Surrogate loss functions, divergences and decentralized detection

XuanLong Nguyen Department of Electrical Engineering and Computer Science U.C. Berkeley

Advisors: Michael Jordan & Martin Wainwright

Talk outline

- nonparametric decentralized detection algorithm
 - use of surrogate loss functions and marginalized kernels
 - use of convex analysis
- study of surrogate loss functions and divergence functionals
 - correspondence of losses and divergences
 - M-estimator of divergences (e.g., Kullback-Leibler divergence)

Decentralized decision-making problem learning both classifier and experiment

- covariate vector X and hypothesis (label) $Y = \pm 1$
- we do not have access directly to X in order to determine Y
- learn jointly the mapping (Q, γ)

$$X \xrightarrow{Q} Z \xrightarrow{\gamma} Y$$

Decentralized decision-making problem learning both classifier and experiment

- covariate vector X and hypothesis (label) $Y = \pm 1$
- we do not have access directly to X in order to determine Y
- learn jointly the mapping (Q, γ)

$$X \stackrel{Q}{\longrightarrow} Z \stackrel{\gamma}{\longrightarrow} Y$$

- roles of "experiment" Q:
 - due to data collection constraints (e.g., decentralization)
 - data transmission constraints
 - choice of variates (feature selection)
 - dimensionality reduction scheme

A decentralized detection system

- **Decentralized setting:** Communication constraints between sensors and fusion center (e.g., bit constraints)
- Goal: Design decision rules for sensors and fusion center
- **Criterion:** Minimize probability of incorrect detection

Concrete example – wireless sensor network

Set-up:

- wireless network of tiny sensor motes, each equiped with light/ humidity/ temperature sensing capabilities
- measurement of signal strength ([0–1024] in magnitude, or 10 bits)

Goal: is there a forest fire in a certain region?

Related work

- Classical work on classification/detection:
 - completely centralized
 - no consideration of communication-theoretic infrastructure

Related work

- Classical work on classification/detection:
 - completely centralized
 - no consideration of communication-theoretic infrastructure
- Decentralized detection in signal processing (e.g., Tsitsiklis, 1993)
 - joint distribution assumed to be known
 - locally-optimal rules under conditional independence assumptions (i.e., Naive Bayes)

Overview of our approach

- Treat as a nonparametric estimation (learning) problem
 under constraints from a distributed system
- Use kernel methods and convex surrogate loss functions
 - tools from convex optimization to derive an efficient algorithm

Problem set-up

Problem: Given training data $(x_i, y_i)_{i=1}^n$, find the decision rules $(\gamma^1, \ldots, \gamma^s; \gamma)$ so as to minimize the detection error probability:

$$P(Y \neq \gamma(Z^1, \dots, Z^s)).$$

Kernel methods for classification

- Classification: Learn $\gamma(z)$ that predicts label y
- K(z, z') is a symmetric positive semidefinite kernel function
- feature space \mathcal{H} in which K acts as an inner product, i.e., $K(z, z') = \langle \Psi(z), \Psi(z') \rangle$
- Kernel-based algorithm finds linear function in \mathcal{H} , i.e.

$$\gamma(z) = \langle \mathbf{w}, \Psi(z) \rangle = \sum_{i=1}^{n} \alpha_i K(z_i, z)$$

- Advantages:
 - kernel function classes are sufficiently rich for many applications
 - optimizing over kernel function classes is computionally efficient

Convex surrogate loss function ϕ to 0-1 loss

• minimizing (regularized) empirical ϕ -risk $\hat{E}\phi(Y\gamma(Z))$:

$$\min_{\gamma \in \mathcal{H}} \sum_{i=1}^{n} \phi(y_i \gamma(z_i)) + \frac{\lambda}{2} \|\gamma\|^2,$$

- $(z_i, y_i)_{i=1}^n$ are training data in $\mathcal{Z} \times \{\pm 1\}$
- ϕ is a convex loss function (surrogate to non-convex 0-1 loss)

Stochastic decision rules at each sensor

- Approximate deterministic sensor decisions by stochastic rules Q(Z|X)
- Sensors do not communicate directly \implies factorization: $Q(Z|X) = \prod_{t=1}^{S} Q^t(Z^t|X^t)$
- The overall decision rule is represented by

by
$$\begin{cases} \mathbf{Q} = \prod \mathbf{Q}^{\mathbf{t}}, \\ \gamma(\mathbf{z}) = \langle \mathbf{w}, \, \boldsymbol{\Psi}(\mathbf{z}) \rangle \end{cases}$$

High-level strategy:

Joint optimization

- Minimize over (Q, γ) an empirical version of $\mathbb{E}\phi(Y\gamma(Z))$
- Joint minimization:
 - fix Q, optimize over $\gamma:$ A simple convex problem
 - fix γ , perform a gradient update for Q, sensor by sensor

Approximating empirical ϕ -risk

• The regularized empirical ϕ -risk $\hat{\mathbb{E}}\phi(Y\gamma(Z))$ has the form:

$$G_0 = \sum_{z} \sum_{i=1}^{n} \phi(y_i \gamma(z)) Q(z|x_i) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Challenge: even evaluating G_0 at a single point is intractable Requires summing over L^S possible values for z
- Idea:
 - approximate G_0 by another objective function G
 - G is ϕ -risk of a "marginalized" feature space
 - $-G_0 \equiv G$ for deterministic Q

"Marginalizing" over feature space

Stochastic decision rule $Q(z \mid x)$:

- maps between \mathcal{X} and \mathcal{Z}
- induces marginalized feature map Ψ_Q from base map Ψ (or marginalized kernel K_Q from base kernel K)

• Define a new feature space $\Psi_Q(x)$ and a linear function over $\Psi_Q(x)$:

$$\begin{cases} \Psi_Q(x) = \sum_z Q(z|x)\Psi(z) & \longleftarrow \text{ Marginalization over } z\\ f_Q(x) = \langle w, \Psi_Q(x) \rangle \end{cases}$$

• Define a new feature space $\Psi_Q(x)$ and a linear function over $\Psi_Q(x)$:

$$\begin{cases} \Psi_Q(x) = \sum_z Q(z|x)\Psi(z) & \Leftarrow \text{Marginalization over } z \\ f_Q(x) = \langle w, \Psi_Q(x) \rangle \end{cases}$$

• The alternative objective function G is the ϕ -risk for f_Q :

$$G = \sum_{i=1}^{n} \phi(y_i f_Q(x_i)) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

• Define a new feature space $\Psi_Q(x)$ and a linear function over $\Psi_Q(x)$:

$$\begin{cases} \Psi_Q(x) = \sum_z Q(z|x)\Psi(z) & \Leftarrow \text{Marginalization over } z \\ f_Q(x) = \langle w, \Psi_Q(x) \rangle \end{cases}$$

• The alternative objective function G is the ϕ -risk for f_Q :

$$G = \sum_{i=1}^{n} \phi(y_i f_Q(x_i)) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

• $\Psi_Q(x)$ induces a marginalized kernel over \mathcal{X} :

$$K_Q(x, x') := \langle \Psi_Q(x), \, \Psi_Q(x') \rangle = \sum_{z, z'} Q(z|x) Q(z'|x') \, K_z(z, z')$$

 \Rightarrow Marginalization taken over message z conditioned on sensor signal x

Marginalized kernels

- Have been used to derive kernel functions from generative models (e.g. Tsuda, 2002)
- Marginalized kernel $K_Q(x, x')$ is defined as:

$$K_Q(x,x') := \sum_{z,z'} \underbrace{Q(z|x)Q(z'|x')}_{\text{Factorized distributions Base kernel}} \underbrace{K_z(z,z')}_{\text{Base kernel}},$$

• If $K_z(z, z')$ is decomposed into smaller components of z and z', then $K_Q(x, x')$ can be computed efficiently (in polynomial-time)

Centralized and decentralized function

• Centralized decision function obtained by minimizing ϕ -risk:

 $f_Q(x) = \langle \mathbf{w}, \Psi_Q(x) \rangle$

 $-f_Q$ has direct access to sensor signal x

Centralized and decentralized function

• Centralized decision function obtained by minimizing ϕ -risk:

$$f_Q(x) = \langle \mathbf{w}, \Psi_Q(x) \rangle$$

 $-f_Q$ has direct access to sensor signal x

• Optimal w also define decentralized decision function:

$$\gamma(z) = \langle \mathbf{w}, \, \Psi(z) \rangle$$

- γ has access only to quantized version z

Centralized and decentralized function

• Centralized decision function obtained by minimizing ϕ -risk:

$$f_Q(x) = \langle \mathbf{w}, \Psi_Q(x) \rangle$$

 $-f_Q$ has direct access to sensor signal x

• Optimal w also define decentralized decision function:

$$\gamma(z) = \langle \mathbf{w}, \, \Psi(z) \rangle$$

 $-\gamma$ has access only to quantized version z

• Decentralized γ behaves on average like the centralized f_Q :

$$f_Q(x) = \mathbb{E}[\gamma(Z)|x]$$

Optimization algorithm

Goal: Solve the problem:

$$\inf_{\mathbf{w};Q} G(\mathbf{w};Q) := \sum_{i} \phi \left(y_i \langle \mathbf{w}, \sum_{z} Q(z|x_i) \Psi(z) \rangle \right) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

- Finding optimal weight vector:
 - G is convex in w with Q fixed
 - solve dual problem (quadratic convex program) to obtain optimal $\mathbf{w}(Q)$
- Finding optimal decision rules:
 - G is convex in Q^t with w and all other $\{Q^r, r \neq t\}$ fixed
 - efficient computation of subgradient for G at optimal (w(Q), Q)

Overall: Efficient joint minimization by blockwise coordinate descent

Simulated sensor networks

Naive Bayes net Chain-structured network Spatially-dependent network

Kernel Quantization vs. Decentralized LRT

Wireless network with tiny Berkeley motes

- $5 \times 5 = 25$ tiny sensor motes, each equipped with a light receiver
- Light signal strength requires **10-bit** ([0–1024] in magnitude)
- Perform classification with respect to different regions
- Each problem has 25 training positions, 81 test positions (Data collection courtesy Bruno Sinopoli)

Outline

- nonparametric decentralized detection algorithm
 - use of surrogate loss functions and marginalized kernels
- study of surrogate loss functions and divergence functionals
 - correspondence of losses and divergences
 - M-estimator of divergences (e.g., Kullback-Leibler divergence)

Consistency question

• recall that our decentralized algorithm essentially solves

$$\min_{\gamma,Q} \hat{\mathbb{E}}\phi(Y,\gamma(Z))$$

• does this also imply optimality in the sense of 0-1 loss?

 $P(Y \neq \gamma(Z))$

Consistency question

• recall that our decentralized algorithm essentially solves

 $\min_{\gamma,Q} \hat{\mathbb{E}}_{\phi}(Y,\gamma(Z))$

• does this also imply optimality in the sense of 0-1 loss?

 $P(Y \neq \gamma(Z))$

- answers:
 - hinge loss yields consistent estimates
 - all losses corresponding to variational distance yield consistency and we can identify all of them
 - exponential loss, logistic loss do not
- the gist lies in the correspondence between loss functions and divergence functionals

Divergence between two distributions

The *f*-divergence between two densities μ and π is given by

$$I_f(\mu, \pi) := \int_z \pi(z) f\left(\frac{\mu(z)}{\pi(z)}\right) d\nu.$$

where $f: [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$ is a continuous convex function

Divergence between two distributions

The *f*-divergence between two densities μ and π is given by

$$I_f(\mu, \pi) := \int_z \pi(z) f\left(\frac{\mu(z)}{\pi(z)}\right) \, d\nu.$$

where $f: [0, +\infty) \to \mathbb{R} \cup \{+\infty\}$ is a continuous convex function

• Kullback-Leibler divergence: $f(u) = u \log u$.

$$I_f(\mu, \pi) = \int_z \mu(z) \log \frac{\mu(z)}{\pi(z)}$$

• variational distance: f(u) = |u - 1|.

$$I_f(\mu, \pi) := \int_z |\mu(z) - \pi(z)|.$$

• Hellinger distance: $f(u) = \frac{1}{2}(\sqrt{u} - 1)^2$.

$$I_f(\mu, \pi) := \int_{z \in \mathcal{Z}} (\sqrt{\mu(z)} - \sqrt{\pi(z)})^2.$$

Surrogate loss and *f*-divergence

Map Q induces measures on Z:

$$\mu(z) := P(Y = 1, z); \quad \pi(z) := P(Y = -1, z)$$

Theorem: Fixing Q, the optimal risk for each ϕ loss is an *f*-divergence for some convex f, and vice versa:

$$R_{\phi}(Q) = -I_f(\mu, \pi), \text{ where } R_{\phi}(Q) := \min_{\gamma} \mathbb{E}\phi(Y, \gamma(Z))$$

$$I_f(\mu,\pi) = \int \pi f\left(\frac{\mu}{\pi}\right) \, d\nu$$

$$I_f(\mu,\pi) = \int \pi f\left(\frac{\mu}{\pi}\right) \, d\nu$$

$$=\int \pi \sup_{\gamma} (\gamma \mu / \pi - f^*(\gamma)) \ d
u$$

$$I_f(\mu,\pi) = \int \pi f\left(\frac{\mu}{\pi}\right) \, d\nu$$

$$= \int \pi \sup_{\gamma} (\gamma \mu / \pi - f^*(\gamma)) \, d\nu$$
$$= \sup_{\gamma} \int \gamma \mu - f^*(\gamma) \pi \, d\nu$$

$$I_f(\mu,\pi) = \int \pi f\left(\frac{\mu}{\pi}\right) \, d\nu$$

$$= \int \pi \sup_{\gamma} (\gamma \mu / \pi - f^*(\gamma)) \, d\nu$$
$$= \sup_{\gamma} \int \gamma \mu - f^*(\gamma) \pi \, d\nu$$
$$= -\inf_{\gamma} \int f^*(\gamma) \pi - \gamma \mu \, d\nu$$

• Legendre-Fenchel convex duality: $f(u) = \sup_{v \in \mathbb{R}} uv - f^*(v)$, where f^* is the convex conjugate of f

$$I_f(\mu,\pi) = \int \pi f\left(\frac{\mu}{\pi}\right) \, d\nu$$

$$= \int \pi \sup_{\gamma} (\gamma \mu / \pi - f^*(\gamma)) \, d\nu$$
$$= \sup_{\gamma} \int \gamma \mu - f^*(\gamma) \pi \, d\nu$$
$$= -\inf_{\gamma} \int f^*(\gamma) \pi - \gamma \mu \, d\nu$$

• The last quantity can be viewed as a risk functional with respect to loss functions $f^*(\gamma)$ and $-\gamma$

Examples

• **0-1** loss:

 $R_{bayes}(Q) = \frac{1}{2} - \frac{1}{2} |\mu(z) - \pi(z)| \Rightarrow \text{variational distance}$

• hinge loss:

 $R_{hinge}(Q) = 2R_{bayes}(Q)$ \Rightarrow variational distance

• exponential loss:

$$R_{exp}(Q) = 1 - {}_{z \in \mathcal{Z}} (\mu(z)^{1/2} - \pi(z)^{1/2})^2 \qquad \Rightarrow \text{Hellinger distance}$$

• logistic loss:

 $R_{log}(Q) = \log 2 - KL(\mu || \frac{\mu + \pi}{2}) - KL(\pi || \frac{\mu + \pi}{2}) \Rightarrow$ capacitory dis. distance

Examples

Equivalent surrogage losses corresponding to Hellinger distance (left) and variational distance (right)

the part after 0 is a fixed map of the part before 0!

Comparison of loss functions

Class of loss functions Class of f-divergences

- two loss functions ϕ_1 and ϕ_2 , corresponding to *f*-divergence induced by f_1 and f_2
- ϕ_1 and ϕ_2 are **universally** equivalent, denoted by

$$\phi_1 \stackrel{U}{\approx} \phi_2 \quad (\text{or, equivalently}) \ f_1 \stackrel{U}{\approx} f_2$$

if for any P(X, Y) and quantization rules Q_A, Q_B , there holds:

$$R_{\phi_1}(Q_A) \le R_{\phi_1}(Q_B) \Leftrightarrow R_{\phi_2}(Q_A) \le R_{\phi_2}(Q_B).$$

An equivalence theorem

Theorem:

$$\phi_1 \stackrel{U}{\approx} \phi_2 \quad \text{(or, equivalently)} \ f_1 \stackrel{U}{\approx} f_2$$

if and only if

$$f_1(u) = cf_2(u) + au + b$$

for constants $a, b \in \mathbb{R}$ and c > 0

• in particular, surrogate losses universally equivalent to 0-1 loss are those whose induced f divergence has the form:

 $f(u) = c\min\{u, 1\} + au + b$

Empirical risk minimization procedure

- let ϕ be a convex surrogate equivalent to 0-1 loss
- $(\mathcal{C}_n, \mathcal{D}_n)$ is a sequence of increasing function classes for (γ, Q)

$$(\mathcal{C}_1, \mathcal{D}_1) \subseteq (\mathcal{C}_2, \mathcal{D}_2) \subseteq \ldots \subseteq (\Gamma, \mathcal{Q})$$

• our procedure learns:

$$(\gamma_n^*, Q_n^*) := \operatorname{argmin}_{(\gamma, Q) \in (\mathcal{C}_n, \mathcal{D}_n)} \hat{\mathbb{E}} \phi(Y\gamma(Z))$$

- let $R^*_{bayes} := \inf_{(\gamma,Q) \in (\Gamma,Q)} P(Y \neq \gamma(Z)) \quad \Leftrightarrow \text{optimal Bayes error}$
- our procedure is consistent if

$$R_{bayes}(\gamma_n^*, Q_n^*) - R_{bayes}^* \to 0$$

Consistency result

Theorem: If

- $\bigcup_{n=1}^{\infty} (\mathcal{C}_n, \mathcal{D}_n)$ is dense in the space of pairs of classifier and quantizer $(\gamma, Q) \in (\Gamma, \mathcal{Q})$
- sequence $(\mathcal{C}_n, \mathcal{D}_n)$ increases in size sufficiently slowly

then our procedure is consistent, i.e.,

$$\lim_{n \to \infty} R_{bayes}(\gamma_n^*, Q_n^*) - R_{bayes}^* = 0 \quad \text{in probability.}$$

- proof exploits the equivalence of ϕ loss and 0-1 loss
- decomposition of ϕ risk into approximation error and estimation error

Outline

- nonparametric decentralized detection algorithm
 - use of surrogate loss functions and marginalized kernels
- study of surrogate loss functions and divergence functionals
 - correspondence of losses and divergences
 - M-estimator of divergences (e.g., Kullback-Leibler divergence)

Estimating divergence and likelihood ratio

- given i.i.d $\{x_1, \ldots, x_n\} \sim \mathbb{Q}, \{y_1, \ldots, y_n\} \sim \mathbb{P}$
- want to estimate two quantities
 - KL divergence functional

$$D_K(\mathbb{P},\mathbb{Q}) = \int p_0 \log \frac{p_0}{q_0} d\mu$$

- likelihood ratio function

$$g_0(.) = p_0(.)/q_0(.)$$

Variational characterization

• recall the correspondence:

$$\min_{\gamma} \mathbb{E}\phi(Y, \gamma(Z)) = -I_f(\mu, \pi)$$

• f-divergence can be estimated by minimizing over some associated ϕ -risk functional

Variational characterization

• recall the correspondence:

$$\min_{\gamma} \mathbb{E}\phi(Y, \gamma(Z)) = -I_f(\mu, \pi)$$

- f-divergence can be estimated by minimizing over some associated ϕ -risk functional
- for the Kullback-Leibler divergence:

$$D_K(\mathbb{P}, \mathbb{Q}) = \sup_{g>0} \int \log g \ d\mathbb{P} - \int g d\mathbb{Q} + 1.$$

• furthermore, the supremum is attained at $g = p_0/q_0$.

M-estimation procedure

- let \mathcal{G} be a function class of $\mathcal{X} \to \mathbb{R}_+$
- $\int d\mathbb{P}_n$ and $\int d\mathbb{Q}_n$ denote the expectation under empirical measures \mathbb{P}_n and \mathbb{Q}_n , respectively
- our estimator has the following form:

$$\hat{D}_K = \sup_{g \in \mathcal{G}} \int \log g \ d\mathbb{P}_n - \int g d\mathbb{Q}_n + 1.$$

• supremum is attained at \hat{g}_n , which estimates the likelihood ratio p_0/q_0

Convex empirical risk with penalty

- in practice, control the size of the function class ${\mathcal G}$ by using penalty
- let I(g) be a measure of complexity for g
- \bullet decompose ${\mathcal G}$ as follows:

$$\mathcal{G} = \bigcup_{1 \leq M \leq \infty} \mathcal{G}_M,$$

where \mathcal{G}_M is restricted to g for which $I(g) \leq M$.

• the estimation procedure involves solving:

$$\hat{g}_n = \operatorname{argmin}_{g \in \mathcal{G}} \int g d\mathbb{Q}_n - \int \log g \, d\mathbb{P}_n + \frac{\lambda_n}{2} I^2(g).$$

Convergence analysis

• for KL divergence estimation, we study

$$|\hat{D}_K - D_K(\mathbb{P}, \mathbb{Q})|$$

• for the likelihood ratio estimation, we use Hellinger distance

$$h^2_{\mathbb{Q}}(g,g_0) := \frac{1}{2} \int (g^{1/2} - g_0^{1/2})^2 d\mathbb{Q}.$$

Assumptions for convergence analysis

• true likelihood ratio g_0 is bounded from below by some positive constant:

$$g_0 \ge \eta_0 > 0.$$

Note: we don't assume that \mathcal{G} is bounded away from 0 (not yet)!

• uniform norm of \mathcal{G}_M is Lipchitz with respect to the penalty measure I(g): for any $M \ge 1$:

$$\sup_{g \in \mathcal{G}_M} |g|_{\infty} \le cM.$$

• on the entropy of \mathcal{G} : For some $0 < \gamma < 2$,

$$\mathcal{H}^B_{\delta}(\mathcal{G}_M, L_2(\mathbb{Q})) = O(M/\delta)^{\gamma}.$$

Convergence rates

• when λ_n vanishes sufficiently slowly:

$$\lambda_n^{-1} = O_P(n^{2/(2+\gamma)})(1 + I(g_0)),$$

• then under \mathbb{P} :

$$h_{\mathbb{Q}}(g_0, \hat{g}_n) = O_P(\lambda_n^{1/2})(1 + I(g_0))$$

 $I(\hat{g}_n) = O_P(1 + I(g_0)).$

Convergence rates

• when λ_n vanishes sufficiently slowly:

$$\lambda_n^{-1} = O_P(n^{2/(2+\gamma)})(1 + I(g_0)),$$

• then under \mathbb{P} :

$$h_{\mathbb{Q}}(g_0, \hat{g}_n) = O_P(\lambda_n^{1/2})(1 + I(g_0))$$
$$I(\hat{g}_n) = O_P(1 + I(g_0)).$$

• if \mathcal{G} is bounded away from 0:

$$|D_K - \hat{D}_K| = O_P(\lambda_n^{1/2})(1 + I(g_0)).$$

${\cal G}$ is RKHS function class

- $\{x_i\} \sim \mathbb{Q}, \{y_j\} \sim \mathbb{P}$
- \mathcal{G} is a RKHS with Mercer kernel $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$
- $I(g) = \|g\|_{\mathcal{H}}$

$$\hat{g}_n = \operatorname{argmin}_{g \in \mathcal{G}} \int g d\mathbb{Q}_n - \int \log g \ d\mathbb{P}_n + \frac{\lambda_n}{2} \|g\|_{\mathcal{H}}^2$$

\mathcal{G} is RKHS function class

- $\{x_i\} \sim \mathbb{Q}, \{y_j\} \sim \mathbb{P}$
- \mathcal{G} is a RKHS with Mercer kernel $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$
- $I(g) = \|g\|_{\mathcal{H}}$

$$\hat{g}_n = \operatorname{argmin}_{g \in \mathcal{G}} \int g d\mathbb{Q}_n - \int \log g \ d\mathbb{P}_n + \frac{\lambda_n}{2} \|g\|_{\mathcal{H}}^2$$

• Convex dual formulation:

$$\alpha := \operatorname{argmax} \frac{1}{n} \sum_{j=1}^{n} \log \alpha_j - \frac{1}{2\lambda_n} \|\sum_{j=1}^{n} \alpha_j \Phi(y_j) - \frac{1}{n} \sum_{i=1}^{n} \Phi(x_i) \|^2$$

$$\hat{D}_K(\mathbb{P}, \mathbb{Q}) := -\frac{1}{n} \sum_{j=1}^n \log \alpha_j - \log n$$

$\log \mathcal{G}$ is RKHS function class

- $\{x_i\} \sim \mathbb{Q}, \{y_j\} \sim \mathbb{P}$
- $\log \mathcal{G}$ is a RKHS with Mercer kernel $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$
- $I(g) = \|\log g\|_{\mathcal{H}}$

$$\hat{g}_n = \operatorname{argmin}_{g \in \mathcal{G}} \int g d\mathbb{Q}_n - \int \log g \, d\mathbb{P}_n + \frac{\lambda_n}{2} \|\log g\|_{\mathcal{H}}^2$$

• Convex dual formulation:

$$\alpha := \operatorname{argmax} \frac{1}{n} \sum_{i=1}^{n} \left(\alpha_i \log \alpha_i + \alpha_i \log \frac{n}{e} \right) - \frac{1}{2\lambda_n} \| \sum_{i=1}^{n} \alpha_i \Phi(x_i) - \frac{1}{n} \sum_{j=1}^{n} \Phi(y_j) \|^2$$

$$\hat{D}_K(\mathbb{P},\mathbb{Q}) := 1 + \sum_{i=1}^n \alpha_i \log \alpha_i + \alpha_i \log \frac{n}{e}$$

Conclusion

- nonparametric decentralized detection algorithm
 - use of surrogate loss functions and marginalized kernels
- study of surrogate loss functions and divergence functionals
 - correspondence of losses and divergences
 - M-estimator of divergences (e.g., Kullback-Leibler divergence)