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Talk outline

e nonparametric decentralized detection algorithm
— use of surrogate loss functions and marginalized kernels

— use of convex analysis

e study of surrogate loss functions and divergence functionals
— correspondence of losses and divergences

— M-estimator of divergences (e.g., Kullback-Leibler divergence)



Decentralized decision-making problem

learning both classifier and experiment

e covariate vector X and hypothesis (label) Y = +1
e we do not have access directly to X in order to determine Y

e learn jointly the mapping (Q, )

X Yz Ly



Decentralized decision-making problem

learning both classifier and experiment

e covariate vector X and hypothesis (label) Y = +1
e we do not have access directly to X in order to determine Y

e learn jointly the mapping (Q, )
x %z Ly

e roles of “experiment” (:
— due to data collection constraints (e.g., decentralization)
— data transmission constraints
— choice of variates (feature selection)

— dimensionality reduction scheme



A decentralized detection system

Q\Q\ O /Q <—— Sensors

| \ | -—— Communication channel

<«—— Fusion center

Decision rule

e Decentralized setting: Communication constraints between sen-

sors and fusion center (e.g., bit constraints)
e Goal: Design decision rules for sensors and fusion center

e Criterion: Minimize probability of incorrect detection



Concrete example — wireless sensor network

. ()=——"sensors

Set-up:

e wireless network of tiny sensor motes, each equiped with light/ humidity/
temperature sensing capabilities

e measurement of signal strength ([0-1024] in magnitude, or 10 bits)

Goal: is there a forest fire in a certain region?
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Related work

e Classical work on classification/detection:
— completely centralized

— no consideration of communication-theoretic infrastructure



Related work

e Classical work on classification/detection:
— completely centralized

— no consideration of communication-theoretic infrastructure

e Decentralized detection in signal processing (e.g., Tsitsiklis, 1993)
— joint distribution assumed to be known

— locally-optimal rules under conditional independence assumptions
(i.e., Naive Bayes)



Overview of our approach

e Treat as a nonparametric estimation (learning) problem

— under constraints from a distributed system

e Use kernel methods and convex surrogate loss functions

— tools from convex optimization to derive an efficient algorithm



Problem set-up

Problem: Given training data (x;,y;)i, find the decision rules

(v, ...,7%;7) so as to minimize the detection error probability:

P(Y #£~(Z%,...,Z%).



Kernel methods for classification

Classification: Learn (z) that predicts label y

K (z,72') is a symmetric positive semidefinite kernel function

feature space H in which K acts as an inner product, i.e., K(z,z) =
(W(z), ¥(2))

Kernel-based algorithm finds linear function in H, i.e.
Y(z) = (W, (2)) = ) oK (2, 2)
i=1

Advantages:

— kernel function classes are sufficiently rich for many applications

— optimizing over kernel function classes is computionally efficient



Convex surrogate loss function ¢ to 0-1 loss
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e (z;,y;)"_, are training data in Z x {£1}
e ¢ is a convex loss function (surrogate to non-convex 0-1 loss)
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Stochastic decision rules at each sensor

e Approximate deterministic sensor decisions by stochastic rules Q(Z|X)
e Sensors do not communicate directly = factorization:
S
Q(Z|X) =TI, @(Z'X7)
Q=[Q%

e The overall decision rule is represented by
V(z) = (w, ¥(z))
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High-level strategy:
Joint optimization
e Minimize over (@, ) an empirical version of E¢(Yv(2))

e Joint minimization:
— fix (), optimize over v: A simple convex problem

— fix ~, perform a gradient update for (), sensor by sensor
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Approximating empirical ¢-risk

e The regularized empirical ¢-risk E¢(Y~v(Z)) has the form:

Go= 33 6 ()QL) + 2 1w

z i:

e Challenge: even evaluating GGy at a single point is intractable

Requires summing over L° possible values for z

o Idea:

— approximate GGo by another objective function G
— G is ¢-risk of a “marginalized” feature space

— G9g =G for deterministic @
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“Marginalizing” over feature space

22 7(2) = (w, ¥(z2)) 2 fo(z) = (w, ¥o(z))

Quantized: Z—space Original: X' —space
Stochastic decision rule Q(z|z):
e maps between X and Z

e induces marginalized feature map Vg from base map ¥ (or marginalized

kernel K¢g from base kernel K)
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Marginalized feature space {Ug(x)}

15



Marginalized feature space {Ug(x)}

e Define a new feature space Vg (x) and a linear function over Wy (z):

Uo(z) = ) . Q(2|x)¥(z) <= Marginalization over z
fo(z) = (w, ¥q(x))
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Marginalized feature space {Ug(x)}

e Define a new feature space Vg (x) and a linear function over Wy (z):
Uo(z) = ) . Q(2|x)¥(z) <= Marginalization over z

fo(z) = (w, ¥o(x))

e The alternative objective function G is the ¢-risk for fg:

" A
G = Z¢(?Jif@($z')) + §HWH2
i—1
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Marginalized feature space {Ug(x)}

e Define a new feature space Vg (x) and a linear function over Wy (z):
Uo(z) = ) . Q(2|x)¥(z) <= Marginalization over z

fo(z) = (w, ¥o(x))

e The alternative objective function G is the ¢-risk for fg:

" A
G = Z¢(?Jif@($z')) + §HWH2
i—1

e Uy(z) induces a marginalized kernel over X
Kq(z,2") = (Uo(z), Uo(a)) = > Qz2)Q(<|2") K.(z,2')
z,z!
—> Marginalization taken over message z conditioned on sensor signal x

15-c



Marginalized kernels

e Have been used to derive kernel functions from generative models
(e.g. Tsuda, 2002)

e Marginalized kernel Kg(x, ') is defined as:

Kolwa) =Y QE)QE|a))  K.(x7) .

4 \ 4

“* Factorized distributions Base kernel

o If K,(2,2") is decomposed into smaller components of z and z’, then

Kg(z,2") can be computed efficiently (in polynomial-time)
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Centralized and decentralized function

e Centralized decision function obtained by minimizing ¢-risk:

fo(z) = (w, ¥q(z))

— fo has direct access to sensor signal x
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Centralized and decentralized function

e Centralized decision function obtained by minimizing ¢-risk:

fo(z) = (w, ¥q(z))

— fo has direct access to sensor signal x

e Optimal w also define decentralized decision function:

7(2) = (w, ¥(z))

— v has access only to quantized version z
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Centralized and decentralized function

e Centralized decision function obtained by minimizing ¢-risk:

fo(z) = (w, ¥q(z))

— fo has direct access to sensor signal x

e Optimal w also define decentralized decision function:

7(2) = (w, ¥(z))

— v has access only to quantized version z

e Decentralized v behaves on average like the centralized fq:

fo(x) = E[y(Z)|x]
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Optimization algorithm

Goal: Solve the problem:

inf Gi(wi Q) qu(yz w, Y QL)) ) + S

e Finding optimal weight vector:

— (G is convex in w with () fixed
— solve dual problem (quadratic convex program) to obtain optimal

w(Q)

e Finding optimal decision rules:

— G is convex in Q' with w and all other {Q",r # t} fixed

— efficient computation of subgradient for G at optimal (w(Q), Q)

Overall: Efficient joint minimization by blockwise coordinate descent
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Simulated sensor networks
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Kernel Quantization vs. Decentralized LRT

Naive Bayes networks
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Chain-structured (1st order)
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Wireless network with tiny Berkeley motes

. (O)=——sensors

e 5 X 5 = 25 tiny sensor motes, each equipped with a light receiver
e Light signal strength requires 10-bit ([0-1024] in magnitude)
e Perform classification with respect to different regions

e FEach problem has 25 training positions, 81 test positions

(Data collection courtesy Bruno Sinopoli)
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Test error
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Classification with Mica sensor motes

—8— centralized SVM (10-bit sig)
—— centralized NB classifier
—6— decentralized KQ (1-bit)
—o— decentralized KQ (2-bit)

Classification problem instances
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Outline

e nonparametric decentralized detection algorithm

— use of surrogate loss functions and marginalized kernels

e study of surrogate loss functions and divergence functionals
— correspondence of losses and divergences

— M-estimator of divergences (e.g., Kullback-Leibler divergence)
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Consistency question
e recall that our decentralized algorithm essentially solves
minEo (Y, v(2))

v,Q

e does this also imply optimality in the sense of 0-1 loss?

P(Y #~(2))
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Consistency question

e recall that our decentralized algorithm essentially solves

min Eo(Y, v(Z))

v,Q

e does this also imply optimality in the sense of 0-1 loss?

P(Y #~(2))

® answers:
— hinge loss yields consistent estimates

— all losses corresponding to variational distance yield consistency

and we can identify all of them

— exponential loss, logistic loss do not

e the gist lies in the correspondence between loss functions and

divergence functionals
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Divergence between two distributions

The f-divergence between two densities © and 7 is given by

m) = [ W(Z)f@i;) v

where f : [0,400) — RU {+0c0} is a continuous convex function
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Divergence between two distributions

The f-divergence between two densities © and 7 is given by

m) = [ W(Z)f@i;) v

where f : [0,400) — RU {+0c0} is a continuous convex function

e Kullback-Leibler divergence: f(u) = ulog u.

_ N oe HZ)
Ir(um) = [ )1og 72

e variational distance: f(u) = |u — 1|.
Iy(p, ) := [ |p(z) —7(2)].

e Hellinger distance: f(u) = 2(v/u —1)°.

) = | Vi) - V)
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Surrogate loss and f-divergence

Map () induces measures on Z£:

wz):=PY =1,2); 7w(z):=PY =—-1,z2)

Theorem: Fixing ), the optimal risk for each ¢ loss is an f-divergence for

some convex f, and vice versa:

Rs(Q) = —Iy(p; ), where Ry(Q):=minEg(Y,7(Z))

S

Class of loss functions lass of f-divergences
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“Unrolling” divergences by convex duality

e Legendre-Fenchel convex duality: f(u) = sup, g uv — f*(v),

where f* is the convex conjugate of f

Ip(pu, ) = /wf(%) v
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“Unrolling” divergences by convex duality

e Legendre-Fenchel convex duality: f(u) = sup, g uv — f*(v),

where f* is the convex conjugate of f

Ip(pu, ) = /wf(%) v

= /wsup(w/ﬂ — () dv

~
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“Unrolling” divergences by convex duality

e Legendre-Fenchel convex duality: f(u) = sup, g uv — f*(v),
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“Unrolling” divergences by convex duality

e Legendre-Fenchel convex duality: f(u) = sup, g uv — f*(v),

where f* is the convex conjugate of f

Ip(pu, ) = /wf(g) v

= /wsup(w/ﬂ — () dv

~

= sup/w — fr(y)m dv

~

= —igf/f*(v)ﬁ—w dv
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“Unrolling” divergences by convex duality

e Legendre-Fenchel convex duality: f(u) = sup, g uv — f*(v),

where f* is the convex conjugate of f

Ip(pu, ) = /wf(%) v

= /wsup(w/ﬂ — () dv

~

= sup/w — fr(y)m dv

~

= —igf/f*(v)ﬂ—w dv

e The last quantity can be viewed as a risk functional with respect to

loss functions f*(v) and —v
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Examples

0-1 loss:

Rpayes(Q) = 3 — 2 vez |1(2) — m(2)] = variational distance

hinge loss:
Rhinge(Q) = 2Rpayes(Q) = variational distance

exponential loss:
Rerp(Q) =1— ZGZ(,u(z)l/Z — 7m(z)Y/?)? = Hellinger distance

logistic loss:
Riog(Q) = log2 — KL(pu||23™) — KL(n||#3=) = capacitory dis. distance
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Examples

Equivalent surrogage losses corresponding to Hellinger distance (left)

and variational distance (right)

—g = exp(u-1) | [eegeert
—g=u —g=u
37 g= u2 1 3t g-= u®
3
()]
22 87
S S3
17 \ |
0 ‘ ‘ A
-1 0 1 2 o 0 1 2
margin margin value

the part after 0 is a fixed map of the part before 0!
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Comparison of loss functions

Sl

Class of loss functions Class of f-divergences

e two loss functions ¢ and ¢9, corresponding to f-divergence induced
by f1 and fo

e ¢ and ¢- are universally equivalent, denoted by

b1 2 ¢2 (or, equivalently) fi 4 fo

if for any P(X,Y) and quantization rules @Q 4, @ g, there holds:

R¢1 (QA) < R¢1 (QB) = R¢2 (QA) < R¢2 (QB)

30



An equivalence theorem

Theorem:
o - ¢o (or, equivalently) fi 4 fo
if and only if
fi(u) = cfa(u) +au+ b
for constants a,b € R and ¢ > 0

e in particular, surrogate losses universally equivalent to 0 — 1 loss are those

whose induced f divergence has the form:

f(u) = cmin{u, 1} +au+b

31



Empirical risk minimization procedure

let ¢ be a convex surrogate equivalent to 0 — 1 loss

(Cn, Dy,) is a sequence of increasing function classes for(v, Q)
(C1,D1) € (C2,D2) C ... C (I, Q)
our procedure learns:

(Y, @r) = argmin(%Q)e(cn7DH)E¢(Y7(Z))

let Ryy,es = 1nf(y gyer,0) P(Y # 7(Z)) < optimal Bayes error
our procedure is consistent if

Rbayes (/y;;,a Q;) o Rgayes — 0
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Consistency result

Theorem: If

o U (Cn,D,) is dense in the space of pairs of classifier and quantizer

(7, Q) € (', Q)

e sequence (C,, D)) increases in size sufficiently slowly
then our procedure is consistent, i.e.,

lim Rpayes(Vns @) — Rpayes = 0 in probability.

n—oo

e proof exploits the equivalence of ¢ loss and 0 — 1 loss

e decomposition of ¢ risk into approximation error and estimation error
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Outline

e nonparametric decentralized detection algorithm

— use of surrogate loss functions and marginalized kernels

e study of surrogate loss functions and divergence functionals
— correspondence of losses and divergences

— M-estimator of divergences (e.g., Kullback-Leibler divergence)
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Estimating divergence and likelihood ratio

o given iid {z1,....,2,} ~Q, {y1,...,yn} ~P
e want to estimate two quantities

— KL divergence functional

Dk (P, Q) = /po log% dp

— likelihood ratio function

go(.) = po(.)/q0(.)
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Variational characterization

e recall the correspondence:
min B$(Y, ¥(2)) = —I;(p, )

e f-divergence can be estimated by minimizing over some associated

¢-risk functional

36



Variational characterization

e recall the correspondence:
min B$(Y, ¥(2)) = —I;(p, )

e f-divergence can be estimated by minimizing over some associated

¢-risk functional

e for the Kullback-Leibler divergence:

Dk (P, Q) :Sup/logg dP—/ng—l—l.

g>0

e furthermore, the supremum is attained at g = po/qo-
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M-estimation procedure

e let G be a function class of X — R,

° f dP,, and f dQ,, denote the expectation under empirical measures

P,, and Q,,, respectively
e our estimator has the following form:

Dk zsup/logg dPn—/gd@n+1.

geg

e supremum is attained at g,, which estimates the likelihood ratio
Po/qo
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Convex empirical risk with penalty

in practice, control the size of the function class G by using penalty

let I(g) be a measure of complexity for g

decompose G as follows:

G = Ui<Mm<ccGm,

where G is restricted to g for which I(g) < M.

the estimation procedure involves solving:

A

Gn = argmin g

/gd@n—/loggdPnJr 5

38
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Convergence analysis

e for KL divergence estimation, we study

e for the likelihood ratio estimation, we use Hellinger distance

1
hd (g, 9o) = 5 /(91/2 — gy'*)? dQ.
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Assumptions for convergence analysis

e true likelihood ratio gg is bounded from below by some positive con-

stant:

go = 1o > 0.

Note: we don’t assume that G is bounded away from 0 (not yet)!

e uniform norm of G, is Lipchitz with respect to the penalty measure
I(g): for any M > 1:

Sup |gleo < M.
9EGM

e on the entropy of G: For some 0 < v < 2,

H5 (G, L2(Q)) = O(M/6)".
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Convergence rates

e when \,, vanishes sufficiently slowly:

At = 0p(n* ) (14 1(go)),
e then under P:

ho(go, Gn) = Op(A/*) (1 + I(g0))

I(gn) = Op(1+1(g0)).
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Convergence rates

e when \,, vanishes sufficiently slowly:

At = 0p(n* ) (14 1(go)),
e then under P:

ho(go, Gn) = Op(A/*) (1 + I(g0))

I(gn) = Op(1+1(g0)).

e if G is bounded away from 0:

IDic — Dic| = Op(A/?) (1 + I(go))-
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g 1s RKHS function class

o {7;} ~Q, {yj}~P
e G is a RKHS with Mercer kernel k(x,x") = (®(x), ¢(z'))

e I(g) = llglin

. : An
gn = arguiin,cg [ dQu — [ogg a2, + gl
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g 1s RKHS function class
o {zi} ~Q, {y;} ~P
e G is a RKHS with Mercer kernel k(x,x") = (®(x), ¢(z'))

e I(g) = llglin

. : An
gn = arguiin,cg [ dQu — [ogg a2, + gl

e Convex dual formulation:

1 o 1w 1
n j=1 -

j=1

. 1 —
Dg(P,Q) := - Zlogaj —logn
j=1
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log G is RKHS function class

{zi} ~Q, {y;} ~P

log G is a RKHS with Mercer kernel k(z,z") = (®(x), ®(z'))

I(g) = || log g|ln

. . An
gn = argmin g /gd@n — /logg dPn + | log g3

Convex dual formulation:

1 1
o = argmax ; (ozi log a;+a; log g) —EH Z a; D(

ﬁK(IP), Q):=1+ Za@- log a; + a logg
i=1
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Estimate of KL(Beta(1,2),Unif[0,1]) Estimate of KL(1/2 Nt(0,1)+ 1/2 Nt(l,l),Unif[—5,5])
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Estimate of KL(N,(0,1,),N(1.1,)) Estimate of KL(N,(0,1,),Unif(-3,3]°)
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Conclusion

e nonparametric decentralized detection algorithm

— use of surrogate loss functions and marginalized kernels

e study of surrogate loss functions and divergence functionals
— correspondence of losses and divergences

— M-estimator of divergences (e.g., Kullback-Leibler divergence)
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