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Talk outline

• nonparametric decentralized detection algorithm

– use of surrogate loss functions and marginalized kernels

– use of convex analysis

• study of surrogate loss functions and divergence functionals

– correspondence of losses and divergences

– M-estimator of divergences (e.g., Kullback-Leibler divergence)
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Decentralized decision-making problem

learning both classifier and experiment

• covariate vector X and hypothesis (label) Y = ±1

• we do not have access directly to X in order to determine Y

• learn jointly the mapping (Q, γ)

X
Q
−→ Z

γ
−→ Y
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Decentralized decision-making problem

learning both classifier and experiment

• covariate vector X and hypothesis (label) Y = ±1

• we do not have access directly to X in order to determine Y

• learn jointly the mapping (Q, γ)

X
Q
−→ Z

γ
−→ Y

• roles of “experiment” Q:

– due to data collection constraints (e.g., decentralization)

– data transmission constraints

– choice of variates (feature selection)

– dimensionality reduction scheme
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A decentralized detection system

. . . Sensors

Communication channel

Fusion center

Decision rule

• Decentralized setting: Communication constraints between sen-

sors and fusion center (e.g., bit constraints)

• Goal: Design decision rules for sensors and fusion center

• Criterion: Minimize probability of incorrect detection
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Concrete example – wireless sensor network

...

...

...

...

Light source

sensors

Set-up:

• wireless network of tiny sensor motes, each equiped with light/ humidity/

temperature sensing capabilities

• measurement of signal strength ([0–1024] in magnitude, or 10 bits)

Goal: is there a forest fire in a certain region?
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Related work

• Classical work on classification/detection:

– completely centralized

– no consideration of communication-theoretic infrastructure
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Related work

• Classical work on classification/detection:

– completely centralized

– no consideration of communication-theoretic infrastructure

• Decentralized detection in signal processing (e.g., Tsitsiklis, 1993)

– joint distribution assumed to be known

– locally-optimal rules under conditional independence assumptions

(i.e., Naive Bayes)
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Overview of our approach

• Treat as a nonparametric estimation (learning) problem

– under constraints from a distributed system

• Use kernel methods and convex surrogate loss functions

– tools from convex optimization to derive an efficient algorithm
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Problem set-up

. . .

. . .

. . .

Y ∈ {±1}

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ1 γ2 γ3 γS

γ(Z1, . . . , ZS)

X ∈ {1, . . . , M}S

Z ∈ {1, . . . , L}S ; L ¿ M

Problem: Given training data (xi, yi)
n
i=1, find the decision rules

(γ1, . . . , γs; γ) so as to minimize the detection error probability:

P (Y 6= γ(Z1, . . . , Zs)).
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Kernel methods for classification

• Classification: Learn γ(z) that predicts label y

• K(z, z′) is a symmetric positive semidefinite kernel function

• feature space H in which K acts as an inner product, i.e., K(z, z′) =

〈Ψ(z), Ψ(z′)〉

• Kernel-based algorithm finds linear function in H, i.e.

γ(z) = 〈w, Ψ(z)〉 =

n∑

i=1

αiK(zi, z)

• Advantages:

– kernel function classes are sufficiently rich for many applications

– optimizing over kernel function classes is computionally efficient
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Convex surrogate loss function φ to 0-1 loss
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• minimizing (regularized) empirical φ-risk Êφ(Y γ(Z)):

min
γ∈H

n∑

i=1

φ(yiγ(zi)) +
λ

2
‖γ‖2,

• (zi, yi)
n
i=1 are training data in Z × {±1}

• φ is a convex loss function (surrogate to non-convex 0-1 loss)
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Stochastic decision rules at each sensor

. . .

. . .

. . .

Y

X1 X2 X3 XS

Z1 Z2 Z3 ZS

γ(Z)

Q(Z|X)

Kz(z, z′) = 〈Ψ(z), Ψ(z′)〉
γ(z) = 〈w, Ψ(z)〉

• Approximate deterministic sensor decisions by stochastic rules Q(Z|X)

• Sensors do not communicate directly =⇒ factorization:

Q(Z|X) =
∏S

t=1 Qt(Zt|Xt)

• The overall decision rule is represented by







Q =
∏

Qt,

γ(z) = 〈w, Ψ(z)〉
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High-level strategy:

Joint optimization

• Minimize over (Q, γ) an empirical version of Eφ(Y γ(Z))

• Joint minimization:

– fix Q, optimize over γ: A simple convex problem

– fix γ, perform a gradient update for Q, sensor by sensor
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Approximating empirical φ-risk

• The regularized empirical φ-risk Êφ(Y γ(Z)) has the form:

G0 =
∑

z

n∑

i=1

φ(yiγ(z))Q(z|xi) +
λ

2
||w||2

• Challenge: even evaluating G0 at a single point is intractable

Requires summing over LS possible values for z

• Idea:

– approximate G0 by another objective function G

– G is φ-risk of a “marginalized” feature space

– G0 ≡ G for deterministic Q
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“Marginalizing” over feature space

x1

x2

z1

z2 γ(z) = 〈w, Ψ(z)〉 fQ(x) = 〈w, ΨQ(x)〉

Q(z |x)

Original: X−spaceQuantized: Z−space

Stochastic decision rule Q(z |x):

• maps between X and Z

• induces marginalized feature map ΨQ from base map Ψ (or marginalized

kernel KQ from base kernel K)
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Marginalized feature space {ΨQ(x)}
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Marginalized feature space {ΨQ(x)}

• Define a new feature space ΨQ(x) and a linear function over ΨQ(x):






ΨQ(x) =
∑

z Q(z|x)Ψ(z) ⇐= Marginalization over z

fQ(x) = 〈w, ΨQ(x)〉
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Marginalized feature space {ΨQ(x)}

• Define a new feature space ΨQ(x) and a linear function over ΨQ(x):






ΨQ(x) =
∑

z Q(z|x)Ψ(z) ⇐= Marginalization over z

fQ(x) = 〈w, ΨQ(x)〉

• The alternative objective function G is the φ-risk for fQ:

G =

n∑

i=1

φ(yifQ(xi)) +
λ

2
‖w‖2
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Marginalized feature space {ΨQ(x)}

• Define a new feature space ΨQ(x) and a linear function over ΨQ(x):






ΨQ(x) =
∑

z Q(z|x)Ψ(z) ⇐= Marginalization over z

fQ(x) = 〈w, ΨQ(x)〉

• The alternative objective function G is the φ-risk for fQ:

G =

n∑

i=1

φ(yifQ(xi)) +
λ

2
‖w‖2

• ΨQ(x) induces a marginalized kernel over X :

KQ(x, x′) := 〈ΨQ(x), ΨQ(x′)〉 =
∑

z,z′

Q(z|x)Q(z′|x′) Kz(z, z′)

⇒ Marginalization taken over message z conditioned on sensor signal x
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Marginalized kernels

• Have been used to derive kernel functions from generative models

(e.g. Tsuda, 2002)

• Marginalized kernel KQ(x, x′) is defined as:

KQ(x, x′) :=
∑

z,z′

Q(z|x)Q(z′|x′)
︸ ︷︷ ︸

Factorized distributions

Kz(z, z′)
︸ ︷︷ ︸

Base kernel

,

• If Kz(z, z′) is decomposed into smaller components of z and z′, then

KQ(x, x′) can be computed efficiently (in polynomial-time)
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Centralized and decentralized function

• Centralized decision function obtained by minimizing φ-risk:

fQ(x) = 〈w, ΨQ(x)〉

– fQ has direct access to sensor signal x
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Centralized and decentralized function

• Centralized decision function obtained by minimizing φ-risk:

fQ(x) = 〈w, ΨQ(x)〉

– fQ has direct access to sensor signal x

• Optimal w also define decentralized decision function:

γ(z) = 〈w, Ψ(z)〉

– γ has access only to quantized version z
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Centralized and decentralized function

• Centralized decision function obtained by minimizing φ-risk:

fQ(x) = 〈w, ΨQ(x)〉

– fQ has direct access to sensor signal x

• Optimal w also define decentralized decision function:

γ(z) = 〈w, Ψ(z)〉

– γ has access only to quantized version z

• Decentralized γ behaves on average like the centralized fQ:

fQ(x) = E[γ(Z)|x]
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Optimization algorithm

Goal: Solve the problem:

inf
w;Q

G(w; Q) :=
∑

i

φ

(

yi〈w,
∑

z

Q(z|xi)Ψ(z)〉

)

+
λ

2
||w||2

• Finding optimal weight vector:

– G is convex in w with Q fixed

– solve dual problem (quadratic convex program) to obtain optimal

w(Q)

• Finding optimal decision rules:

– G is convex in Qt with w and all other {Qr, r 6= t} fixed

– efficient computation of subgradient for G at optimal (w(Q), Q)

Overall: Efficient joint minimization by blockwise coordinate descent
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Simulated sensor networks

. . .

Y

X1

X2

X3

X4

X10

. . .

Y

X1

X2

X3

X4

X10

X1 X2 X3

X4 X5 X6

X7 X8 X9

Y

Naive Bayes net Chain-structured network Spatially-dependent network
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Kernel Quantization vs. Decentralized LRT
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Wireless network with tiny Berkeley motes

...

...

...

...

Light source

sensors

• 5 × 5 = 25 tiny sensor motes, each equipped with a light receiver

• Light signal strength requires 10-bit ([0–1024] in magnitude)

• Perform classification with respect to different regions

• Each problem has 25 training positions, 81 test positions

(Data collection courtesy Bruno Sinopoli)
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Outline

• nonparametric decentralized detection algorithm

– use of surrogate loss functions and marginalized kernels

• study of surrogate loss functions and divergence functionals

– correspondence of losses and divergences

– M-estimator of divergences (e.g., Kullback-Leibler divergence)
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Consistency question

• recall that our decentralized algorithm essentially solves

min
γ,Q

Êφ(Y, γ(Z))

• does this also imply optimality in the sense of 0-1 loss?

P (Y 6= γ(Z))
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Consistency question

• recall that our decentralized algorithm essentially solves

min
γ,Q

Êφ(Y, γ(Z))

• does this also imply optimality in the sense of 0-1 loss?

P (Y 6= γ(Z))

• answers:

– hinge loss yields consistent estimates

– all losses corresponding to variational distance yield consistency

and we can identify all of them

– exponential loss, logistic loss do not

• the gist lies in the correspondence between loss functions and

divergence functionals
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Divergence between two distributions

The f-divergence between two densities µ and π is given by

If (µ, π) :=

∫

z

π(z)f

(
µ(z)

π(z)

)

dν.

where f : [0, +∞) → R ∪ {+∞} is a continuous convex function
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Divergence between two distributions

The f-divergence between two densities µ and π is given by

If (µ, π) :=

∫

z

π(z)f

(
µ(z)

π(z)

)

dν.

where f : [0, +∞) → R ∪ {+∞} is a continuous convex function

• Kullback-Leibler divergence: f(u) = u log u.

If (µ, π) =
z

µ(z) log
µ(z)

π(z)
.

• variational distance: f(u) = |u − 1|.

If (µ, π) :=
z
|µ(z) − π(z)|.

• Hellinger distance: f(u) = 1

2
(
√

u − 1)2.

If (µ, π) :=
z∈Z

( � µ(z) − � π(z))2.
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Surrogate loss and f-divergence

Map Q induces measures on Z:

µ(z) := P (Y = 1, z); π(z) := P (Y = −1, z)

Theorem: Fixing Q, the optimal risk for each φ loss is an f -divergence for

some convex f , and vice versa:

Rφ(Q) = −If (µ, π), where Rφ(Q) := min
γ

Eφ(Y, γ(Z))

φ1

φ2

φ3

f1

f2

f3

Class of loss functions Class of f -divergences
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“Unrolling” divergences by convex duality

• Legendre-Fenchel convex duality: f(u) = supv∈R uv − f∗(v),

where f∗ is the convex conjugate of f

If (µ, π) =

∫

πf

(
µ

π

)

dν

27



“Unrolling” divergences by convex duality

• Legendre-Fenchel convex duality: f(u) = supv∈R uv − f∗(v),

where f∗ is the convex conjugate of f

If (µ, π) =

∫

πf

(
µ

π

)

dν

=

∫

πsup
γ

(γµ/π − f∗(γ)) dν
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“Unrolling” divergences by convex duality

• Legendre-Fenchel convex duality: f(u) = supv∈R uv − f∗(v),

where f∗ is the convex conjugate of f

If (µ, π) =

∫

πf

(
µ

π

)

dν

=

∫

πsup
γ

(γµ/π − f∗(γ)) dν

= sup
γ

∫

γµ − f∗(γ)π dν
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“Unrolling” divergences by convex duality

• Legendre-Fenchel convex duality: f(u) = supv∈R uv − f∗(v),

where f∗ is the convex conjugate of f

If (µ, π) =

∫

πf

(
µ

π

)

dν

=

∫

πsup
γ

(γµ/π − f∗(γ)) dν

= sup
γ

∫

γµ − f∗(γ)π dν

= − inf
γ

∫

f∗(γ)π − γµ dν
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“Unrolling” divergences by convex duality

• Legendre-Fenchel convex duality: f(u) = supv∈R uv − f∗(v),

where f∗ is the convex conjugate of f

If (µ, π) =

∫

πf

(
µ

π

)

dν

=

∫

πsup
γ

(γµ/π − f∗(γ)) dν

= sup
γ

∫

γµ − f∗(γ)π dν

= − inf
γ

∫

f∗(γ)π − γµ dν

• The last quantity can be viewed as a risk functional with respect to

loss functions f∗(γ) and −γ
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Examples

• 0-1 loss:

Rbayes(Q) = 1

2
− 1

2 z∈Z
|µ(z) − π(z)| ⇒ variational distance

• hinge loss:

Rhinge(Q) = 2Rbayes(Q) ⇒ variational distance

• exponential loss:

Rexp(Q) = 1 −
z∈Z

(µ(z)1/2 − π(z)1/2)2 ⇒ Hellinger distance

• logistic loss:

Rlog(Q) = log 2 − KL(µ||µ+π
2

) − KL(π||µ+π
2

) ⇒ capacitory dis. distance
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Examples

Equivalent surrogage losses corresponding to Hellinger distance (left)

and variational distance (right)
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Comparison of loss functions

φ1

φ2

φ3

f1

f2
f3

Class of loss functions Class of f -divergences

• two loss functions φ1 and φ2, corresponding to f -divergence induced

by f1 and f2

• φ1 and φ2 are universally equivalent, denoted by

φ1
U
≈ φ2 (or, equivalently) f1

U
≈ f2

if for any P (X, Y ) and quantization rules QA, QB , there holds:

Rφ1
(QA) ≤ Rφ1

(QB) ⇔ Rφ2
(QA) ≤ Rφ2

(QB).
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An equivalence theorem

Theorem:

φ1
U
≈ φ2 (or, equivalently) f1

U
≈ f2

if and only if

f1(u) = cf2(u) + au + b

for constants a, b ∈ R and c > 0

• in particular, surrogate losses universally equivalent to 0−1 loss are those

whose induced f divergence has the form:

f(u) = c min{u, 1} + au + b

31



Empirical risk minimization procedure

• let φ be a convex surrogate equivalent to 0 − 1 loss

• (Cn,Dn) is a sequence of increasing function classes for(γ, Q)

(C1,D1) ⊆ (C2,D2) ⊆ . . . ⊆ (Γ,Q)

• our procedure learns:

(γ∗
n, Q∗

n) := argmin(γ,Q)∈(Cn,Dn)Êφ(Y γ(Z))

• let R∗
bayes := inf(γ,Q)∈(Γ,Q) P (Y 6= γ(Z)) ⇐ optimal Bayes error

• our procedure is consistent if

Rbayes(γ
∗
n, Q∗

n) − R∗
bayes → 0
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Consistency result

Theorem: If

• ∪∞
n=1(Cn,Dn) is dense in the space of pairs of classifier and quantizer

(γ, Q) ∈ (Γ,Q)

• sequence (Cn,Dn) increases in size sufficiently slowly

then our procedure is consistent, i.e.,

lim
n→∞

Rbayes(γ
∗
n, Q∗

n) − R∗
bayes = 0 in probability.

• proof exploits the equivalence of φ loss and 0 − 1 loss

• decomposition of φ risk into approximation error and estimation error
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Outline

• nonparametric decentralized detection algorithm

– use of surrogate loss functions and marginalized kernels

• study of surrogate loss functions and divergence functionals

– correspondence of losses and divergences

– M-estimator of divergences (e.g., Kullback-Leibler divergence)
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Estimating divergence and likelihood ratio

• given i.i.d {x1, . . . , xn} ∼ Q, {y1, . . . , yn} ∼ P

• want to estimate two quantities

– KL divergence functional

DK(P, Q) =

∫

p0 log
p0

q0
dµ

– likelihood ratio function

g0(.) = p0(.)/q0(.)

35



Variational characterization

• recall the correspondence:

min
γ

Eφ(Y, γ(Z)) = −If (µ, π)

• f -divergence can be estimated by minimizing over some associated

φ-risk functional
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Variational characterization

• recall the correspondence:

min
γ

Eφ(Y, γ(Z)) = −If (µ, π)

• f -divergence can be estimated by minimizing over some associated

φ-risk functional

• for the Kullback-Leibler divergence:

DK(P, Q) = sup
g>0

∫

log g dP −

∫

gdQ + 1.

• furthermore, the supremum is attained at g = p0/q0.
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M-estimation procedure

• let G be a function class of X → R+

•
∫

dPn and
∫

dQn denote the expectation under empirical measures

Pn and Qn, respectively

• our estimator has the following form:

D̂K = sup
g∈G

∫

log g dPn −

∫

gdQn + 1.

• supremum is attained at ĝn, which estimates the likelihood ratio

p0/q0
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Convex empirical risk with penalty

• in practice, control the size of the function class G by using penalty

• let I(g) be a measure of complexity for g

• decompose G as follows:

G = ∪1≤M≤∞GM ,

where GM is restricted to g for which I(g) ≤ M .

• the estimation procedure involves solving:

ĝn = argming∈G

∫

gdQn −

∫

log g dPn +
λn

2
I2(g).
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Convergence analysis

• for KL divergence estimation, we study

|D̂K − DK(P, Q)|

• for the likelihood ratio estimation, we use Hellinger distance

h2
Q(g, g0) :=

1

2

∫

(g1/2 − g
1/2
0 )2 dQ.
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Assumptions for convergence analysis

• true likelihood ratio g0 is bounded from below by some positive con-

stant:

g0 ≥ η0 > 0.

Note: we don’t assume that G is bounded away from 0 (not yet)!

• uniform norm of GM is Lipchitz with respect to the penalty measure

I(g): for any M ≥ 1:

sup
g∈GM

|g|∞ ≤ cM.

• on the entropy of G: For some 0 < γ < 2,

HB
δ (GM , L2(Q)) = O(M/δ)γ .
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Convergence rates

• when λn vanishes sufficiently slowly:

λ−1
n = OP (n2/(2+γ))(1 + I(g0)),

• then under P:

hQ(g0, ĝn) = OP (λ1/2
n )(1 + I(g0))

I(ĝn) = OP (1 + I(g0)).
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Convergence rates

• when λn vanishes sufficiently slowly:

λ−1
n = OP (n2/(2+γ))(1 + I(g0)),

• then under P:

hQ(g0, ĝn) = OP (λ1/2
n )(1 + I(g0))

I(ĝn) = OP (1 + I(g0)).

• if G is bounded away from 0:

|DK − D̂K | = OP (λ1/2
n )(1 + I(g0)).
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G is RKHS function class

• {xi} ∼ Q, {yj} ∼ P

• G is a RKHS with Mercer kernel k(x, x′) = 〈Φ(x), Φ(x′)〉

• I(g) = ‖g‖H

ĝn = argming∈G

∫

gdQn −

∫

log g dPn +
λn

2
‖g‖2

H

42



G is RKHS function class

• {xi} ∼ Q, {yj} ∼ P

• G is a RKHS with Mercer kernel k(x, x′) = 〈Φ(x), Φ(x′)〉

• I(g) = ‖g‖H

ĝn = argming∈G

∫

gdQn −

∫

log g dPn +
λn

2
‖g‖2

H

• Convex dual formulation:

α := argmax
1

n

n∑

j=1

log αj −
1

2λn
‖

n∑

j=1

αjΦ(yj) −
1

n

n∑

i=1

Φ(xi)‖
2

D̂K(P, Q) := −
1

n

n∑

j=1

log αj − log n
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log G is RKHS function class

• {xi} ∼ Q, {yj} ∼ P

• log G is a RKHS with Mercer kernel k(x, x′) = 〈Φ(x), Φ(x′)〉

• I(g) = ‖ log g‖H

ĝn = argming∈G

∫

gdQn −

∫

log g dPn +
λn

2
‖ log g‖2

H

• Convex dual formulation:

α := argmax
1

n

n∑

i=1

(

αi log αi+αi log
n

e

)

−
1

2λn
‖

n∑

i=1

αiΦ(xi)−
1

n

n∑

j=1

Φ(yj)‖
2

D̂K(P, Q) := 1 +

n∑

i=1

αi log αi + αi log
n

e
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Conclusion

• nonparametric decentralized detection algorithm

– use of surrogate loss functions and marginalized kernels

• study of surrogate loss functions and divergence functionals

– correspondence of losses and divergences

– M-estimator of divergences (e.g., Kullback-Leibler divergence)
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