Algorithms for Infinitely Many-Armed Bandit (Supplementary file)

Yizao Wang
INRIA Futurs Lille, SequeL project,
40 avenue Halley, 59650 Villeneuve d'Ascq, France
yizwang@umich.edu
Jean-Yves Audibert
Université Paris Est, Ecole des Ponts, ParisTech, Certis
\& Willow - ENS / INRIA, Paris, France
audibert@certis.enpc.fr
Rémi Munos
INRIA Futurs Lille, SequeL project,
40 avenue Halley, 59650 Villeneuve d'Ascq, France
remi.munos@inria.fr

Theorem 3 Any algorithm suffers a regret larger than $c n^{\frac{\beta}{1+\beta}}$ for some small enough constant c depending on c_{2} and β.

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite sequence I_{1}, I_{2}, \ldots of arms and by the infinite sequences of rewards corresponding to each of the arm: $X_{I_{1}, 1}, X_{I_{1}, 2}, \ldots, X_{I_{2}, 1}, X_{I_{2}, 1}, \ldots$, and so on. Arm I_{1} is the first arm drawn, $I_{2} \neq I_{1}$ is the second one, and so on. Let $0<\delta<\delta^{\prime}<\mu^{*}$. Let K^{*} denote the smallest ℓ such that $\mu_{I_{\ell}}>\mu^{*}-\delta$. Let \bar{K} be the number of arms in $\left\{I_{1}, \ldots, I_{K^{*}-1}\right\}$ with expected reward smaller than or equal to $\mu^{*}-\delta^{\prime}$. An algorithm will request a number of arms K, which is a random variable (possibly depending on the obtained rewards). Let $\hat{\mu}$ be the expected reward of the best arm in $\left\{I_{1}, \ldots, I_{K}\right\}$. Let $\kappa>0$ a parameter to be chosen. We have

$$
\begin{aligned}
R_{n} & =R_{n} \mathbf{1}_{\hat{\mu} \leq \mu^{*}-\delta}+R_{n} \mathbf{1}_{\hat{\mu}>\mu^{*}-\delta} \\
& \geq n \delta \mathbf{1}_{\hat{\mu} \leq \mu^{*}-\delta}+\bar{K} \delta^{\prime} \mathbf{1}_{\hat{\mu}>\mu^{*}-\delta} \\
& \geq n \delta \mathbf{1}_{\hat{\mu} \leq \mu^{*}-\delta}+\kappa \delta^{\prime} \mathbf{1}_{\hat{\mu}>\mu^{*}-\delta ; \bar{K} \geq \kappa},
\end{aligned}
$$

where the first inequality uses that $\hat{\mu}>\mu^{*}-\delta$ implies that the arms $I_{1}, \ldots, I_{K^{*}}$ have been at least tried once. By taking expectations on both sides and taking $\kappa=n \delta / \delta^{\prime}$, we get

$$
\mathbb{E} R_{n} \geq n \delta \mathbb{P}\left(\hat{\mu} \leq \mu^{*}-\delta\right)+\kappa \delta^{\prime}\left(\mathbb{P}\left(\hat{\mu}>\mu^{*}-\delta\right)-\mathbb{P}(\bar{K}<\kappa)\right)=\delta^{\prime} \kappa \mathbb{P}(\bar{K} \geq \kappa)
$$

Now the random variable \bar{K} follows a geometric distribution with parameter $p=\frac{\mathbb{P}\left(\mu>\mu^{*}-\delta\right)}{\mathbb{P}\left(\mu \notin\left(\mu^{*}-\delta^{\prime}, \mu^{*}-\delta\right]\right)}$. So we have $\mathbb{E} R_{n} \geq \delta^{\prime} \kappa(1-p)^{\kappa}$. Taking $\delta=\delta^{\prime} n^{-1 /(\beta+1)}$ and δ^{\prime} a constant value in ($0, \mu^{*}$) (for instance $\left(2 c_{2}\right)^{-1 / \beta}$ to ensure $p \leq 2 c_{2} \delta^{\beta}$, we have $\kappa=n^{\frac{\beta}{1+\beta}}$ and p is of order $1 / \kappa$ and obtain the desired result.

Theorem 4 For any horizon time $n \geq 2$, the expected regret of the UCB-AIR algorithm satisfies

$$
\mathbb{E} R_{n} \leq \begin{cases}C(\log n)^{2} \sqrt{n} & \text { if } \beta<1 \text { and } \mu^{*}<1 \tag{1}\\ C(\log n)^{2} n^{\frac{\beta}{1+\beta}} & \text { otherwise, i.e. if } \mu^{*}=1 \text { or } \beta \geq 1\end{cases}
$$

with C a constant depending only on c_{1}, c_{2} and β.

Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recall that K_{n} denote the number of arms played up to time n. Let $I_{1}, \ldots, I_{K_{n}}$ denote the selected arms: I_{1} is the first arm drawn, I_{2} the second, and so on. Let S_{k} denote the time arm k being played for the first time. $1=S_{I_{1}}<S_{I_{2}}<\cdots<S_{I_{K_{n}}}$. Since arms $I_{1}, \ldots, I_{K_{n}}$ progressively enter in competition, Lemma 1 no longer holds but an easy adaptation of its proof shows that for $k \in\left\{I_{1}, \ldots, I_{K_{n}}\right\}$,

$$
\begin{equation*}
\mathbb{E}\left(T_{k}(n) \mid I_{1}, \ldots, I_{K_{n}}\right) \leq u+\sum_{t=u+1}^{n} \sum_{s=u}^{t} \mathbb{P}\left(B_{k, s, t}>\tau\right)+\Omega_{k} \tag{2}
\end{equation*}
$$

with

$$
\Omega_{k}=\sum_{t=u+1}^{n} \prod_{k^{\prime} \neq k, S_{k^{\prime}} \leq t} \mathbb{P}\left(\exists s^{\prime} \in[0, t], B_{k^{\prime}, s^{\prime}, t} \leq \tau\right)
$$

As in the proof of Theorem 1, since the exploration sequence satisfies $\mathcal{E}_{t} \geq 2 \log (10 \log t)$, we have $\mathbb{P}\left(\exists s^{\prime} \in[0, t], B_{k^{\prime}, s^{\prime}, t} \leq \tau\right) \leq 1 / 2$ for arms k^{\prime} such that $\mu_{k^{\prime}} \geq \tau$. Consequently, letting $N_{\tau, k, t}$ denote the cardinal of the set $\left\{k^{\prime}: k^{\prime} \neq k, \mu_{k^{\prime}} \geq \tau, S_{k^{\prime}} \leq t\right\}$, we have

$$
\Omega_{k} \leq \sum_{t=1}^{n} 2^{-N_{\tau, k, t}}
$$

Let us first consider the case $\mu^{*}=1$ or $\beta \geq 1$. In the case of UCB-AIR, $S_{I_{j}}$ is the smallest integer strictly larger than $(j-1)^{(\beta+1) / \beta}$. To shorten notation, let us write S_{j} for $S_{I_{j}}$. According to the arm-increasing rule (try a new arm if $K_{t-1}<t^{\beta /(\beta+1)}$), $\left[S_{j}, S_{j+1}\right.$) is the time interval in which the competing arms are $I_{1}, I_{2}, \ldots, I_{j}$.
As in the proof of Theorem 1, we consider $\tau=\mu^{*}-\Delta_{k} / 2$. We have

$$
\begin{align*}
\mathbb{E}\left(\Omega_{I_{\ell}} \mid I_{\ell}=k\right) & \leq \sum_{j=1}^{K_{n}} \sum_{t=S_{j}}^{S_{j+1}-1} \mathbb{E}\left(2^{-N_{\tau, k, S_{j}}} I_{\ell}=k\right) \\
& =\sum_{j=1}^{K_{n}}\left(S_{j+1}-S_{j}\right) \mathbb{E}\left(2^{-N_{\tau, k, S_{j}}} \mid I_{\ell}=k\right) \tag{3}\\
& \leq \sum_{j=1}^{K_{n}}\left(S_{j+1}-S_{j}\right) \mathbb{E}\left(2^{-N_{\tau, \infty, S_{j-1}}}\right) .
\end{align*}
$$

Since $N_{\tau, \infty, S_{j-1}}$ follows a binomial distribution with parameter $j-1$ and $\mathbb{P}(\mu \geq \tau)$, we have

$$
\mathbb{E}\left(2^{-N_{\tau, \infty, S_{j-1}}}\right)=(1-\mathbb{P}(\mu \geq \tau) / 2)^{j-1}
$$

and

$$
\begin{align*}
\sum_{j=1}^{K_{n}}\left(S_{j+1}-S_{j}\right) \mathbb{E}\left(2^{-N_{\tau, \infty, S_{j-1}}}\right) & =\sum_{j=1}^{K_{n}}\left(S_{j+1}-S_{j}\right)(1-\mathbb{P}(\mu \geq \tau) / 2)^{j-1} \tag{4}\\
& \leq \sum_{j=1}^{K_{n}}\left(1+\frac{\beta+1}{\beta} j^{\frac{1}{\beta}}\right)\left(1-\tilde{c}\left[2\left(\mu^{*}-\tau\right)\right]^{\beta}\right)^{j-1}
\end{align*}
$$

where $\tilde{c}=c_{1} 2^{-1-\beta}$. Plugging (4) into (3), we obtain

$$
\mathbb{E}\left(\Delta_{I_{\ell}} \Omega_{I_{\ell}}\right) \leq \frac{2 \beta+1}{\beta} \sum_{j=1}^{K_{n}} j^{\frac{1}{\beta}} \mathbb{E}\left(\Delta_{I_{\ell}}\left[1-\tilde{c} \Delta_{I_{\ell}}^{\beta}\right]^{j-1}\right)
$$

Now this last expectation can be bounded by the same computations as for $\mathbb{E} \chi\left(\Delta_{1}\right)$ in the proof of Theorem 1. We have, for appropriate positive constants C_{1} and C_{2} depending on c_{1} and β,

$$
\begin{equation*}
\mathbb{E}\left(\Delta_{I_{\ell}} \Omega_{I_{\ell}}\right) \leq C_{1} \sum_{j=1}^{K_{n}} j^{\frac{1}{\beta}} j^{-\frac{1}{\beta}} \frac{\log j}{j} \leq C_{2}\left(\log K_{n}\right)^{2} \tag{5}
\end{equation*}
$$

Using (2) and $\mathbb{E} R_{n}=\sum_{\ell=1}^{K_{n}} \mathbb{E}\left(\Delta_{I_{\ell}} \Omega_{I_{\ell}}\right)$, we obtain

$$
\begin{equation*}
\mathbb{E} R_{n} \leq K_{n} \mathbb{E}\left\{\left[50\left(\frac{V\left(\Delta_{1}\right)}{\Delta_{1}}+1\right) \log n\right] \wedge\left(n \Delta_{1}\right)+C_{2}\left(\log K_{n}\right)^{2}\right\} \tag{6}
\end{equation*}
$$

from which Theorem 4 follows for the case $\mu^{*}=1$ or $\beta \geq 1$. For the case $\beta<1$ and $\mu^{*}<1$, replacing $\frac{\beta}{\beta+1}$ by $\frac{\beta}{2}$ leads to a similar version of (5) as

$$
\mathbb{E}\left(\Delta_{I_{\ell}} \Omega_{I_{\ell}}\right) \leq C_{1} \sum_{j=1}^{K_{n}} j^{\frac{2}{\beta}-1} j^{-\frac{1}{\beta}} \frac{\log j}{j} \leq C_{2}\left(\log K_{n}\right) K_{n}^{\frac{1-\beta}{\beta}}
$$

which gives the desired convergence rate since K_{n} is of order $n^{\beta / 2}$.

