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AbstractThe paper presents a randomised algorithm which evaluates the partition function of anarbitrary ferromagnetic Ising system to any speci�ed degree of accuracy. The runningtime of the algorithm increases only polynomially with the size of the system (i.e., thenumber of sites) and a parameter which controls the accuracy of the result. Furtherapproximation algorithms are presented for the mean energy and the mean magneticmoment of ferromagnetic Ising systems.The algorithms are based on Monte Carlo simulation of a suitably de�ned ergodic Markovchain. The states of the chain are not, as is customary, Ising spin con�gurations, butspanning subgraphs of the interaction graph of the system. It is shown that the expec-tations of simple operators on these con�gurations give numerical information about thepartition function and related quantities.The performance guarantees for the algorithms are rigorously derived, and rest on thefact that the Markov chain in question is rapidly mixing, i.e., converges to its equilibriumdistribution in a polynomial number of steps. This is apparently the �rst time that rapidmixing has been demonstrated at all temperatures for a Markov chain related to the Isingmodel.
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1 SummaryThis paper is concerned with computational solutions to a classical combinatorial problemof statistical physics. Generally known as the Ising model, the problem has been thefocus of much attention in the physics and mathematics communities since it was �rstintroduced by Lenz [24] and Ising [14] in the early 1920s. We will not present a detailedhistorical account here: a very readable survey is given by Cipra [6], while Welsh [30] setsthe Ising model in the context of other combinatorial problems in statistical physics.The problem is easily stated. Consider a collection of sites [n] = f0; 1; : : : ; n � 1g,each pair i; j of which has an associated interaction energy Vij . In most cases of physicalinterest, the set E of pairs with non-zero interaction energies forms a regular latticegraph ([n]; E). A con�guration is an assignment of positive (�i = +1) and negative(�i = �1) spins to each site i 2 [n]. The energy of a con�guration � = (�i) is givenby the Hamiltonian H(�) = � Xfi;jg2E Vij�i�j �B Xk2[n]�k;where B is an external �eld.In the case where all interaction energies are non-negative, such a system models thebehaviour of a ferromagnet ; in fact, it was towards an understanding of spontaneousmagnetization that the model was �rst conceived. However, the Ising model has sincebecome a powerful paradigm for the investigation of more general cooperative systems inwhich short-range interactions between elements can give rise to long-range order.The central problem is to compute the partition functionZ = Z(Vij ; B; �) = X� exp(��H(�));where � > 0 is related to the temperature and the sum is over all possible con�gura-tions � . Almost all the physical properties of the system can be computed from knowledgeof Z . Essentially, Z is the normalising factor in the calculation of probabilities: accord-ing to the fundamental theory of statistical mechanics, the probability that the systemin equilibrium is found in con�guration � is exp(��H(�))=Z . Moreover, certain loga-rithmic derivatives of Z correspond to quantities such as the mean energy and the meanmagnetic moment. Singularities in these derivatives generally correspond to phase tran-sitions, when a small change in a parameter has an observable e�ect on the macroscopicproperties of the system.The search for e�cient computational solutions to these problems has proved ex-tremely hard and has generated a vast body of literature. A major breakthrough wasachieved in the early 1960s by Kasteleyn [19] and Fisher [11], who reduced the problem1



of computing Z for any planar Ising system (i.e., one whose graph ([n]; E) of non-zerointeractions is planar) to the evaluation of a certain determinant. This must rank as oneof the highlights in the �eld of combinatorial algorithms. It remains the state of the artas far as exact solutions are concerned; in particular, it does not appear to generalise tonon-planar systems. On the other hand, a huge amount of computational e�ort is pouredinto numerical solutions of the Ising model for three-dimensional regular lattices andother non-planar systems. The problem is that the methods used here, while ingenious,generally lack a rigorous theoretical base, and rely for their validity largely on physicalintuition.In this paper, we exhibit what we believe to be the �rst provably e�cient approxi-mation algorithm for the partition function of an arbitrary ferromagnetic Ising system.By \e�cient" here we mean that the algorithm is guaranteed to run in time polynomialin the number of sites n. The algorithm is a fully polynomial randomised approximationscheme (fpras), i.e., it will produce solutions which, with very high probability, fall withinarbitrarily small error bounds speci�ed by the user, the price of greater accuracy being amodest increase in runtime. We also show that such an algorithm is essentially the bestone can hope for, in the sense that the existence of an e�cient exact algorithm for theproblem, or even of an e�cient approximation algorithm for the non-ferromagnetic case,would have devastating and far-reaching consequences in the theory of computation.From the point of view of theoretical computer science, our result provides a newexample of a signi�cant combinatorial enumeration problem which is #P-complete, andhence apparently intractable in exact form, but for which an e�cient approximationalgorithm exists. This is an intriguing class of problems, and includes the problems ofcomputing the volume of a convex body [9], the partition function of a monomer-dimersystem [16] and the permanent of a large class of 0{1 matrices [16]. Our algorithmis also of interest in its own right as a further application of the general technique ofsimulating an ergodic stochastic process whose rate of convergence can be analysed. Thisapproach has recently attracted much attention, and its full algorithmic potential is onlynow becoming apparent.The idea is the following. In order to compute weighted combinatorial sums, such asthe Ising partition function, it is often enough to be able to sample con�gurations � atrandom with probabilities proportional to their weights, in this case exp(��H(�)). Thiscan be achieved by setting up an ergodic Markov chain whose states are con�gurationsand whose transitions correspond to small local perturbations. If the chain is designed sothat the equilibrium distribution to which it converges is the desired weighted distributionover con�gurations, then we get a random sampling procedure by simulating the chain forsome number of steps and outputting the �nal state. For such a procedure to be e�cient,the chain must be rapidly mixing in the sense that it gets very close to equilibrium aftera small (i.e., polynomial) number of steps. This is a highly non-trivial requirement,2



since the number of states is exponentially large. Recent developments have providedappropriate analytical tools for establishing the rapid mixing property for chains of thiskind [27, 29, 7, 28].The Markov chain simulation approach to the Ising model is far from new: underthe name of the Monte Carlo method, this technique has been applied extensively toa whole range of problems in statistical physics (see, e.g., [4]). The problem with theapproach, however, is that it appears very di�cult to de�ne a Markov chain on Ising spincon�gurations � which is rapidly mixing; indeed, the chains which are frequently usedin practical simulation studies clearly do not have this property.We overcome this obstacle by transforming the problem to an entirely new domain,where the con�gurations are spanning subgraphs of the interaction graph ([n]; E). Eachsubgraph has an \energy" which is determined by weights attached to its edges andvertices. Although there is no direct correspondence between con�gurations in the twodomains, and the subgraph con�gurations have no obvious physical signi�cance, the twopartition functions are, remarkably, very closely related. Moreover, and crucially, there isa natural Markov chain on the subgraphs with the appropriate equilibrium distributionwhich is rapidly mixing. Thus the Markov chain approach can be made to work e�cientlyin the new domain.The above transformation is a classical result [26], often known as the \high-temperature expansion" of the Ising model partition function. However, the idea ofviewing the graphs in this expansion as a statistical mechanical system which forms thebasis of a Monte Carlo simulation appears to be new. To the best of our knowledge, ourresults represent the �rst rigorous proof of rapid mixing at all temperatures for a Markovchain related to the Ising model. Moreover, this property is entirely independent of theinteraction topology and relies on no assumptions of any kind. We therefore believe thatthe chain deserves further investigation as a potentially powerful experimental tool.The mechanism by which we use sampling of subgraph con�gurations to compute thepartition function is perhaps of independent interest. This is achieved by subjecting anIsing system with �xed interactions and at a �xed temperature to varying external �elds.By observing a small number of con�gurations, randomly selected at appropriately chosenvalues of the �eld, we are able to get an accurate estimate of Z . It is signi�cant thatthis idea is motivated by combinatorial considerations and does not correspond to anyobvious physical intuition.As mentioned earlier, it is often derivatives of the partition function, rather thanthe function itself, which are of primary interest. For example, two important quan-tities are the mean energy E = �@(lnZ)=@� , and the mean magnetic moment M =��1 @(lnZ)=@B . Our approximation algorithm for Z says nothing about our ability tocompute these quantities accurately. However, it turns out that both E and M can be3



expressed in terms of expectations of certain simple operators on con�gurations in thesubgraphs domain. Thus estimates of E and M can be read o� from our con�gurationsampling algorithm, though again we may have to vary the external �eld in order to max-imise the accuracy of the statistical experiment. As a result, we get a fpras for both Eand M as well. We regard this as con�rmation that our approach to the Ising model isrobust and computationally e�ective.The remainder of the paper is organised as follows. In Section 2 we describe thetransformation of the Ising model to the new domain in which con�gurations are span-ning subgraphs of the interaction graph. Section 4 is devoted to a discussion of the Markovchain on these con�gurations, and in particular to a proof that it is rapidly mixing. Thisfact is used in Section 3 to construct a fpras for the partition function of an arbitraryferromagnetic Ising system, and in Section 5 to construct e�cient approximation algo-rithms for the mean energy and the mean magnetic moment. Finally, in Section 6 wepresent strong evidence that our results are, in a precise theoretical sense, best possible.2 The spins-world and subgraphs-worldRecall that our primary aim is to construct an algorithm for the following problem:Instance: A real symmetric matrix (Vij : i; j 2 [n]) of interaction energies, areal number B (the external �eld), and a positive real number � .Output: The Ising partition functionZ = Z(Vij ; B; �) = X�2f�1;+1gn exp(��H(�)); (1)where the Hamiltonian H(�) is given by H(�) = �Pfi;jg2E Vij�i�j �BPk2[n] �k ,and E is the set of unordered pairs fi; jg with Vij 6= 0.Our algorithm will address the ferromagnetic case of the Ising model, which is char-acterised by the interaction energies Vij being non-negative. Furthermore, rather thanattempting to evaluate the partition function exactly, we shall content ourselves with aclose approximation. The phrase \close approximation" will be given a precise meaningin the next section.One strategy which has been applied successfully to problems of this type, and has,for example, been used to estimate the partition function of a general monomer-dimersystem [27, 16], involves the simulation of an appropriately de�ned Markov chain. Adirect application of this strategy to the Ising partition function would proceed as follows.View the con�gurations of the Ising system, namely the 2n possible spin vectors � 2f�1;+1gn , as the states of a Markov chain. Choose transition probabilities between4



states so that the Markov chain is ergodic and so that, in the stationary distribution,the probability of being in state � is Z�1 exp(��H(�)). A reasonable way to achievethis, and one which is often used in practice, is to allow transitions to occur between spincon�gurations which di�er in just one component, and choose transition probabilitiesaccording to the Metropolis rule [20]. If the resulting Markov chain is rapidly mixing,that is, if it converges rapidly to the stationary distribution regardless of the choice ofinitial state, then it can be used e�ectively to sample con�gurations � from a distributionwhich is close to the stationary distribution. By collecting enough sample con�gurations,using di�erent values of B and � , it should then be possible to estimate the partitionfunction Z with good accuracy.Unfortunately, it transpires that the Markov chain described above, and which we referto as the spins-world process, is not rapidly mixing. It is well known that ferromagneticIsing systems typically exhibit a phase transition at a certain value of the parameter � ;for values of � above this critical value, the system settles into a state in which there is apreponderance of spins of one or other sign. Transitions between the majority +1 statesand majority �1 states occur very infrequently, simply because the stationary distribu-tion assigns small total weight to the con�gurations with balanced spins. (Informally,the state space has a constriction separating the majority +1 states and the majority�1 states.) Although it could be argued that the barrier to rapid mixing just describedis somewhat trivial, there exist other more subtle barriers that apparently cannot besurmounted.The problem caused by the absence of rapid mixing in the spins-world process can becircumvented by simulating a di�erent Markov chain, which we refer to as the subgraphs-world process. The two Markov chains are structurally very di�erent; furthermore, thesubgraphs-world process has, as far as we are aware, no direct physical signi�cance.However, the subgraphs-world process has a close connection with the Ising partitionfunction and, crucially in the current application, is rapidly mixing. For the time being,we content ourselves with describing the subgraphs-world con�gurations and associatedpartition function. The description of the subgraphs-world process itself is deferred toSection 4.We say that a subgraph is spanning if it includes all the vertices of the parent graph.(Note that spanning subgraphs are not in general connected.) The subgraphs-worldcon�gurations are spanning subgraphs of the interaction graph ([n]; E). In the sequel weshall drop the adjective \spanning" where it seems safe to do so, and frequently identify aspanning subgraph ([n];X) with the set X of edges which de�ne it. To simplify notation,let �ij = tanh �Vij and � = tanh �B: (2)5



Each con�guration X � E is assigned a weight according to the formulaw(X) = �jodd(X)j Yfi;jg2X �ij ; (3)where the notation odd(X) stands for the set of all odd-degree vertices in the graph X .The subgraphs-world partition function is simplyZ 0 = XX�Ew(X): (4)The above sum is generally known as the \high-temperature expansion."It is a surprising fact that the spins- and subgraphs-world partition functions Z and Z 0are related in a simple way. De�neA = (2 cosh �B)n Yfi;jg2E cosh �Vij; (5)and note that A is an easily computed function of the parameters that specify the Isingsystem. The following classical result [26] relates the two partition functions.Theorem 1 Z = AZ 0 .In recognition of the central role it plays in our algorithm, we present a full proof of thisresult below.Theorem 1 prompts us to consider a statistical mechanical system whose con�gu-rations are spanning subgraphs of ([n]; E). We shall de�ne a Markov chain whosestates are these con�gurations, and whose stationary distribution assigns probability�(X) = w(X)=Z 0 to con�guration X . This subgraphs-world process will be analysedin detail in Section 4, and shown to be rapidly mixing. Hence it will provide us withan e�cient means of sampling subgraphs-world con�gurations with probabilities roughlyproportional to their weights. Since Z 0 is a weighted sum of the con�gurations, we mightexpect such a procedure to give us useful information about Z 0 itself, and hence about theoriginal spins-world partition function Z . The next section con�rms that this is indeedthe case.Proof of Theorem 1 Taking equation (1) as a starting point, apply the identity ex =cosh x (1 + tanh x) to recast the partition function in the formZ = 2�nA X�2f�1;+1gn Yfi;jg2Ef1 + tanh(�Vij�i�j)g Yk2[n]f1 + tanh(�B�k)g;where A is de�ned in (5). Note that the spin variables �k disappear from the expressionfor A because �k = �1 for all k , and cosh x is an even function. Similarly, since tanh x6



is an odd function, the spin variables may be brought outside allowing Z to be rewrittenas Z = 2�nA X� Yfi;jg2Ef1 + �i�j tanh �Vijg Yk2[n]f1 + �k tanh �Bg:Expanding the two products, and changing variables according to (2), we obtainZ = 2�nA X� XX�E  Yfi;jg2X �ij�i�j! XU�[n] Yk2U ��k!;which on interchanging the order of summation yieldsZ = 2�nA XX�E XU�[n]X� W (U;X;�); (6)where W (U;X;�) = Yk2U ��k Yfi;jg2X �ij�i�j:Now we claim that P�W (U;X;�) = 0 unless X is a graph in which all vertices in Uhave odd degree, and all vertices in [n]� U have even degree. To see this, �x U and X ,and let k 2 [n] be such that either k 2 U and has even degree in X or k 2 [n] � Uand has odd degree in X . For any vector � 2 f�1;+1gn , let �(k) denote the vectorderived from � by inverting the sign of the k th component. Then the terms W (U;X;�)and W (U;X;�(k)) are equal in size but opposite in sign. Hence the terms of the sumP�W (U;X;�) cancel out in pairs.Conversely, suppose that X is a graph in which all vertices in U have odd degree, andall vertices in [n] � U have even degree. Then, for all � 2 f�1;+1gn and k 2 [n],the terms W (U;X;�) and W (U;X;�(k)) are equal. Thus the value of W (U;X;�) isindependent of � andX� W (U;X;�) = 2n�jU j Yfi;jg2X �ij = 2nw(X):Finally, substituting for P�W (U;X;�) in equation (6) we obtain the identity Z =APX�E w(X), as required.3 Estimating the partition functionThe aim of this section is to present an e�cient approximation algorithm for computingthe partition function Z of a ferromagnetic Ising system. The section is structured asfollows. First, we de�ne precisely what we mean by an e�cient approximation algorithm.7



Then we state, without proof, the properties of the sampling procedure for subgraphs-world con�gurations which plays a key role in our algorithm: the construction and analysisof this procedure, based on a suitably de�ned Markov chain, is left to the next section.Finally, we explain how to use samples produced by this procedure to obtain a reliableapproximation of Z .Our de�nition of e�cient approximation algorithm is a very demanding one, followingKarp and Luby [18] and others. For non-negative real numbers a, ~a, �, we say that ~aapproximates a within ratio 1 + � if a(1 + �)�1 � ~a � a(1 + �). Let f be any functionfrom problem instances to real numbers. (The Ising partition function is an example ofsuch a function.) A randomised approximation scheme for f is a probabilistic algorithmwhich, when presented with an instance x and a real number � 2 (0; 1], outputs a numberwhich, with high probability, approximates f(x) within ratio (1 + �). We shall take thephrase \with high probability" to mean with probability at least 3=4. This is because afailure probability of 1=4 can be reduced to any desired value � > 0 by performing onlyO(log ��1) trials and taking the median of the results [17]. (This claim is also justi�ed inthe proof of Lemma 3 below.) Of course, it is not enough just to obtain an accurate resultwith high reliability; the result must also be obtained e�ciently. Accordingly, we call anapproximation scheme fully polynomial if it runs in time polynomial in ��1 and the sizeof the problem instance x. The reader will appreciate that a fully polynomial randomisedapproximation scheme, or fpras, embodies a strong notion of e�cient approximation.With an eye to simplicity of presentation, we shall not concern ourselves with the errorswhich arise through the inexact nature of computer arithmetic. Instead, we shall assumea computational model in which real arithmetic is performed with perfect accuracy, and inwhich arithmetic operations and standard functions, such as exp, are charged at unit cost.After all, we are aiming only at an approximate evaluation of the partition function, andit will become apparent that our technique does not rely on intermediate computationsbeing carried out to untoward accuracy. Again with simplicity in mind, we will take n, thenumber of sites, as the size of the problem instance, even though the number of parametersto the model would be a more reasonable measure from an information-theoretic point ofview.As we have already mentioned, our approximation algorithm for Z is based on asampling procedure for subgraphs-world con�gurations. We must now be more pre-cise about the properties of the sampling procedure. For a ferromagnetic Ising sys-tem h�ij ; �i, with �ij and � as de�ned in equation (2) of the previous section, let 
denote the set of subgraphs-world con�gurations, i.e., the set of spanning subgraphsof the interaction graph ([n]; E), and de�ne the probability distribution � over 
 by�(X) = w(X)=PX 0 w(X 0) = w(X)=Z 0 , where w is the weight function de�ned in equa-tion (3). (Note that, since the system is ferromagnetic, w(X) � 0 for all X 2 
, so � isa probability distribution.) We wish to formalise the notion of an algorithm which, given8



a ferromagnetic system, selects a con�guration from a distribution which is \close to" � .A generator for subgraphs-world con�gurations is a probabilistic algorithm which takesas input a ferromagnetic Ising system in the form h�ij ; �i, plus a positive real tolerance � ,and outputs an element of 
 drawn from a distribution p satisfyingkp � �k � �:Here k � k denotes variation distance, i.e.,kp � �k = 12 XX2
 jp(X) � �(X)j = maxA�
 jp(A)� �(A)j:It turns out to be possible to construct an e�cient generator for subgraphs-worldcon�gurations, as the following theorem states.Theorem 2 There exists a generator for subgraphs-world con�gurations which, on inputsh�ij ; �i and � , runs in time bounded by a polynomial in n, ��1 and log ��1 . Speci�cally,the runtime of the generator is O(m2��8(log ��1 + m)), where m = jEj is the numberof non-zero interactions.Remarks (i) The presence of ��1 in the time bound implies that the generator isine�cient for systems with a very small external �eld. This dependence on the �eld isinessential and can be removed with a little extra work (see Theorem 10 of Section 5).(ii) E�cient generators for combinatorial structures, of which the above is a particularexample, are discussed in a general framework in [27, 29].The construction of a generator with the above properties, based on simulation of asuitably de�ned Markov chain, is described and justi�ed in detail in the next section. Forthe moment we will simply assume Theorem 2 and concentrate on showing how samplesproduced by the generator can be used to obtain an e�cient approximation algorithm forthe partition function Z(Vij ; B; �). Our approach, which we now describe, is an instanceof a computational technique which will be employed repeatedly in this paper.Suppose we want to estimate the value of some physical quantity associated with aferromagnetic Ising system. The �rst step is to express the quantity as the expectationof a suitably de�ned random variable over con�gurations in the subgraphs-world. Thenwe can estimate the quantity by sampling con�gurations at random, with the aid of thegenerator of Theorem 2, and computing the sample mean.More precisely, let f be a non-negative real-valued function de�ned on the set 
 ofsubgraphs-world con�gurations of a ferromagnetic Ising system. Viewing 
 as a sample9



space with probability distribution �(X) = w(X)=Z 0 , the function f becomes a randomvariable with expectation E(f) = 1Z 0 XX2
w(X)f(X):It is a simple matter to get an estimate of E(f) using the generator of Theorem 2:construct an independent sample fXig of con�gurations, of size s, and compute thesample mean s�1Pi f(Xi). Provided the tolerance input to the generator is small, thiswill be an almost unbiased estimator of E(f). By making the sample size s large enough,we can achieve any desired degree of accuracy with reasonable con�dence. Moreover,we may drastically reduce the probability that the estimator falls outside the acceptablerange of accuracy by repeating the entire process t times and taking the median of the tresults.The e�ciency of such an experiment depends on how large the numbers s and tmust be in order to achieve a speci�ed accuracy with speci�ed con�dence. This in turndepends on the variance of the random variable f , or more precisely on the quantitymax(f)=E(f), where max(f) denotes the maximum value of f on 
. The next lemmaquanti�es these e�ects; the proof is straightforward and is left till the end of the section.Lemma 3 Let f be a non-negative real-valued random variable de�ned on the set 
of subgraphs-world con�gurations of a ferromagnetic Ising system, and let � , � be realnumbers with 0 < � � 1 and 0 < � � 1=2. Then there is an experiment of the formdescribed above which uses a total of 504��2dlg ��1emax(f)=E(f) samples from the gen-erator, each with input h�ij ; �i and tolerance � = � E(f)=8max(f), and produces anoutput Y satisfyingPr�Y approximates E(f) within ratio 1 + �� � 1� �:Lemma 3 makes it clear that, whenever we employ the above technique, we willneed to ensure that the ratio max(f)=E(f) is not too large for the random variable funder consideration. In particular, our criterion for e�ciency demands that the ratio bebounded by a polynomial function of n, the size of the system.We turn now to an explanation of how the technique can be applied to compute thepartition function Z(Vij ; B; �). Recall from Theorem 1 of the previous section that Z =AZ 0 , where A is simple to evaluate directly. We therefore concentrate on computing Z 0 .Our �rst step is to write Z 0 explicitly as a function of � as follows:Z 0 � Z 0(�) = XX�E �jodd(X)j Yfi;jg2X �ij = bn=2cXk=0 ck�2k: (7)10



Note that only even powers of � need be included in the sum since the number ofodd-degree vertices in a subgraph X is necessarily even. We are thus viewing Z 0 asa polynomial in �2 with coe�cientsck = XX : jodd(X)j=2k Yfi;jg2X �ij: (8)In the ferromagnetic case all the ck are positive, so Z 0(�) is an increasing function of �.Clearly the coe�cients ck actually depend on the �ij , and hence on the interactions Vijof the system and on the parameter � . However, in what follows we will regard thesequantities, and therefore also the coe�cients, as �xed, and consider what happens when �is varied. In spins-world terminology, this corresponds to subjecting a system with �xedinteractions and at a �xed temperature to a varying external �eld. Our task is to evaluatethe partition function at a speci�ed external �eld value B . By the above discussion, thisis reduced to evaluating the polynomial Z 0(�) = P ck�2k at the point � = tanh�B .Our starting point is the observation that the value of Z 0(�) at � = 1 can be com-puted directly. To see this, note from (7) and (8) thatZ 0(1) = bn=2cXk=0 ck = XX�E Yfi;jg2X �ij = Yfi;jg2E(1 + �ij): (9)We are now going to relate the desired value Z 0(tanh�B) to Z 0(1) using the values ofZ 0(�) at certain intermediate points tanh �B < � < 1.The mechanism for relating the values of Z 0 at two points � = �0 and � = �1 , with1 � �0 > �1 � 0, is the following. Consider the random variable f(X) = (�1=�0)jodd(X)jover con�gurations of the system at � = �0 . The expectation of f is given byE�0(f) = 1Z 0(�0) bn=2cXk=0 ck�2k0  �1�0!2k = Z 0(�1)Z 0(�0) :(Here and in the sequel we will use notation such as E�0(f) to indicate the fact that theexpectation is with respect to a particular value of �, in this case �0 .) Hence we canestimate the quantity Z 0(�1)=Z 0(�0) using the sampling technique discussed earlier. ByLemma 3, this process will be e�cient provided the ratio max(f)=E�0(f) is not too large.Clearly, this cannot be guaranteed for arbitrary values of �0 and �1 . However, if thevalues are reasonably close together then the ratio is bounded rather tightly, as we nowshow. First, note that certainly max(f) � 1. It is therefore enough to obtain a lowerbound on the expectation E�0(f). Such a bound is provided by the next lemma, whoseproof we defer to the end of the section.Lemma 4 Let �0 and �1 be arbitrary real numbers in the range [0; 1] satisfying �1 <�0 � �1 + n�1 . Then the ratio Z 0(�1)=Z 0(�0) is bounded below by 1=10.11



Lemma 4 suggests that we should be able to bootstrap the known value Z 0(1) tothe desired value Z 0(tanh �B) by performing statistical experiments at a sequence ofintermediate values of � which are a distance n�1 apart. Speci�cally, let r < n be thenatural number satisfying n� rn > tanh �B � n � r � 1n ; (10)and de�ne the sequence (�k) for 0 � k � r + 1 by�k = ( (n� k)=n for 0 � k � r;tanh �B for k = r + 1. (11)Note that �k 2 [0; 1] and �k+1 < �k � �k+1 + n�1 . Hence by the above discussion wemay estimate the ratio Z 0(�k+1)=Z 0(�k) e�ciently for each k . This is enough to yield anestimate of Z 0(tanh�B), since we haveZ 0(tanh �B) = Z 0(1)� rYk=0 Z 0(�k+1)Z 0(�k) : (12)We are now in a position to write down our approximation algorithm for the partitionfunction Z . We assume that the input consists of a ferromagnetic Ising system in theform hVij ; B; �i, and a positive real � 2 (0; 1] which speci�es the desired accuracy. Asusual, we set �ij = tanh �Vij .Step 1. Compute A = (2 cosh �B)nQfi;jg2E cosh �Vij , and Z 0(1) = Qfi;jg2E(1 + �ij).Step 2. De�ne the sequence (�k) for 0 � k � r + 1 as in (10) and (11) above. Foreach k = 0; 1; : : : ; r in turn, do the following:Let f(X) = (�k+1=�k)jodd(X)j for each subgraphs-world con�guration X , sothat E�k (f) = Z 0(�k+1)=Z 0(�k). Using the technique of Lemma 3 applied tothe system at � = �k , with � = �=2n and � = 1=4n, compute a quantity YksatisfyingPr�Yk approximates Z 0(�k+1)=Z 0(�k) within ratio 1 + �=2n� � 1� 1=4n:Step 3. Output the product A� Z 0(1)� rYk=0 Yk:Theorem 5 The above algorithm is an fpras for the partition function Z of a ferromag-netic Ising system. 12



Proof The output of the algorithm is the product of the quantities A and Z 0(1), com-puted exactly in Step 1, together with r + 1 � n random variables Yk arising fromexperiments in Step 2. From (12) and the property of the Yk expressed in Step 2, it isimmediate that the product approximates Z(Vij; B; �) within ratio (1 + �=2n)n � 1 + �with probability at least (1 � 1=4n)n � 3=4. It remains only to show that the runtimeof the algorithm is bounded by a polynomial in n and ��1 .Steps 1 and 3 can clearly be executed in time O(n2). Now consider the operation ofStep 2 for a particular value of k . Appealing to Lemmas 3 and 4, we see that the processof computing the estimate Yk requires N = 20160��2n2dlg 4ne calls to the generator ofTheorem 2. Moreover, the tolerance supplied on each call is � = �=160n, and the valueof � is never less than n�1 . It follows from Theorem 2 that the runtime of each call isbounded by q(n; ��1) for some polynomial q( � ; � ). The total execution time of Step 2 istherefore O(nN q(n; ��1)), which is a polynomial function of n and ��1 . The algorithmtherefore satis�es all the requirements of an fpras.Remarks (i) The statement of Theorem 2 actually gives an upper bound on the poly-nomial q appearing at the end of the above proof. From this, it is easily seen that theoverall runtime of the fpras of Theorem 5 is O���2m2n11 log n (log(��1n) +m)�. Now wemay assume without loss of generality that � � 2�m , since otherwise we can evaluate Zexactly by brute force in time O(m��1). Hence the expression for the runtime simpli�esto O(��2m3n11 log n). (See also the Remark following the proof of Theorem 7 at the endof the next section.)(ii) Closer analysis reveals that the sequence of coe�cients (ck) of the polynomial ex-pression (7) for Z 0 is log-concave, i.e.,ck+1ck�1 � c2k for k = 1; 2; : : : ; bn=2c � 1:(The proof makes use of the ideas introduced in the proof of Theorem 7 of the nextsection.) This is a surprising result in its own right, since naturally occurring log-concavesequences are quite rare in combinatorics. It also suggests an alternative method forapproximating Z : by log-concavity, for each k it is possible to choose a value of �which assigns to con�gurations with precisely k pairs of odd-degree vertices the largestaggregated weight. This in turn means that we can read o� all signi�cant coe�cients ckby sampling at appropriate values of �, again using Z 0(1) as a reference value. (Ananalogous approach was used in [27, 16] to obtain the coe�cients of a polynomial relatedto matchings, or monomer-dimer con�gurations, in a graph.) This method is both morecomplex and rather less e�cient than the one presented in Theorem 5. However, it doessupply more detailed information about Z , in the form of the coe�cients of Z 0 . We havebeen unable to determine whether these quantities have any inherent physical signi�cance,so we will not present the alternative algorithm in detail here.13



We close the section by providing the missing proofs of Lemmas 3 and 4.Proof of Lemma 3 Let Var(f) denote the variance of f , i.e., Var(f) = E(f2)� E(f)2 .The generator of Theorem 2 selects elements of 
 from a distribution p which is slightlydi�erent from � . Accordingly, de�ne the mean and variance of f with respect to thisdistribution by E0(f) = XX2
 p(X)f(X);Var0(f) = XX2
 p(X)f(X)2 � E0(f)2:Since the variation distance satis�es kp� �k � � , we havejE(f)� E0(f)j � �max(f) = � E(f)=8;jVar(f)�Var0(f)j � 3�max(f)2 = 3� E(f)max(f)=8: (13)Now let fXig be an independent sample of size s produced by the generator, and letY0 = s�1Pi f(Xi) be the sample mean. Clearly Y0 has expectation E0(f) and variances�1Var0(f). Therefore, by Chebyshev's inequality we havePr�jY0 � E0(f)j > �3 E0(f)� � 9�2 Var0(f)sE0(f)2 : (14)But if jY0 � E0(f)j � �3 E0(f) then, from (13),jY0 � E(f)j � jY0 � E0(f)j + jE0(f) � E(f)j� �3 E0(f) + �8 E(f)� �3 �1 + �8�E(f) + �8 E(f)� �2 E(f): (15)Note that this in turn implies that Y0 approximates E(f) within ratio 1 + � . Moreover,applying (13) again we haveVar0(f)E0(f)2 � Var(f) + 38 E(f)max(f)�78 E(f)�2 � 118 E(f)max(f)�78 E(f)�2 < 2max(f)E(f) ; (16)where in the second inequality we have used the distribution-independent boundVar(f) � E(f)max(f), valid for any non-negative random variable f . Combining (15)and (16) with (14), and choosing sample size s = 72��2 max(f)=E(f), givesPr�Y0 approximates E(f) within ratio 1 + �� � 18�2s max(f)E(f) = 14 : (17)14



Now consider performing the above experiment an odd number t times, independently,and let Y denote the median of the resulting t values of Y0 . In view of (17), theprobability that Y fails to approximate E(f) within ratio 1 + � is at mosttXi=(t+1)=2�ti��14�i�34�t�i � �14�t=2�34�t=2 tXi=(t+1)=2�ti� � � 316�t=2 2t = �34�t=2:Taking t = 6dlg ��1e + 1, this probability is bounded above by �3 lg(4=3) < � . Therandom variable Y therefore satis�es the requirement of the lemma. The totalnumber of samples required from the generator is st, which is bounded above by504��2dlg ��1emax(f)=E(f) as claimed.Proof of Lemma 4 We split the argument into two cases.Case I: �0 � 3=4. In this case, we have�1�0 � 1� 1n�0 � 1� 43n:Therefore, since Z 0(�) = Pbn=2ck=0 ck�2k , and all coe�cients ck are positive,Z 0(�1)Z 0(�0) �  �1�0!2bn=2c � �1 � 43n�n � 19 ;assuming as we may that n � 2. (The problem is trivial otherwise.)Case II: �0 < 3=4. This case is handled by appealing to the original spins-worldexpansion of Z . First note from the de�nition (4) of Z 0 thatZ 0(�1)Z 0(�0) = Z(Vij ; B1; �)Z(Vij ; B0; �) �  2 cosh �B02 cosh �B1!n � Z(Vij ; B1; �)Z(Vij ; B0; �); (18)where � > 0 is arbitrary and B0 , B1 are de�ned by �i = tanh �Bi . Note that B0 � B1 .Moreover, the upper bound �0 � �1 � n�1 translates to a bound on B0 � B1 via theinequality tanh x� tanh y � (x� y) sech2 x, valid for x � y � 0. We get�(B0 �B1) � (�0 � �1)= sech2 �B0 � 16=7n; (19)where we have used the fact that tanh�B0 = �0 < 3=4 and sech2 x = 1 � tanh2 x.But from the de�nition (1) of the partition function Z we haveZ(Vij ; B1; �)Z(Vij ; B0; �) � min� exp��(B1 �B0)Pk2[n] �k� � exp��n�(B0 �B1)�;which by (19) is bounded below by e�16=7 and hence by 1=10. Together with (18) thisyields the desired bound on Z 0(�1)=Z 0(�0).15



4 An analysis of the subgraphs-world processWe shall assume that the reader is familiar with the elementary theory of �nite Markovchains in discrete time: an introduction can be found, for example, in [10, Chapter XV].Assume � > 0. Taking our cue from the form of equation (4), we de�ne the subgraphs-world process, MCIsing , as follows. The state space, 
, of the Markov chain MCIsing isthe set of all spanning subgraphs X � E ; note that j
j = 2m where m = jEj is thenumber of unordered pairs fi; jg with �ij 6= 0. For X;X 0 2 
 with X 6= X 0 , thetransition probability from X to X 0 is given byp(X;X 0) = 8><>: 1=2m if jX �X 0j = 1 and w(X 0) � w(X);w(X 0)=(2mw(X)) if jX �X 0j = 1 and w(X 0) < w(X);0 otherwise,where X � X 0 denotes the symmetric di�erence of X and X 0 . The self-loopprobabilities p(X;X) are de�ned implicitly by complementation, so that p(X;X) =1 �PX 0 6=X p(X;X 0). Thus, transitions in MCIsing are perturbations in which a singleedge is added to, or deleted from a subgraph. Note that exactly m transitions are avail-able from any state, and all transition probabilities are bounded above by 1=2m. Hencethe transition probabilities are well de�ned, and the self-loop probabilities p(X;X) foreach state X are bounded below by 1=2.We pause to observe that the above chain is very easy to simulate. Suppose the currentstate of the chain is X 2 
. Then the transitions from X can be selected according tothe following model:1. with probability 1=2 set X 0 = X , otherwise2. select an edge e 2 E uniformly at random, and let Y = X � feg (the symmetricdi�erence of X and feg);3. if w(Y ) � w(X) then set X 0 = Y ; if w(Y ) < w(X) then with probabilityw(Y )=w(X) set X 0 = Y , otherwise set X 0 = X .It will be seen that this procedure correctly models the transition probabilities speci�edearlier. It is worth remarking that there is no need to compute the weight functionsw(X) and w(Y ) from scratch at each iteration; since Y and X di�er by a single edge,the quotient w(Y )=w(X) can be computed using just two multiplications.The Markov chain MCIsing is irreducible (all states communicate via the emptystate ?) and aperiodic (the self-loop probabilities are non-zero). Thus there is a wellde�ned stationary distribution on 
 which is independent of the initial state. De�ne � :
 ! R by �(X) = w(X)=PX 0 w(X 0) = w(X)=Z 0 . We shall see presently that � is in-deed the stationary distribution on 
. For X;X 0 2 
 de�ne q(X;X 0) = �(X) p(X;X 0).16



We claim that q is symmetric in its two arguments. If X = X 0 then there is nothingto prove. If jX � X 0j > 1 then p(X;X 0) = 0 and hence q(X;X 0) = 0. Finally, it isstraightforward to verify from the de�nition of the transition probability p(X;X 0) thatq(X;X 0) = (2m)�1minf�(X); �(X 0)g; if jX �X 0j = 1: (20)Since q is symmetric, the so-called detailed balance condition holds:�(X)p(X;X 0) = q(X;X 0) = �(X 0)p(X 0;X): (21)Suppose, as is the case here, that the function p( � ; � ) describes the transition proba-bilities of an ergodic Markov chain. It is a fact [16, Lemma 2.1] that if there is anyfunction � : 
 ! R satisfying detailed balance together with the normalisation condi-tion PX2
 �(X) = 1, then the Markov chain is (time-)reversible, and � is its stationarydistribution. Thus the stationary distribution of the Markov chain MCIsing is indeedgiven by �(X) = w(X)=Z 0 , as claimed above, and we can use the chain to sample con-�gurations X 2 
 with probabilities approximately proportional to w(X).As explained informally earlier, if the Markov chain MCIsing is to be the basis of ane�cient sampling procedure for con�gurations then it must be rapidly mixing, in the sensethat, if it is allowed to evolve from a suitable initial state, the distribution of its �nal statewill be very close to the stationary distribution after only polynomially many steps. Notethat this is a highly non-trivial requirement: since the number of states in the chain isexponentially large, we are demanding that it converges after visiting only a tiny fractionof its state space. Our argument that the chain is rapidly mixing is in two parts: �rst, inTheorem 6, we state a general characterisation of the rapid mixing property in terms ofa measure known as the conductance; then, in Theorem 7, we estimate the conductanceof MCIsing .For an ergodic reversible Markov chain, the conductance [27, 29] is de�ned by� = min� XX2SX 0=2S q(X;X 0)� XX2S �(X)� ;where the minimisation is over all subsets S of states with 0 < PX2S �(X) � 1=2. (Notethat 0 < � � 1.) The conductance in some sense measures the rate at which the processcan 
ow around the state space: speci�cally, it provides a lower bound on the conditionalprobability that the stationary process escapes from a small subset S of the state spacein a single step, given that it is initially in S . Thus a chain with large conductance isunlikely to \get stuck" in any small region of the state space, so we might expect it toconverge fast. This intuition is captured in the following theorem.Theorem 6 Let � be the conductance of an ergodic, reversible Markov chain with sta-tionary distribution � and minX p(X;X) � 1=2. Let p(t) denote the distribution of the17



state at time t given that the initial state is X0 . Then the variation distance kp(t) � �ksatis�es kp(t) � �k � (1� �2)t�(X0) :(The requirement that minX p(X;X) � 1=2, i.e, that every state has a self-loop proba-bility of at least 1/2, is a technical device which removes periodicity; note that MCIsingsatis�es this requirement by construction.)Proof The theorem is essentially a restatement of Theorem 3.4 of [29], to which the inter-ested reader is referred for details; we mention here only the necessary modi�cations. Themain di�erence stems from the fact that in the former result we used the stronger relativepointwise distance (r.p.d.), rather than the variation distance, as a measure of deviationfrom the stationary distribution. In similar fashion to the r.p.d., the variation distanceat time t may be related, by elementary linear algebra, to the second eigenvalue �1 ofthe Markov chain: we get kp(t) � �k � �t1�(X0) : (22)(See, for example, Proposition 2 of [7], which presents a marginally stronger result, with2q�(X0) replacing �(X0) in the denominator. Note that the presence of a self-loopprobability of 1/2 on every state ensures that all eigenvalues are non-negative.) Thebound in (22) di�ers from that on the r.p.d. in Lemma 3.1 of [29] only in that �(X0)replaces minX �(X).Now the main result of Section 3 of [29], Lemma 3.3, relates �1 to the conductance viathe bound �1 � 1 � �2=2, valid for an arbitrary reversible chain. It is easily seen fromthe proof of the lemma that the marginally stronger bound�1 � 1 � �2 (23)holds for chains in which all self-loop probabilities are at least 1/2. Putting (22) and (23)together establishes the theorem.Remarks (i) The heart of the above proof is the eigenvalue bound (23). This is adiscrete analogue of Cheeger's inequality for Riemannian manifolds [5]. Related boundshave been observed by several authors: see, e.g., [8, 1, 23, 25].(ii) Theorem 6 has a converse, which says that if a Markov chain is rapidly mixing thenits conductance cannot be too small: see, e.g., [23, 27, 28]. Thus the conductance providesa characterisation of the rapid mixing property.18



Theorem 6 allows us to investigate the rate of convergence of a reversible chain by ex-amining its transition structure, as re
ected in the conductance. In particular, if we wishto ensure a variation distance of at most � then it is clear that ��2(ln ��1 + ln�(X0)�1)steps su�ce. Thus the rapid mixing property will generally follow from an inverse poly-nomial lower bound on the conductance. Such a bound is available for the chain MCIsingde�ned above. Speci�cally, we haveTheorem 7 The conductance of the Markov chain MCIsing is bounded below by �4=4m.The proof of Theorem 7 is the main content of this section. Before proceeding withit, however, let us �rst use the result to verify our claim in Theorem 2 of the previoussection that an e�cient generator for subgraphs-world con�gurations exists. This willcomplete the validation of our approximation algorithm for the partition function.Proof of Theorem 2 The generator operates as follows. Given as input a ferromagneticIsing system in the form h�ij ; �i, with 0 < � � 1, and a tolerance � 2 (0; 1], simulatethe associated Markov chain MCIsing for 16m2��8(ln ��1 + m) steps, starting in stateX0 = ? (i.e, the empty graph on vertex set [n]). Since �ij < 1 for all i; j , and � � 1, itis clear that w(X0) � w(X) for all con�gurations X . Hence �(X0) � 2�m . Appealingto Theorem 6, we conclude that the speci�ed number of simulation steps is enough toensure a variation distance of at most � . The theorem is therefore established.Proof of Theorem 7 The proof rests on a path counting argument, similar to thoseemployed in previous applications [27, 16] of the conductance bound. We present apreliminary sketch map of the proof technique before considering the technical detailswhich arise when applying the path counting argument to the particular chain underconsideration.For each pair of states I; F 2 
, a canonical path from I (the initial state) to F (the�nal state) is speci�ed. The canonical path proceeds via a number of intermediate statesusing only valid transitions of the Markov chain. Each canonical path is assigned a weightwhich is the product of the stationary probabilities at the initial and �nal states; thusthe weight of the path from I to F is �(I)�(F ), independent of the intermediate statesin the path. A careful choice of canonical paths is essential to secure a good bound onconductance.Suppose it can be shown that, for each transition T ! T 0 , the aggregated weight ofcanonical paths which use transition T ! T 0 is bounded above by b q(T; T 0), where q isas in equation (21). Consider any partition of the state space 
 into two sets S and Swith PX2S �(X) � 1=2. Then, on the one hand, the total weight of canonical paths19



which cross the cut de�ned by S and S is at least PI2SPF2S �(I)�(F ) = �(S)�(S ) ��(S)=2. On the other hand, summing over transitions T ! T 0 with T 2 S and T 0 2 S ,we have that the total weight of canonical paths which cross the cut is bounded above bybPT2SPT 02S q(T; T 0). Since S and S represent a general partition of the state space 
,it follows immediately that the conductance of the Markov chain is bounded below by1=2b.It will be perceived that the principal barrier to applying the above idea is likely tolie in obtaining a good value for the bound b. This is achieved using a combinatorialencoding technique, as follows. For each transition T ! T 0 , let cp(T; T 0) denote the setof all pairs (I; F ) 2 
2 such that the canonical path from I to F includes the transitionT ! T 0 . Fix any particular transition T ! T 0 . Then it turns out that we can de�nean injective map from cp(T; T 0) to the state space 
. Since the map is injective, anystate U 2 
 picks out at most one canonical path, from I to F say, which uses thetransition T ! T 0 ; the state U can be thought of as an encoding of the canonicalpath. Moreover, the injective map can be chosen so that the weight of the canonicalpath, namely �(I)�(F ), is roughly proportional to �(U), the probability assigned to theencoding U by the stationary distribution. Since � is a probability distribution, the sumof �(U) over all encodings U is at most 1; this upper bound translates to an upper boundon the total weight of paths using T ! T 0 , and hence to a value for b.All the above must now be specialised to the Markov chain MCIsing . The �rst taskis to specify a canonical path for each pair I; F 2 
. View I and F as graphs withvertex set [n]. Let � = I � F be the symmetric di�erence of I and F , and supposethat the graph � has 2k vertices of odd degree. (The number of odd-degree vertices in agraph is necessarily even.) Cover � with a collection C1; C2; : : : ; Cr of assorted trails andcircuits which are pairwise edge-disjoint, imposing the condition that the �rst k objects,C1 , C2; : : : , Ck , are all open trails (walks with no repeated edges) while the remainder,Ck+1 , Ck+2; : : : , Cr , are all circuits (closed trails).That this can be done with so few (open) trails follows from a simple induction on k .When k = 0, every vertex of � is of even degree, so each connected component of � isEulerian and can be covered by a single circuit. Now suppose k > 0 and i is a vertexin � of odd degree. The connected component of � containing i must contain at leastone other odd-degree vertex, say j . Connect i and j by a trail, letting this be one of thetrails in the required decomposition of �. Deleting this trail from � yields a graph with2(k � 1) odd-degree vertices, which can be covered by k � 1 trails (together with somenumber of circuits) by the induction hypothesis.The covering of � by trails and circuits is not in general unique, and we assume that somerule is employed to pick out a particular choice of C1 , C2; : : : , Cr . We further assumethat this rule also speci�es a distinguished initial vertex for each trail or circuit, and a20



direction for each circuit. In the case of a trail the initial vertex must be an end-pointof the trail; in the case of a circuit the initial vertex may be arbitrary. The canonicalpath from I to F is now obtained by unwinding the trails and circuits C1 , C2; : : : , Crin sequence. Unwinding Ci involves processing each edge of Ci in sequence, starting atthe initial vertex and, in the case of a circuit, following the assigned direction. Eachprocessed edge, e, generates a single transition on the path from I to F . If e is in F(and hence not in I ) the transition involves adding the edge e to the current state; if eis in I (and hence not in F ) the transition involves deleting the edge e from the currentstate. It is clear that this process de�nes a canonical path of legal transitions from state Ito state F .The next task is to de�ne the injective map (encoding) from the set of canonical pathsusing a given transition to 
. Recall that cp(T; T 0) denotes the set of all pairs (I; F ) 2 
2such that the canonical path from I to F employs the transition T ! T 0 . De�ne the map�T!T 0 : cp(T; T 0) ! 
 by �T!T 0(I; F ) = I � F � (T [ T 0) for all (I; F ) 2 cp(T; T 0).The intention here is that the encoding should agree with I on the trails and circuitsalready processed, and with F elsewhere.We verify that �T!T 0 is injective by demonstrating that I and F are uniquely determinedby U = �T!T 0(I; F ). Indeed, given U , we can compute U � (T [ T 0) = I � F andhence the uniquely de�ned covering C1 , C2; : : : , Cr of I � F by trails and circuits. Theedge e = T � T 0 which is added or deleted by the transition T ! T 0 points out whichtrail or circuit, Ci , is being unwound, and how far the unwinding of Ci has progressed.Starting at state T 0 , we may complete the unwinding of Ci and successive trails/circuitsto discover the �nal state F ; equally well, we may use the reverse process to recover theinitial state I . So the map �T!T 0 is injective, as claimed.The other property we require of the encoding is that its weight should be roughly pro-portional to that of the encoded path. Precisely, we require of U = �T!T 0(I; F ) that�(U)q(T; T 0) � (2m)�1�4�(I)�(F ); (24)or, equivalently, multiplying through by (Z 0)2 and using assertion (20),w(U)w(T ) � �4w(I)w(F ) and w(U)w(T 0) � �4w(I)w(F ): (25)The veri�cation of the left hand inequality will be treated in detail below; the right handinequality will then be shown to follow by symmetry.For X 2 
, write �(X) = Qfi;jg2X �ij , so that w(X) = �(X)�jodd(X)j . To verify theleft hand inequality of (25) it is enough to demonstrate separately that�(U)�(T ) � �(I)�(F ); (26)and jodd(U)j+ jodd(T )j � jodd(I)j � jodd(F )j � 4: (27)21



(We have used here the fact that 0 < � � 1.) We deal �rst with inequality (26),which is the more straightforward. From the construction of canonical paths we haveI \ F � T [ T 0 � I [ F , while the de�nition of U entails U � (T [ T 0) = I � F . Itfollows by elementary set theory from these two observations that U \ (T [ T 0) = I \ Fand U [ (T [ T 0) = I [ F . Hence�(U)�(T [ T 0) = �(U [ (T [ T 0)) �(U \ (T [ T 0)) = �(I [ F ) �(I \ F ) = �(I)�(F );which, together with �(T [ T 0) � �(T ), implies inequality (26).We now turn to inequality (27). For i 2 [n] de�ne�(i) = �odd(U)(i) + �odd(T )(i)� �odd(I)(i)� �odd(F )(i);where �S denotes the characteristic function of a set S . Note that �2 � �(i) � 2.Inequality (27) can be re-expressed asXi2[n]�(i) � 4: (28)We shall argue that �(i) � 0 for all i outside a small set of exceptions. In order todiscuss these exceptions, we give names to three vertices which have special signi�cance.Denote by s the initial vertex of the circuit which is in the process of being unwoundwhen the transition T ! T 0 is made (s is unde�ned if the transition occurs on a trail).Denote by u and v the endpoints of the edge e = T � T 0 which is added or subtractedduring the transition T ! T 0 ; vertex u is distinguished from v by being the �rst to beencountered in the direction of unwinding. We shall see that the vertices s, u, and v arethe only ones which can provide a positive contribution to the sum in (28).Consider �rst the conditions under which �(i) = 2 can occur. It must be the case that ihas even degree in both I and F , and odd degree in both U and T . Now it is a conse-quence of the way canonical paths are constructed that a vertex which has even degreein both I and F will generally have even degree in the intermediate con�guration T ;the only exceptions are the vertex s (whose degree became odd when the unwinding ofthe circuit commenced) and the vertex u (whose degree was made odd by the previoustransition, and whose parity is restored by the transition T ! T 0 itself). To summarise:the case �(i) = 2 can only occur when i = s or i = u.Consider now the conditions under which �(i) = 1 can occur. This case is ruled out, withtwo exceptions, by simple parity considerations. Since I � F = U � (T [ T 0), the valueof �(i) must be even unless i = u or i = v . (These are the only points at which the setT [ T 0 may di�er from T .) Combining this observation with the previous analysis for thecase �(i) = 2, we see that only three terms of the sum occurring in (28) can possibly bestrictly positive, and that the sum itself cannot exceed 5. (The worst case is achieved by22



setting �(s) = 2, �(u) = 2, and �(v) = 1.) However, the sum cannot actually attain 5on grounds of parity: each of the terms appearing on the left hand side of inequality (27)is necessarily even. This completes the veri�cation of inequality (28), and hence of (27)and the left hand inequality of (25). The right hand inequality of (25) follows by asymmetrical argument, with the roles of T and T 0 , and u and v , interchanged.Finally, summing (24) over all canonical paths which employ the transition T ! T 0we obtain the following upper bound on the total weight of canonical paths which useT ! T 0 :X(I;F )2cp(T;T 0) �(I)�(F ) � X(I;F )2cp(T;T 0) 2m��4�(�T!T 0(I; F )) q(T; T 0) � 2m��4q(T; T 0);where the second inequality rests on the fact that �T!T 0 is injective. In the notationof the sketch map presented at the beginning of the proof, b = 2m��4 . Therefore theconductance of MCIsing is bounded below by 1=2b = �4=4m, as claimed at the outset.Remark The main task in the proof of Theorem 7 is to estimate the \bottleneck"measure b; this is then used to get a bound on conductance, and hence on the rate ofconvergence of MCIsing . In fact, b can be used directly to obtain a signi�cantly sharperbound on the rate of convergence: for the details, see [28]. Speci�cally, the runtime ofthe generator quoted in Theorem 2 is reduced by a factor O(��4), which improves theruntime of the approximation algorithm for the partition function (Theorem 5) by a factorof O(n4). Similar improvements apply to the runtimes of our other algorithms that makeuse of the generator.5 The mean energy and mean magnetic momentOf greater immediate importance to physicists than the partition function Z itself are thepartial derivatives of lnZ with respect to � and B . The key quantities of interest are themean energy E = �@(lnZ)=@� , and the mean magnetic moment M = ��1 @(lnZ)=@B .As their names suggest, both of these can be viewed, in the spins-world, as expectationsof the corresponding physical quantities.There is no reason to suppose that an fpras for the partition function Z will directlyyield an fpras for these derivatives of lnZ . However, we demonstrate in this section thatpolynomial-time approximation algorithms for E and M do indeed exist. The construc-tion of these algorithms relies on the surprising fact that E and M can be viewed asexpectations of appropriately de�ned random variables in the subgraphs-world. Although23



some technical complications arise, it is possible to estimate these expectations more orless directly by simulating the subgraphs-world process for a polynomially bounded num-ber of steps.The mean magnetic moment is slightly easier to work with, and we treat it �rst. Themain result is preceded by a technical lemma, whose proof is deferred to the end of thesection. Recall that in the subgraphs-world distribution, each con�guration X occurswith probability w(X)=Z 0 .Lemma 8 Suppose the con�guration X 2 
 is randomly selected according to thesubgraphs-world distribution. Then(i) Pr(jodd(X)j > 0) � �2=2, provided P�ij � 1;(ii) Pr(jodd(X)j = 2) � �2=10, provided P�ij � 1 and � � n�1 .Theorem 9 There exists an fpras for the mean magnetic moment M = ��1 @(lnZ)=@B ,where Z is the partition function of a ferromagnetic Ising system.Proof We shall express the quantity M as an expectation in the subgraphs-world bydi�erentiating the logarithm of the expansion given in Theorem 1 with respect to B .Before doing this, it is convenient to perform some preparatory computations. Since M =0 when B = 0, we may assume that B > 0. Recall that w(X) = �(X)�jodd(X)j , where� = tanh �B by de�nition, and �(X) is independent of B . Then@@Bw(X) = �(X)jodd(X)j�jodd(X)j�1(sech�B)2�= � w(X)jodd(X)j(tanh �B)�1(sech�B)2= w(X)2�jodd(X)jsinh 2�B :Furthermore, from the de�nition of A in equation (5),@@B lnA = @@B n ln cosh�B = n� tanh �B:With these identities in mind, we compute M using the expansion of Theorem 1 as thestarting point: M = 1� @@B lnZ = 1� @@B lnA+ 1� @@B lnZ 0= n tanh �B + 1�Z 0 XX @@Bw(X)= n tanh �B + 1Z 0 XX w(X)2jodd(X)jsinh 2�B :24



Using, as before, the notation E(f) = (Z 0)�1PX w(X)f(X) to express the expectationof a random variable f in the subgraphs-world, the above identity can be written morecompactly as M = n tanh �B + 2sinh 2�B E jodd(X)j: (29)Note that to approximate M within ratio 1 + �, it is enough, since both terms of (29) arepositive, to estimate E jodd(X)j within ratio 1 + �. We propose to do this by using theMarkov chain MCIsing analysed in Section 4 to provide a polynomial number of samplecon�gurations X from the subgraphs-world distribution, and returning the average ofjodd(X)j over the sample. As noted in the discussion preceding Lemma 3, this approachwill yield an fpras for M provided the ratio max jodd(X)j=E jodd(X)j is bounded by apolynomial in n. Although such a bound often holds, a more re�ned approach is necessaryin certain circumstances. We proceed by case analysis.Case I: P�ij � 1. We identify two subcases, according to the size of �.Case Ia: � � n�1 . In this range, we may estimate M by direct experiment. FromLemma 8, E jodd(X)j � 2Pr(jodd(X)j > 0) � �2 � n�2;while, clearly, max jodd(X)j � n. Thus the ratio max jodd(X)j=E jodd(X)j is boundedabove by n3 .Case Ib: � < n�1 . Intuitively, the problem when � is small is that a randomly sampledcon�guration may, with high probability, satisfy jodd(X)j = 0; in this situation, verymany trials may be required to obtain a su�ciently accurate estimate of the expectationof jodd(X)j. The solution is to perform experiments at an increased value of �, say�̂, at which the event jodd(X)j > 0 occurs with su�ciently high probability. Since weshall be allowing � to vary, it is convenient, as before, to re�ne our notation to makethe dependence on � explicit. In particular, E�̂(f) will denote the expectation of therandom variable f when experiments are undertaken with � set to some revised value �̂.The unsubscripted notation E(f) will be reserved for expectations with respect to theoriginal value of �.Set �̂ = n�1 and de�ne f(X) = jodd(X)j� �̂��jodd(X)j:Straightforward manipulations yield the identityE jodd(X)j = Z 0(�̂)Z 0(�) E�̂(f); (30)which relates the quantity we are attempting to estimate to the expectation of f atthe revised value of �. Since Z 0(�̂) and Z 0(�) may be estimated by the techniques of25



Section 3, we concentrate here on the estimation of E�̂(f). From part (ii) of Lemma 8we have Pr�̂(jodd(X)j = 2) � �̂2=10; this inequality allows the expectation of f to bebounded below: E�̂(f) � 2� �̂��2Pr�̂(jodd(X)j = 2) � �25 :The maximum of f , meanwhile, satis�es the crude bound max(f) � (�=�̂)2n. Thus theratio max(f)=E�̂(f) is bounded above by 5n�̂�2 = 5n3 .Case II: P�ij < 1. In this rather pathological case, the essential problem we face isthat a randomly sampled con�guration may, with high probability, be the empty set.As before, we shall conduct experiments at an arti�cially in
ated value of � and useequation (30) to relate the results of these experiments to the value we are attempting toestimate. This time, however, we choose to work with �̂ = 1.Unfortunately, even with �̂ set to 1, the highest possible value, it may still happen thatthe empty con�guration X = ? occurs with very high probability. We overcome thisproblem by sampling from the distribution obtained by conditioning on the event X 6= ?.With f as before, and noting that �̂ = 1 and f(?) = 0, we haveE�̂(f) = bn=2cXk=0 2k�2k Pr�̂(jodd(X)j = 2k)= Pr�̂(X 6= ?) bn=2cXk=1 2k�2k Pr�̂�jodd(X)j = 2k ��� X 6= ?�:Now Z 0(�̂) = Q(1 + �ij), and hencePr�̂(X 6= ?) = Z 0(�̂)� 1Z 0(�̂) (31)is easy to evaluate directly. It is enough, therefore, to estimate the expectation of fwith respect to the distribution of conditional probabilities, in which each non-trivialcon�guration X 6= ? occurs with probability (Z 0(�̂)� 1)�1Qfi;jg2X �ij . This conditionaldistribution may be sampled without recourse to Markov chain simulation, the directmethod being as follows. Start with X = ? and perform a sequence of m trials, each trialdetermining whether a particular edge is to be added to X . The probability governingeach trial has one of two values, depending on whether any of the previous trials havecontributed an edge to X . De�ne pij = �ij(1 + �ij)�1 , and suppose that we are aboutto decide whether to add a certain edge fi; jg to X . If X 6= ?, the edge fi; jg isadded to X with probability pij ; otherwise, the edge is added to X with probabilitypij [1� Q(1 � phk)]�1 , where the product is over all edges fh; kg whose fate is yet to bedecided, including edge fi; jg itself. It is straightforward to verify that this procedureyields the required distribution. 26



It only remains to verify that a polynomially bounded number of sample con�gurationssu�ce to provide an accurate estimate of the expectation of f . Again, we do this bydemonstrating an upper bound on the ratio between the maximum of f and the meanof f . Observe thatZ 0(�̂) = Y(1 + �ij) � exp �X�ij� � 1 + 2X �ij; (32)and Pr�̂(jodd(X)j = 2) � 1Z 0(�̂)X�ij ; (33)where in equation (32) we have used the fact that ex � 1 + 2x in the range 0 � x � 1.Combining equations (31) and (33), we obtain a lower bound on the probability ofjodd(X)j = 2 conditional on X 6= ?:Pr�̂�jodd(X)j = 2 ��� X 6= ?� = Pr�̂(jodd(X)j = 2)Pr�̂(X 6= ?) � Z 0(�̂)Z 0(�̂)� 1 1Z 0(�̂)X�ij � 12;the �nal step here relies on inequality (32). It follows immediately that the expectationof f with respect to the conditional distribution is at least �2 . Using the crude boundmax(f) � n�2 , we see that the ratio of the maximum to the mean of f is bounded aboveby n. This completes the analysis of Case II.We conclude by analysing the time complexity of the proposed approximation schemefor M. The worst case is realised by Case Ib, where our method demands that the threequantities appearing on the right hand side of identity (30) be known with su�ciently highaccuracy. To obtain an fpras for M, it is enough to estimate each of these three quantitieswithin ratio 1 + �=4 and with failure probability 1=12. Setting � = �=4 and � = 1=12in Lemma 3, we see that O(��2n3) samples from the generator su�ce to estimate E�̂(f)within ratio 1 + �=4 and with failure probability 1=12. The production of each samplerequires time O(m2�̂�8(log ��1 + m)), where ��1 = O(��1n3). We may assume that� � 2�m , otherwise there would be time enough to evaluate M exactly using a bruteforce algorithm. With this simplifying assumption, and noting that �̂ = n�1 , the timeto produce each sample is seen to be O(m3n8), and the total time to estimate E�̂(f) isO(��2m3n11). The overall execution time for the algorithm is thus dominated by the timetaken to estimate Z 0(�) and Z 0(�̂) within ratio 1 + �=4 and with failure probability 1=12;from remark (i) following Theorem 5 this dominant term is seen to be O(��2m3n11 log n).We turn now to the mean energy E . Up to this point, we have always sampledcon�gurations with � set to some value which is at least n�1 . In the sequel, we shallneed to sample con�gurations at smaller values of �; at these values Theorem 2 nolonger guarantees an execution time for the sampling procedure which is polynomialin n. However, e�cient sampling is possible, even at � = 0.27



Theorem 10 There exists a generator for subgraphs-world con�gurations which, on in-puts h�ij ; �i and � , runs in expected time bounded by a polynomial in n and log ��1 .Speci�cally, the expected execution time of the generator is O(m2n8(log ��1 +m)).Proof The result for � � n�1 follows directly fromTheorem 2. So assume that � < n�1 .We employ the generator of Theorem 2 but with � arti�cially boosted to �̂ = n�1 , and �decreased to �̂ = �=10. To sample a con�guration X from the distribution correspondingto the original value of �, perform a sequence of trials of the following form. Firstproduce a random con�guration X using the generator of Theorem 2 (with the modi�edparameters); then, with probability (�=�̂)jodd(X)j , declare the trial successful, otherwisedeclare the trial a failure. The sequence of trials is halted at the �rst successful trial, andthe con�guration X produced by that trial is returned as result.The probability that a trial is declared successful is at least Pr�̂(jodd(X)j = 0), whichby Lemma 4 (setting �1 = 0 and �0 = n�1 ) is at least 1=10. Thus the expected numberof trials required to generate a con�guration is at most 10. It is straightforward to checkthat the procedure described above, viewed as a generator with respect to the originalvalue of �, has tolerance at most 10�̂ = � .As in the case of the mean magnetic moment, the main result rests on a technicallemma, whose proof is deferred.Lemma 11 Suppose B = 0, i.e., that there is no external �eld. If w(X) � 1=32nm2for all X 6= ?, then Z 0 = PX w(X) � m.Theorem 12 There exists an fpras for the (negation of the) mean energy �E =@(lnZ)=@� , where Z is the partition function of a ferromagnetic Ising system.Proof We shall assume that B = 0, i.e., that there is no external �eld; the proof in thegeneral case introduces extra technical complications, but requires no new ideas. At theend of the proof, we sketch the modi�cations required to deal with a non-zero external�eld.When B = 0 the partition function, Z , simpli�es to Z = APX w(X), whereA = Yfi;jg2E cosh �Vij; w(X) = Yfi;jg2X tanh �Vij;and the sum is over all closed X � E . (A graph X is said to be closed if every vertexof X has even degree.) De�nec = Xfi;jg2E Vij tanh �Vij; g(X) = Xfi;jg2X 2Vij=sinh 2�Vij ;28



and let f(X) = c+ g(X). Then@@�w(X) = @@� Yfi;jg2X tanh �Vij= Yfi;jg2X tanh �Vij Xfi;jg2X 2Vij=sinh 2�Vij= w(X)g(X):Using this identity, and starting from the expansion given in Theorem 1:�E = @@� (lnZ) = @@� lnA+ @@� lnZ 0= @@� Xfi;jg2E ln cosh �Vij + 1Z 0 @@�XX w(X)= Xfi;jg2EVij tanh �Vij + 1Z 0 XX w(X)g(X)= 1Z 0 XX w(X)(c+ g(X)):Thus, the mean energy can be expressed as an expectation: �E = E(f). This expressionfor �E immediately suggests that we attempt to estimate the mean energy by taking anaverage of f(X) over some polynomially bounded set of sample con�gurations X . Thisbasic idea can be made to work, with a little re�nement. As before, we proceed by caseanalysis.Case I: �Vij > 1 for some pair i; j . The condition guarantees that the constant c isnot too small in relation to g(X), and hence that the ratio max(f)=E(f) is not too large.This, as we have seen, implies that E(f) can be estimated by direct experiment. Firstnote that the existence of a pair i; j with �Vij > 1 entailsc � Vij tanh �Vij > 3Vij4 > 34� : (34)Then observe that the inequality x=sinh x < 1, valid for x > 0, impliesg(X) = Xfi;jg2X 2Vij=sinh 2�Vij < Xfi;jg2X 1� � m� :Thus max(f) = c + max(g) � c + m=� � c(1 + 4m=3), where the �nal step re-lies on inequality (34). Since E(f) is certainly bounded below by c, it follows thatmax(f)=E(f) � 1 + 4m=3 � 7m=3.Case II: �Vij � 1 for all i; j . To estimate E(f) within ratio 1 + � it is enough, since cis positive, to estimate E(g) = E(f) � c within ratio 1 + �. For simplicity, we shall, in29



the sequel, work with g instead of f . Using the bounds 1=2 < x=sinhx < 1, valid for xin the range 0 < x � 2, we have 1=2� < 2Vij=sinh 2�Vij < 1=� , implying1=2� < g(X) < m=�; for X 6= ?: (35)Let C 6= ? be a closed subgraph which maximises w(C). Note that C is necessarily acycle, and can be found in polynomial time using a standard shortest paths algorithm.There are two subcases, depending on the magnitude of w(C).Case IIa: w(C) � 1=32nm2 . In this subcase we may estimate E(g) by direct experi-ment. Since Z 0 � w(?) + w(C) = 1 + w(C), it follows thatPr(X = ?) = w(?)Z 0 = 1Z 0 � (1 + w(C))�1 � 1� 164nm2 :Combining this inequality with inequality (35), we obtain E(g) > (1=2�) Pr(X 6= ?) �1=128�nm2 . Then a further application of inequality (35) yields the required bound:max(g)=E(g) � 128nm3 .Case IIb: w(C) < 1=32nm2 . The essential problem in this case is that we have no lowerbound on the expectation of g . The solution is to increase the expectation arti�cially,by adjusting the weight function w . Naturally, a new weight function induces a newprobability distribution on con�gurations, which in turn alters the expectation of g . It istherefore important to adjust the weights systematically, so that it is possible to recoverthe expectation of g with respect to the original distribution from the knowledge of theexpectation of g with respect to the new distribution.The new weight function w� is parameterised by a real number � in the range 0 � � � 1.We de�ne adjusted edge weights �(�)ij = �1��ij which induce a new weight function w� :w�(X) = Yfi;jg2X �(�)ij = Yfi;jg2X �1��ij = w(X)1��:Note that the original weight function corresponds to setting � = 0, i.e., w(X) = w0(X).Note also that 0 < �(�)ij � 1, so the new edge weights �(�)ij correspond to a well de�nedsubgraphs-world process; as a consequence, it is possible to sample con�gurations accord-ing to the distribution which assigns probability w�(X)=Z 0� to con�guration X , whereZ 0� = PX w�(X). Let E�(�) denote the expectation operator with respect to the newdistribution, i.e., E�(h) = (Z 0�)�1PX w�(X)h(X).Now �x � so that w�(C) = 1=32nm2 ; the required value of � is the solution to theequation w(C)1�� = 1=32nm2 , and lies in the range 0 < � < 1. For any X 6= ?,maximality of C implies w(C) � w(X), which in turn implies w�(C) = w(C)1�� �w(X)1�� = w�(X); thus C remains a maximum weight non-trivial con�guration under30



the new weight function w� . Now the quantity we wish to evaluate, namely E(g), canbe written as an expectation with respect to the new distribution:E(g) = 1Z 0 XX w(X)g(X) = 1Z 0 XX w�(X)w(X)�g(X)= Z 0�Z 0 E�(w(X)�g(X)): (36)Since Z 0 and Z 0� can be computed by the fpras of Section 3, we merely have to showthat E�(w(X)�g(X)) can be approximated in polynomial time. As before, this can beachieved by bounding the ratio of the maximum to the mean.By maximality of C and inequality (35),maxX (w(X)�g(X)) � w(C)� m� :Also, by Lemma 11 and inequality (35),E�(w(X)�g(X)) � w�(C)Z 0� (w(C)�g(C))� 132nm3 w(C)�2� = w(C)�64�nm3 :Putting these inequalities together, we obtainmax(w(X)�g(X))E�(w(X)�g(X)) � 64nm4:This completes the analysis of Case IIb.It is this �nal case which determines the execution time of the proposed fpras for �E .Consider the cost of evaluating the three factors appearing in (36), within ratio 1 + �=4and with failure probability 1=16. From Section 3, O(��2m3n11 log n) time su�ces toobtain satisfactory estimates for the factors Z 0 and Z 0� . Setting � = �=4 and � = 1=16in Lemma 3, we see that O(��2nm4) samples from the generator su�ce to evaluate theremaining factor, E�(w(X)�g(X)), within ratio 1 + �=4 and with failure probability1=16. By Theorem 10, the generation of each sample requires expected time O(m3n8).(As before, we are justi�ed in assuming that � � 2�m .) Thus the expected time requiredto obtain a su�ciently accurate estimate of E�(w(X)�g(X)) is O(��2m7n9); it can be seenthat this term dominates those which arise in the other steps of the algorithm. Now set ade�nite upper bound on the aggregated execution time of the generator which is 16 timesthe expected execution time. By this means the quoted average case time-complexityis converted into a worst case time complexity, at the cost of introducing an additionalfailure probability of 1=16. This additional failure probability may be absorbed into theoverall failure probability of 1=4 which the de�nition of fpras allows.31



Finally, we sketch the modi�cations required to handle the case of non-zero external�eld, i.e., B > 0. Starting with the general subgraphs-world expansion for Z , anddi�erentiating lnZ with respect to � , the mean energy �E can again be expressed asthe expectation of an appropriately de�ned random variable f(X). Naturally, the formof f is now more complex. Lemma 11 continues to hold, but with 1=64n2m2 replacing1=32nm2 as the upper bound on w(X). The proof of Lemma 11 increases in technicalcomplexity, but the main idea remains as before. The complications arise from the factthat the maximum weight non-trivial subgraph may be either a cycle (as before) or asingle edge (previously excluded). The case analysis in the proof of the theorem proceedsas before, but the upper bound on overall execution time rises to O(��2m7n10).In this section, we have presented fully polynomial randomised approximation schemesfor the �rst derivatives of lnZ with respect to � and B . The second derivatives of lnZalso have physical signi�cance: C = k�2 @2(lnZ)=@�2 is the speci�c heat, and X =��1 @2(lnZ)=@B2 the magnetic susceptibility. (Here, k denotes Boltzmann's constant.)It is natural to ask whether the techniques presented in this section can be extendedto these quantities. With a certain amount of computational e�ort, it is possible toexpress C and X as expectations of appropriate random variables in the subgraphs-world. Unfortunately, however, these random variables are not necessarily positive, andthe proof techniques of Theorems 9 and 12 are therefore not applicable. At present, thequestion of the existence of an fpras for C and X remains open.We close the section by presenting proofs of the technical lemmas.Proof of Lemma 8 We demonstrate, by a simple mapping argument, thatPr(jodd(X)j = 2) � �2 Pr(jodd(X)j = 0): (37)Let 
k denote the set fX 2 
 : jodd(X)j = 2kg. Associate with each con�gura-tion X 2 
0 the set S(X) = fX 0 2 
 : jX 0 � Xj = 1g � 
1 . It is straightfor-ward to verify that the the subsets fS(X) : X 2 
0g are pairwise disjoint, and thatPX 02S(X)w(X 0) � w(X)�2 for all X 2 
0 . (For X = ? we need the conditionP�ij � 1.) Thus PX2
1 w(X) � �2PX2
0 w(X), and inequality (37) follows by di-viding through by Z 0 .It follows from inequality (37) that Pr(jodd(X)j > 0) � �2=(1 + �2) � �2=2; this dealswith the �rst part of the lemma. Furthermore, Lemma 4 assures us that Pr(jodd(X)j =0) � 1=10 whenever � � n�1 . Combining this observation with inequality (37) yieldsthe second part of the lemma. 32



Proof of Lemma 11 Since B = 0, it is only the closed subgraphs X � E whichhave non-zero weight: w(X) = Qfi;jg2X �ij . Let X0 , X1 , X2; : : : , Xs�1 be an enumer-ation of the closed subgraphs of E in order of non-increasing weight; thus X0 = ?,w(X0) = 1, and w(X1) � 1=32nm2 . For each edge e = fi; jg 2 E de�ne l(e), thelength of e, to be � ln�ij . Extend the length function to subsets of E by summation,so that l(X) = � lnw(X). (Clearly, these \lengths" are merely weights which com-bine additively rather than multiplicatively. Even so, they will prove to be a convenientnotational and conceptual aid.)De�ne L = l(X1) = � lnw(X1). Let C = (e1; e2; � � � ; er) be any circuit in E ; here,each ei = fvi�1; vig is an edge, and vr = v0 . De�ne d0 = 0, and dk = Pki=1 l(ei) for1 � k � r . Call a directed edge ek = (vk�1; vk) of C a pier if there exists an integer hwith dk�1 < hL=2 � dk . We make two observations about piers. First, the circuit C iscompletely determined by the start vertex v0 and the set of all piers. This is because thetotal length of edges in C which form a span between two consecutive piers is strictlyless than L=2. Thus, the existence of two distinct spans between consecutive piers wouldimply the existence of a circuit of length less than L, and hence of a non-trivial closedsubgraph of weight greater than e�L = w(X1); this would contradict the assumption thatX1 is maximal. Second, the total number of piers in C is at most 2dr=L = 2l(C)=L.Intuitively, the role of piers is to provide a compact encoding of circuits.Now suppose � � 0, and let X � E be a general closed subgraph with l(X) � �L.Decompose X into its connected components; each of these components is Eulerian andhence can be regarded as a circuit with speci�ed start vertex. Encode each componentof X as a sequence consisting of the start vertex of the circuit followed by the piersof the circuit in sequence. Encode X itself by concatenating the codes for the variouscomponents; note that X is completely determined by the code so formed. Since eachconnected component of X has length at least L, the total number of vertices in the code(which is equal to the number of components) is at most l(X)=L = �. Furthermore, thetotal number of directed edges in the code (which is the total number of piers) is at most2l(X)=L = 2�. These observations yield an upper bound on the number of distinct codesfor closed X with l(X) � �L. The number of ways of selecting a sequence of at most� distinct vertices is bounded by n� ; that of selecting a sequence of at most 2� distinctdirected edges by (2m)2� ; that of interleaving the vertex and edge sequences by 23� .Thus the number of distinct codes, and hence the number of closed X with l(X) � �L,is bounded above by (32nm2)� .Now consider the subsequence X0 , X1; : : : , Xk�1 , consisting of the k closed subgraphs ofgreatest weight (i.e., shortest length), and let � = l(Xk�1)=L. Then the coding argumentimplies (32nm2)� � k . On the other hand, from the de�nition of �, and using the bound33



on w(X1) guaranteed in the statement of the lemma,(32nm2)� � 1w(X1)� = 1w(Xk�1) :Combining these two inequalities we obtain w(Xk�1) � k�1 , and henceZ 0 = sXk=1w(Xk�1) � sXk=1 1k � 2mXk=1 1k :By a well known asymptotic result [21, p. 74], the latter sum is bounded by m for allsu�ciently large m; indeed it is enough that m � 3. The lemma holds trivially form < 3.6 Completeness ResultsIn this paper we have restricted our attention to the ferromagnetic case of the Isingmodel; moreover we have contented ourselves with solutions which are approximate only.The results of this section aim to justify these apparently limited goals. Since we areconcerned here with negative results, it will be an advantage to work with a simpli�edversion of the Ising problem.Instance: A symmetric matrix (Vij : i; j 2 [n]) with entries in f�1; 0;+1g, anda natural number, � , presented in unary notation.Output: The partition function Z = Z(Vij ; �) = P� 2��H(�) , where H(�) =�Pfi;jg2E Vij�i�j , and the sum is over � 2 f�1;+1gn . (As usual, E is the setof pairs fi; jg with Vij 6= 0.)We refer to the problem in this form as Ising. The main points to note are that theexternal �eld is zero, and that powers of e have been replaced by powers of 2. The lattermodi�cation merely amounts to a scaling of � , and is made to avoid problems which wouldarise from the introduction of real arithmetic. The restrictions imposed on the variousquantities appearing in an instance of Ising ensure that the output is a rational numberwhose numerator is a binary integer with a polynomially bounded number of digits, andwhose denominator is a certain power of two. The output can thus be considered as a�xed-point binary number with an explicit \binary point". Adopting this viewpoint, it isnot di�cult to locate Ising within the class #P of combinatorial enumeration problems.(See Garey and Johnson's book [12, p. 167] for an explanation of #P and its completenessclass.)The two problems which form the starting point for the intractability results of thissection are MaxCut: 34



Instance: An undirected graph G and a positive integer b.Question: Is there a cut-set in G of size b? I.e., is there a partition of thevertex set of G into two subsets such that the number of edges which span thetwo subsets is at least b?and the related #MaxCut:Instance: An undirected graph G.Output: The number of cut-sets in G of maximum size.The following is a slight extension of a known result.Lemma 13 MaxCut is NP-complete, and #MaxCut is #P-complete.Proof NP-completeness of MaxCut is proved in [13]. The reductions used there arenot \parsimonious" [12, p. 169], and hence do not immediately imply #P-completenessof #MaxCut. As usual, however, the reductions (given in the proofs of Theorems 1.1and 1.2 of that paper) can be modi�ed, without great di�culty, to yield parsimoniousversions. For those who wish to follow the argument in detail, the necessary modi�cationsare presented below.In [13, Theorem 1.1], new variables fei : 1 � i � mg should be introduced, and thede�nition of the clause set S 0 amended to readS0 = m[i=1n(di _ :ei);(ai); (bi); (ci); (di); (ei);(ai _ bi); (ai _ ci); : : : ; (di _ ei);(:ai _ :bi); (:ai _ :ci); : : : ; (:di _ :ei)o;where each ellipsis stands for seven omitted disjuctions. Note that there are 26 clausesin S0 arising from the ith clause, (ai _ bi _ ci), of S . If the ith clause of S is satis�ed,then there is precisely one way to choose truth values for the variables di and ei sothat 20 of these 26 clauses of S 0 are satis�ed. Conversely, if the ith clause of S is notsatis�ed then, however di and ei are chosen, at most 19 of the 26 clauses can be satis�ed.Thus, setting k = 20m, the original proof goes through. Note that the reduction is nowparsimonious.In [13, Theorem 1.2], duplicate clauses should be removed by replacing each clause C 0i =(ui _ vi) by the seven clauses(ui _ :ci); (:ui _ ci); (ui _ :di); (:ui _ di); (ci _ :di); (:ci _ di), and (ci _ vi);35



where ci and di are new variables. For a given assignment to ui and vi , one must setci = di = ui in order to maximise the total number of satis�ed clauses within theseseven. Now, if C 0i is satis�ed then all seven clauses may be satis�ed; however, if C 0i isnot satis�ed then at most six of the clauses may be satis�ed. The existing proof goesthrough with k set to k0 + 6q . Again, the modi�ed reduction is parsimonious.The �rst theorem of the section presents evidence that our restriction to the ferro-magnetic case of the Ising model cannot be relaxed.Theorem 14 There can be no fpras for Ising unless RP = NP.RP is the class of decision problems which can be solved in polynomial time by acertain type of randomised algorithm which is allowed one-sided errors. (See [2, p. 138]for a precise de�nition.) It is widely conjectured that RP is strictly contained in NP. ThusTheorem 14 can be interpreted as strong evidence that no approximation algorithm existsfor the Ising partition function in the non-ferromagnetic, or \spin-glass" case. Indeed,the existence of such an algorithm would imply, by virtue of Theorem 14, the existenceof e�cient randomised algorithms for such hard problems as testing satis�ability of aBoolean formula and the Travelling Salesman Problem.Proof of Theorem 14 Let G = ([n]; E) be a graph and b a positive integer de�ning aninstance of MaxCut. Construct an instance of Ising by setting � = n, and Vij = �1when fi; jg 2 E . (As usual, Vij = 0 when fi; jg =2 E .) Each spin-vector � partitions[n] into two subsets, and hence de�nes a cut-set of G: cut(�) = ffi; jg 2 E : �i�j =�1g. Note that H(�) = m � 2jcut(�)j, where m = jEj. Let Nk denote the numberof spin-vectors � for which jcut(�)j = k . Then the simpli�ed partition function can bere-expressed as Z = Pmk=0Nk2�(2k�m) .Note that if a cut-set of size b exists in G then Z � 2�(2b�m) = 2n(2b�m) ; in contrast,if no such cut-set exists, Z � 2n2�(2b�2�m) = 2�n2n(2b�m) . Now the existence of anfpras for Ising would imply that these two cases could be distinguished in polynomialtime, with failure probability at most 14 ; in other words, MaxCut 2 BPP. From this itwould follow|since MaxCut is NP-complete and BPP is closed under polynomial timereductions|that NP � BPP. However, the inclusion NP � BPP entails RP = NP [22].Our �nal theorem states that Ising is a complete problem for the class #P. Thusa polynomial time algorithm which solved it exactly would yield similar algorithms fora range of presumably intractable problems, such as counting the number of satisfyingassignments of a Boolean formula and counting optimal Travelling Salesman tours. We36



should therefore not be too disappointed that we have obtained only approximation al-gorithms for the Ising problem.Theorem 15 Ising is #P-complete even when the matrix Vij is non-negative (i.e., evenin the ferromagnetic case).Proof We present an easy polynomial-time (Turing) reduction from #MaxCut. LetG = ([n]; E) be an instance of #MaxCut. Set Vij = +1 when fi; jg 2 E , andVij = 0 otherwise. Note that H(�) = 2jcut(�)j � m. With Nk as before we haveZ = Pmk=0Nk2�(m�2k) = 2�mp(4��), where p(x) = PkNkxk is a polynomial of de-gree m. Suppose that the value of p is known at the points � = 0; 1; : : : ;m, i.e, atx = 1; 4�1; 4�2; : : : ; 4�m . Then the coe�cients of p can be recovered in polynomial timefrom these values by interpolation. Using Newton's formula, this process can be carriedout using only rational arithmetic; moreover, the lengths of the numerators and denomi-nators all remain polynomially bounded. The leading (non-zero) coe�cient of p is twicethe number of maximum cut-sets in G. (Note that each bipartition of [n] corresponds toa pair of opposite spin-vectors.)Further completeness results related to the ones in this section can be found in [3, 15].References[1] Alon, N., Eigenvalues and expanders, Combinatorica 6 (1986), pp. 83{96.[2] Balc�azar, J. L., D��az, J. and Gabarr�o, J., Structural Complexity, Volume I, Springer-Verlag, Berlin, 1988.[3] Barahona, F., On the computational complexity of Ising spin glass models, Journalof Physics A: Mathematical & General 15 (1982), pp. 3241{3253.[4] Binder, K., Monte Carlo investigations of phase transitions and critical phenomena,in Phase Transitions and Critical Phenomena, Volume 5b (C. Domb and M. S. Greeneds.), Academic Press, London, 1976, pp. 1{105.[5] Cheeger, J., A lower bound for the smallest eigenvalue of the Laplacian, In Problemsin Analysis (R. C. Gunning ed.), Princeton University Press, New Jersey, 1970,pp. 195{199.[6] Cipra, B., An introduction to the Ising model, American Mathematical Monthly 94(1987), pp. 937{959.[7] Diaconis, P., and Stroock, D., Geometric bounds for eigenvalues of Markov chains,Annals of Applied Probability 1 (1991), pp. 36{61.37
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