theta\right)+\mathbb{E}_{q} \log P\left(W_{n} \mid Z_{n}, \beta\right)\right\} \\
& -\mathbb{E}_{q} \log q(\theta \mid \gamma)-\sum_{n=1}^{N} \mathbb{E}_{q} \log q\left(Z_{n} \mid \phi_{n}\right)
\end{aligned}
$$

Let's go over each term in the previous expression:

$$
\begin{aligned}
\log P(\theta \mid \alpha)= & \frac{\Gamma\left(\sum \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \\
\log P(\theta \mid \alpha)= & \sum_{k=1}^{K}\left(\alpha_{k-1}\right) \log \theta_{k}+\log \Gamma\left(\sum \alpha_{k}\right)-\sum_{k=1}^{K} \log \Gamma\left(\alpha_{k}\right) \\
\mathbb{E}_{q} \log P(\theta \mid \alpha)= & \sum_{k=1}^{K}\left(\alpha_{k}-1\right)\left(\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{K} \gamma_{k}\right)\right) \\
& +\log \Gamma\left(\sum \alpha_{k}\right)-\sum_{k=1}^{K} \log \Gamma\left(\alpha_{k}\right)
\end{aligned}
$$

Next term:

$$
\begin{aligned}
P\left(Z_{n} \mid \theta\right) & =\prod_{k=1}^{K} \theta_{k}^{\mathbb{I}\left(Z_{n}=k\right)}, \\
\log P\left(Z_{n} \mid \theta\right) & =\sum_{k=1}^{K} \mathbb{I}\left(Z_{n}=k\right) \log \theta_{k}, \\
\mathbb{E}_{q} \log P\left(Z_{n} \mid \theta\right) & =\sum_{k=1}^{K} \phi_{n k}\left(\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{K} \gamma_{k}\right)\right) .
\end{aligned}
$$

And next:

$$
\begin{aligned}
\log P\left(W_{n} \mid Z_{n}, \beta\right) & =\log \prod_{k=1}^{K} \prod_{j=1}^{V}\left(\beta_{k j}\right)^{\mathbb{I}\left(W_{n}=j, Z_{n}=k\right)}, \\
\mathbb{E}_{q} \log P\left(Z_{n} \mid \theta\right) & =\sum_{k=1}^{K} \sum_{j=1}^{V} \mathbb{I}\left(Z_{n}=k\right) \log \beta_{k j} .
\end{aligned}
$$

And next:

$$
q(\theta \mid \gamma)=\frac{\Gamma\left(\sum \gamma_{k}\right)}{\sum_{k=1}^{K} \Gamma\left(\gamma_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\gamma_{k}-1}
$$

so,

$$
\begin{aligned}
\mathbb{E}_{q} \log q(\theta \mid \gamma)= & \sum_{k=1}^{K}\left(\gamma_{k}-1\right)\left(\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{K} \gamma_{k}\right)\right) \\
& +\log \Gamma\left(\sum_{k=1}^{K} \gamma_{k}\right)-\sum_{k=1}^{K} \log \Gamma\left(\gamma_{k}\right)
\end{aligned}
$$

And next:

$$
q(\theta \mid \gamma)=\frac{\Gamma\left(\sum \gamma_{k}\right)}{\sum_{k=1}^{K} \Gamma\left(\gamma_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\gamma_{k}-1}
$$

so,

$$
\begin{aligned}
\mathbb{E}_{q} \log q(\theta \mid \gamma)= & \sum_{k=1}^{K}\left(\gamma_{k}-1\right)\left(\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{K} \gamma_{k}\right)\right) \\
& +\log \Gamma\left(\sum_{k=1}^{K} \gamma_{k}\right)-\sum_{k=1}^{K} \log \Gamma\left(\gamma_{k}\right)
\end{aligned}
$$

And next:

$$
q\left(Z_{n} \mid \phi_{n}\right)=\prod_{k=1}^{K} \phi_{n k}^{\mathbb{I}\left(Z_{n}=k\right)}
$$

So $\mathbb{E}_{q} \log q\left(Z_{n} \mid \gamma_{n}\right)=\sum_{k=1}^{K} \phi_{n k} \log \phi_{n k}$.

To summarize, we maximize the lower bound of the likelihood function:

$$
L(\gamma, \phi ; \alpha, \beta):=\mathbb{E}_{q}[\log P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)]-\mathbb{E}_{q}[\log q(\boldsymbol{\theta}, \mathbf{Z})]
$$

with respect to variational parameters satisfying constraints, for all $n=1, \ldots, N ; k=1, \ldots, K$

$$
\begin{aligned}
& \sum_{k=1}^{k} \phi_{n k}=1, \\
& \phi_{n k} \geq 0, \\
& \gamma_{k} \geq 0 .
\end{aligned}
$$

To summarize, we maximize the lower bound of the likelihood function:

$$
L(\gamma, \phi ; \alpha, \beta):=\mathbb{E}_{q}[\log P(\boldsymbol{\theta}, \mathbf{Z}, \bar{W} \mid \alpha, \beta)]-\mathbb{E}_{q}[\log q(\boldsymbol{\theta}, \mathbf{Z})]
$$

with respect to variational parameters satisfying constraints, for all $n=1, \ldots, N ; k=1, \ldots, K$

$$
\begin{aligned}
& \sum_{k=1}^{K} \phi_{n k}=1, \\
& \phi_{n k} \geq 0 \\
& \gamma_{k} \geq 0 .
\end{aligned}
$$

$L$ decomposes nicely into a sum, which admits simple gradient-based update equations:

Fix $\gamma$, maximize w.r.t. $\phi, \quad \Rightarrow \phi_{n k} \propto \beta_{k W_{n}} \exp \left(\Psi\left(\gamma_{k}\right)-\Psi\left(\sum_{k=1}^{k} \gamma_{k}\right)\right)$,
Fix $\phi$, maximize w.r.t. $\gamma, \quad \Rightarrow \gamma_{k}=\alpha_{k}+\sum_{n=1}^{N} \phi_{n k}$.

## Variational EM algorithm

It remains to estimate parameters $\alpha$ and $\beta$,

$$
\text { Data } D=\text { set of documents }\left\{\bar{W}^{1}, \bar{W}^{2}, \ldots, \bar{W}^{M}\right\}
$$

$$
\text { Log-likelihood } \quad \begin{aligned}
L(D) & =\sum_{d=1}^{M} \log p\left(\overline{W_{d}} \mid \alpha, \beta\right) \\
& =\sum_{d=1}^{M} L\left(\gamma_{d}, \phi_{d} \mid \alpha, \beta\right)+K L(q \| P(\boldsymbol{\theta}, \mathbf{z} \mid D, \alpha, \beta))
\end{aligned}
$$

EM algorithm involves alternating between E step and M step until convergence:

## Variational E step

For each $d=1, \ldots, M$, let $\left(\gamma_{d}, \phi_{d}\right):=\arg \max L\left(\gamma_{d}, \phi_{d} ; \alpha, \beta\right)$.

## M step

Solve $(\alpha, \beta)=\arg \max \sum_{d=1}^{M} L\left(\gamma_{d}, \phi_{d} \mid \alpha, \beta\right)$.

## Example

## An example article from the AP corpus (Blei et al, 2003)

```
The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli- tan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \(\$ 200,000\) for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \(\$ 400,000\) each. The Juilliard School, where music and the performing arts are taught, will get \(\$ 250,000\). The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.
```

| "Arts" | "Budgets" | "Children" | "Education" |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEW | MILLION | CHILDREN | SCHOOL |  |  |
| FILM | TAX | WOMEN | STUDENTS |  |  |
| SHOW | PROGRAM | PEOPLE | SCHOOLS |  |  |
| MUSIC | BUDGET | CHILD | EDUCATION |  |  |
| MOVIE | BILLION | YEARS | TEACHERS |  |  |
| PLAY | FEDERAL | FAMILIES | HIGH |  |  |
| MUSICAL | YEAR | WORK | PUBLIC |  |  |
| BEST | SPENDING | PARENTS | TEACHER |  |  |
| ACTOR | NEW | SAYS | BENNETT |  |  |
| FIRST | STATE | FAMILY | MANIGAT |  |  |
| YORK | PLAN | WELFARE | NAMPHY | E $\overline{\text { I }}$ | のQく |
| Opro ( | Mover Clustering, | MENT | CTATE VIASM | noi 2012 | $75 / 86$ |

## Example <br> An example article from Science corpus (1880-2002) (Blei \& Lafferty, 2009)

## Chance and Statistical Significance in Protein and DNA Sequence Analysis

## Samuel Karlin and Volker Brende

Top words from the top toplcs (by term score)

| sequence reglon pcr Identifled fragments two genes three cdna analysis | measured average range values different slze three calculated two low | residues <br> binding <br> domalns hellx cys reglons structure terminus terminal site | computer methods number two princIple design access processing advantage Important |
| :---: | :---: | :---: | :---: |

Expected toplc proportions


Abstract with the most Ilkely topic assignments
Statistical approaches help in the determination of significant configurations in protein and nucleic acid sequence data. Three recent statistical methods are discussed: (i) scorebased sequence analysis that provides a means for characterizing anomalies in local sequence text and for evaluating sequence comparisons; (ii) quantile distributions of amino acid usage that reveal general compositional biases in proteins and evolutionary relations; and (iii) $r$-scan statistics that can be applied to the analysis of spacings of sequence markers.

Top Ten SImllar Documents
Exhaustive Matching of the Entire Protein Sequence Database
How Big Is the Universe of Exons?
Counting and Discounting the Universe of Exons
Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment
Ancient Conserved Regions in New Gene Sequences and the Protein Databases

## Variations of the same theme

## Graphical model for dynamic topic modeling (Blei \& Lafferty, 2009)



Figure 8. A graphical model representation of a dynamic topic model (for three time slices). Each topic's parameters $\beta_{t, k}$ evolve over time.

Evolution of two topics from the dynamic model fitted to the Science archive (1880-2002)


| 1880 <br> french <br> france <br> england <br> country <br> europe | 1900 <br> states <br> united <br> germany <br> country <br> france |
| :---: | :---: |


| $\begin{gathered} \text { 1920 } \\ \text { war } \\ \text { states } \\ \text { united } \\ \text { france } \\ \text { british } \end{gathered}$ | 1940 war states united american international | 1960 united soviet states nuclear international | 1980 nuclear soviet weapons states united |
| :---: | :---: | :---: | :---: |

[^0]Clustering, mixture models \& BNP

## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation

4 Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes
(6) Asymptotic theory
(7) References

See hand-written notes.

## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation

4 Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes
(6) Asymptotic theory
(7) References

See hand-written notes.

## Outline

(1) Clustering problem
(2) Finite mixture models
(3) Bayesian estimation

4 Hierarchical Mixture
(5) Dirichlet processes and nonparametric Bayes

6 Asymptotic theory
(7) References

## Incomplete References

For Part 1,2,3:
J. Berger. Statistical decision theory and Bayesian analysis, Springer 1985.
P. Bickel \& K. Doksum. Mathematical statistics: basic ideas and selected topics, vol. 1,

Prentice Hall, 2000.
C. Bishop. Pattern recognition and machine learning, 2007.
T. Hastie, R. Tibshirani \& J. Friedman. Elements of statistical learning, Springer, 2009.
O. Kallenberg. Foundations of modern probability. Springer, 2010.
M. I. Jordan, Introduction to probablistic graphical models. Unpublished text book.
C. Robert. The Bayesian choice: From decision-theoretic foundation to computational implementation, Springer, 2007.
A. van der Vaart. Asymptotic Statistics, Cambridge University Press, 2000. y L. Wasserman. All of Statistics: a concise course in statistical inference, Springer, 2004.

## For Part 4:

D. Blei, A. Ng, \& M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.
D. Blei \& J. Lafferty, Topic models: A review, 2009.
J. Pritchard, M. Stephen \& P. Donnelly, Inference of population structure using multilocus genotype data. Genetics, 2000.
M. J. Wainwright \& M. I. Jordan, Graphical models, exponential families and variational inference, Foundations and trends in machine learning, 2008.

For Part 5, 6:
T. Ferguson. A Bayesian analysis of some nonpametric problems. Annals of Statistics, 1973.
J. Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1994.
H. Ishwaran \& L. James. Gibbs sampling methods of stick-breaking priors. Joural of American Statistical Association, 2001.
R. Neal. Markov Chain sampling methods for Dirichlet process mixture models. Journal of computational and graphical statistics, 2000.
N. Hjort, C. Holmes, P. Mueller \& S. Walker (Eds). Bayesian nonparametrics: principles and practices. Cambridge University Press, 2010.
M. I. Jordan, Dirichlet processes, Chinese restaurant processes and all that. NIPS 2005 Tutorial, 2005.
Y. W. Teh, M. I. Jordan, D. Blei \& M. Beal. Hierarchical Dirichlet Processes, Journal of American Statistical Association, 2006.
J. Ghosh \& R. Ramamoorthi. Bayesian nonparametrics, Springer 2003.
S. Ghosal, J. Ghosh \& A. van der Vaart, Convergence of posterior distributions.Annals of Statistics, 2000.
X. Nguyen. Convergence of latent mixing measures in finite and infinite mixture models.

Technical Report 527, Department of Statistics, University of Michigan, 2011.
C. Villani. Optimal transport: Old and new topics, Springer 2008.


[^0]:    2000
    european
    united
    nuclear
    states
    countries

