Algorithms for Infinitely Many-Armed Bandit (Supplementary file)

Yizao Wang

INRIA Futurs Lille, SequeL project, 40 avenue Halley, 59650 Villeneuve d'Ascq, France yizwang@umich.edu

Jean-Yves Audibert

Université Paris Est, Ecole des Ponts, ParisTech, Certis & Willow - ENS / INRIA, Paris, France audibert@certis.enpc.fr

Rémi Munos

INRIA Futurs Lille, SequeL project, 40 avenue Halley, 59650 Villeneuve d'Ascq, France remi.munos@inria.fr

Theorem 3 Any algorithm suffers a regret larger than $cn^{\frac{\beta}{1+\beta}}$ for some small enough constant c depending on c_2 and β .

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite sequence I_1, I_2, \ldots of arms and by the infinite sequences of rewards corresponding to each of the arm: $X_{I_1,1}, X_{I_1,2}, \ldots, X_{I_2,1}, X_{I_2,1}, \ldots$, and so on. Arm I_1 is the first arm drawn, $I_2 \neq I_1$ is the second one, and so on. Let $0 < \delta < \delta' < \mu^*$. Let K denote the smallest ℓ such that $\mu_{I_\ell} > \mu^* - \delta$. Let K be the number of arms in $\{I_1, \ldots, I_{K^*-1}\}$ with expected reward smaller than or equal to $\mu^* - \delta'$. An algorithm will request a number of arms K, which is a random variable (possibly depending on the obtained rewards). Let $\hat{\mu}$ be the expected reward of the best arm in $\{I_1, \ldots, I_K\}$. Let $\kappa > 0$ a parameter to be chosen. We have

$$\begin{array}{rcl} R_n & = & R_n \mathbf{1}_{\hat{\mu} \leq \mu^* - \delta} + R_n \mathbf{1}_{\hat{\mu} > \mu^* - \delta} \\ & \geq & n \delta \mathbf{1}_{\hat{\mu} \leq \mu^* - \delta} + \bar{K} \delta' \mathbf{1}_{\hat{\mu} > \mu^* - \delta} \\ & \geq & n \delta \mathbf{1}_{\hat{\mu} \leq \mu^* - \delta} + \kappa \delta' \mathbf{1}_{\hat{\mu} > \mu^* - \delta; \bar{K} \geq \kappa}, \end{array}$$

where the first inequality uses that $\hat{\mu} > \mu^* - \delta$ implies that the arms I_1, \dots, I_{K^*} have been at least tried once. By taking expectations on both sides and taking $\kappa = n\delta/\delta'$, we get

$$\mathbb{E}R_n \ge n\delta \mathbb{P}(\hat{\mu} \le \mu^* - \delta) + \kappa \delta' \big(\mathbb{P}(\hat{\mu} > \mu^* - \delta) - \mathbb{P}(\bar{K} < \kappa) \big) = \delta' \kappa \mathbb{P}(\bar{K} \ge \kappa).$$

Now the random variable \bar{K} follows a geometric distribution with parameter $p=\frac{\mathbb{P}(\mu>\mu^*-\delta)}{\mathbb{P}(\mu\notin(\mu^*-\delta',\mu^*-\delta])}$. So we have $\mathbb{E}R_n\geq \delta'\kappa(1-p)^\kappa$. Taking $\delta=\delta'n^{-1/(\beta+1)}$ and δ' a constant value in $(0,\mu^*)$ (for instance $(2c_2)^{-1/\beta}$ to ensure $p\leq 2c_2\delta^\beta$), we have $\kappa=n^{\frac{\beta}{1+\beta}}$ and p is of order $1/\kappa$ and obtain the desired result.

Theorem 4 For any horizon time $n \ge 2$, the expected regret of the UCB-AIR algorithm satisfies

$$\mathbb{E}R_n \le \begin{cases} C(\log n)^2 \sqrt{n} & \text{if } \beta < 1 \text{ and } \mu^* < 1\\ C(\log n)^2 n^{\frac{\beta}{1+\beta}} & \text{otherwise, i.e. if } \mu^* = 1 \text{ or } \beta \ge 1 \end{cases}$$
 (1)

with C a constant depending only on c_1 , c_2 and β .

Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recall that K_n denote the number of arms played up to time n. Let I_1, \ldots, I_{K_n} denote the selected arms: I_1 is the first arm drawn, I_2 the second, and so on. Let S_k denote the time arm k being played for the first time. $1 = S_{I_1} < S_{I_2} < \cdots < S_{I_{K_n}}$. Since arms I_1, \ldots, I_{K_n} progressively enter in competition, Lemma 1 no longer holds but an easy adaptation of its proof shows that for $k \in \{I_1, \ldots, I_{K_n}\}$,

$$\mathbb{E}(T_k(n)|I_1,\dots,I_{K_n}) \le u + \sum_{t=u+1}^n \sum_{s=u}^t \mathbb{P}(B_{k,s,t} > \tau) + \Omega_k$$
(2)

with

$$\Omega_k = \sum_{t=u+1}^n \prod_{k' \neq k, S_{k'} < t} \mathbb{P}(\exists s' \in [0, t], \ B_{k', s', t} \le \tau).$$

As in the proof of Theorem 1, since the exploration sequence satisfies $\mathcal{E}_t \geq 2\log(10\log t)$, we have $\mathbb{P}(\exists s' \in [0,t], \ B_{k',s',t} \leq \tau) \leq 1/2$ for arms k' such that $\mu_{k'} \geq \tau$. Consequently, letting $N_{\tau,k,t}$ denote the cardinal of the set $\{k' : k' \neq k, \mu_{k'} \geq \tau, S_{k'} \leq t\}$, we have

$$\Omega_k \leq \sum_{t=1}^n 2^{-N_{\tau,k,t}}.$$

Let us first consider the case $\mu^*=1$ or $\beta\geq 1$. In the case of UCB-AIR, S_{I_j} is the smallest integer strictly larger than $(j-1)^{(\beta+1)/\beta}$. To shorten notation, let us write S_j for S_{I_j} . According to the arm-increasing rule (try a new arm if $K_{t-1}< t^{\beta/(\beta+1)}$), $[S_j,S_{j+1})$ is the time interval in which the competing arms are I_1,I_2,\ldots,I_j .

As in the proof of Theorem 1, we consider $\tau = \mu^* - \Delta_k/2$. We have

$$\mathbb{E}(\Omega_{I_{\ell}}|I_{\ell}=k) \leq \sum_{j=1}^{K_{n}} \sum_{t=S_{j}}^{S_{j+1}-1} \mathbb{E}\left(2^{-N_{\tau,k},S_{j}}|I_{\ell}=k\right) \\
= \sum_{j=1}^{K_{n}} (S_{j+1}-S_{j}) \mathbb{E}\left(2^{-N_{\tau,k},S_{j}}|I_{\ell}=k\right) \\
\leq \sum_{j=1}^{K_{n}} (S_{j+1}-S_{j}) \mathbb{E}\left(2^{-N_{\tau,\infty,S_{j-1}}}\right).$$
(3)

Since $N_{\tau,\infty,S_{i-1}}$ follows a binomial distribution with parameter j-1 and $\mathbb{P}(\mu \geq \tau)$, we have

$$\mathbb{E}\left(2^{-N_{\tau,\infty,S_{j-1}}}\right) = (1 - \mathbb{P}(\mu \ge \tau)/2)^{j-1},$$

and

$$\sum_{j=1}^{K_n} (S_{j+1} - S_j) \mathbb{E} \left(2^{-N_{\tau,\infty,S_{j-1}}} \right) = \sum_{j=1}^{K_n} \left(S_{j+1} - S_j \right) (1 - \mathbb{P}(\mu \ge \tau)/2)^{j-1} \\
\le \sum_{j=1}^{K_n} (1 + \frac{\beta+1}{\beta} j^{\frac{1}{\beta}}) (1 - \tilde{c}[2(\mu^* - \tau)]^{\beta})^{j-1}, \tag{4}$$

where $\tilde{c} = c_1 2^{-1-\beta}$. Plugging (4) into (3), we obtain

$$\mathbb{E}(\Delta_{I_{\ell}}\Omega_{I_{\ell}}) \leq \frac{2\beta+1}{\beta} \sum_{i=1}^{K_n} j^{\frac{1}{\beta}} \mathbb{E}(\Delta_{I_{\ell}} [1 - \tilde{c}\Delta_{I_{\ell}}^{\beta}]^{j-1}).$$

Now this last expectation can be bounded by the same computations as for $\mathbb{E}\chi(\Delta_1)$ in the proof of Theorem 1. We have, for appropriate positive constants C_1 and C_2 depending on c_1 and β ,

$$\mathbb{E}(\Delta_{I_{\ell}}\Omega_{I_{\ell}}) \le C_1 \sum_{j=1}^{K_n} j^{\frac{1}{\beta}} j^{-\frac{1}{\beta}} \frac{\log j}{i} \le C_2 (\log K_n)^2. \tag{5}$$

Using (2) and $\mathbb{E}R_n = \sum_{\ell=1}^{K_n} \mathbb{E}(\Delta_{I_\ell}\Omega_{I_\ell})$, we obtain

$$\mathbb{E}R_n \le K_n \mathbb{E}\left\{ \left[50 \left(\frac{V(\Delta_1)}{\Delta_1} + 1 \right) \log n \right] \wedge (n\Delta_1) + C_2(\log K_n)^2 \right\},\tag{6}$$

from which Theorem 4 follows for the case $\mu^*=1$ or $\beta\geq 1$. For the case $\beta<1$ and $\mu^*<1$, replacing $\frac{\beta}{\beta+1}$ by $\frac{\beta}{2}$ leads to a similar version of (5) as

$$\mathbb{E}(\Delta_{I_{\ell}}\Omega_{I_{\ell}}) \le C_1 \sum_{j=1}^{K_n} j^{\frac{2}{\beta}-1} j^{-\frac{1}{\beta}} \frac{\log j}{j} \le C_2(\log K_n) K_n^{\frac{1-\beta}{\beta}},$$

which gives the desired convergence rate since K_n is of order $n^{\beta/2}$.