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Theorem 3 Any algorithm suffers a regret larger than cn
β

1+β for some small enough constant c
depending on c2 and β.

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite
sequence I1, I2, . . . of arms and by the infinite sequences of rewards corresponding to each of the
arm: XI1,1, XI1,2, . . . , XI2,1, XI2,1, . . . , and so on. Arm I1 is the first arm drawn, I2 6= I1 is the
second one, and so on. Let 0 < δ < δ′ < µ∗. Let K∗ denote the smallest ` such that µI`

> µ∗ − δ.
Let K̄ be the number of arms in {I1, . . . , IK∗−1} with expected reward smaller than or equal to
µ∗ − δ′. An algorithm will request a number of arms K, which is a random variable (possibly
depending on the obtained rewards). Let µ̂ be the expected reward of the best arm in {I1, . . . , IK}.
Let κ > 0 a parameter to be chosen. We have

Rn = Rn1µ̂≤µ∗−δ + Rn1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + K̄δ′1µ̂>µ∗−δ

≥ nδ1µ̂≤µ∗−δ + κδ′1µ̂>µ∗−δ;K̄≥κ,

where the first inequality uses that µ̂ > µ∗ − δ implies that the arms I1, . . . , IK∗ have been at least
tried once. By taking expectations on both sides and taking κ = nδ/δ′, we get

ERn ≥ nδP(µ̂ ≤ µ∗ − δ) + κδ′
(
P(µ̂ > µ∗ − δ)− P(K̄ < κ)

)
= δ′κP(K̄ ≥ κ).

Now the random variable K̄ follows a geometric distribution with parameter p = P(µ>µ∗−δ)
P(µ/∈(µ∗−δ′,µ∗−δ]) .

So we have ERn ≥ δ′κ(1 − p)κ. Taking δ = δ′n−1/(β+1) and δ′ a constant value in (0, µ∗) (for
instance (2c2)−1/β to ensure p ≤ 2c2δ

β), we have κ = n
β

1+β and p is of order 1/κ and obtain the
desired result.

Theorem 4 For any horizon time n ≥ 2, the expected regret of the UCB-AIR algorithm satisfies

ERn ≤
{

C(log n)2
√

n if β < 1 and µ∗ < 1
C(log n)2n

β
1+β otherwise, i.e. if µ∗ = 1 or β ≥ 1

(1)

with C a constant depending only on c1, c2 and β.
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Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recall that Kn

denote the number of arms played up to time n. Let I1, . . . , IKn denote the selected arms: I1 is the
first arm drawn, I2 the second, and so on. Let Sk denote the time arm k being played for the first
time. 1 = SI1 < SI2 < · · · < SIKn

. Since arms I1, . . . , IKn progressively enter in competition,
Lemma 1 no longer holds but an easy adaptation of its proof shows that for k ∈ {I1, . . . , IKn

},

E(Tk(n)|I1, . . . , IKn) ≤ u +
∑n

t=u+1

∑t
s=u P

(
Bk,s,t > τ

)
+ Ωk (2)

with

Ωk =
n∑

t=u+1

∏

k′ 6=k ,Sk′≤t

P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ
)
.

As in the proof of Theorem 1, since the exploration sequence satisfies Et ≥ 2 log(10 log t), we have
P(∃s′ ∈ [0, t], Bk′,s′,t ≤ τ

) ≤ 1/2 for arms k′ such that µk′ ≥ τ . Consequently, letting Nτ,k,t

denote the cardinal of the set {k′ : k′ 6= k, µk′ ≥ τ, Sk′ ≤ t}, we have

Ωk ≤
∑n

t=1 2−Nτ,k,t .

Let us first consider the case µ∗ = 1 or β ≥ 1. In the case of UCB-AIR, SIj
is the smallest integer

strictly larger than (j − 1)(β+1)/β . To shorten notation, let us write Sj for SIj
. According to the

arm-increasing rule (try a new arm if Kt−1 < tβ/(β+1)), [Sj , Sj+1) is the time interval in which the
competing arms are I1, I2, . . . , Ij .

As in the proof of Theorem 1, we consider τ = µ∗ −∆k/2. We have

E(ΩI`
|I` = k) ≤ ∑Kn

j=1

∑Sj+1−1
t=Sj

E
(
2−Nτ,k,Sj |I` = k

)

=
∑Kn

j=1(Sj+1 − Sj)E
(
2−Nτ,k,Sj |I` = k

)

≤ ∑Kn

j=1(Sj+1 − Sj)E
(
2−Nτ,∞,Sj−1

)
.

(3)

Since Nτ,∞,Sj−1 follows a binomial distribution with parameter j − 1 and P(µ ≥ τ), we have

E
(
2−Nτ,∞,Sj−1

)
= (1− P(µ ≥ τ)/2)j−1,

and
∑Kn

j=1(Sj+1 − Sj)E
(
2−Nτ,∞,Sj−1

)
=

∑Kn

j=1

(
Sj+1 − Sj

)
(1− P(µ ≥ τ)/2)j−1

≤ ∑Kn

j=1(1 + β+1
β j

1
β )(1− c̃[2(µ∗ − τ)]β)j−1,

(4)

where c̃ = c12−1−β . Plugging (4) into (3), we obtain

E(∆I`
ΩI`

) ≤ 2β+1
β

∑Kn

j=1 j
1
βE

(
∆I`

[
1− c̃∆β

I`

]j−1)
.

Now this last expectation can be bounded by the same computations as for Eχ(∆1) in the proof of
Theorem 1. We have, for appropriate positive constants C1 and C2 depending on c1 and β,

E(∆I`
ΩI`

) ≤ C1

∑Kn

j=1 j
1
β j−

1
β log j

j ≤ C2(log Kn)2 . (5)

Using (2) and ERn =
∑Kn

`=1 E(∆I`
ΩI`

), we obtain

ERn ≤ KnE
{[

50
(

V (∆1)
∆1

+ 1
)

log n
]
∧ (n∆1) + C2(log Kn)2

}
, (6)

from which Theorem 4 follows for the case µ∗ = 1 or β ≥ 1. For the case β < 1 and µ∗ < 1,
replacing β

β+1 by β
2 leads to a similar version of (5) as

E(∆I`
ΩI`

) ≤ C1

∑Kn

j=1 j
2
β−1j−

1
β log j

j ≤ C2(log Kn)K
1−β

β
n ,

which gives the desired convergence rate since Kn is of order nβ/2.
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