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Theorem 3 Any algorithm suffers a regret larger than cnT5F for some small enough constant ¢
depending on ¢; and .

Proof of Theorem 3. An elementary event of the probability space is characterized by the infinite
sequence Iy, I5, ... of arms and by the infinite sequences of rewards corresponding to each of the
arm: X, 1,Xn 2,y X1,,1,X0,,15-- -, and so on. Arm [; is the first arm drawn, [, # I; is the
second one, and so on. Let 0 < § < ¢’ < p*. Let K* denote the smallest £ such that 17, > p* — 6.
Let K be the number of arms in {1y, ..., Ix+_1} with expected reward smaller than or equal to
u* — &', An algorithm will request a number of arms K, which is a random variable (possibly
depending on the obtained rewards). Let /i be the expected reward of the best arm in {I1, ..., [k }.
Let k > 0 a parameter to be chosen. We have

Ry = Rnlj<ur—s+ Bnlpsp-—s
> ndlp<pur—5 + K6'lyspu-—5
> n(s]_ﬂélu*_(;+I€5/1ﬂ>u*7(g;[{2m,
where the first inequality uses that i > p* — ¢ implies that the arms I5, . .., [~ have been at least

tried once. By taking expectations on both sides and taking k = nd/J’, we get
ER,, > ndP(p < p* — 6) + 68’ (P(i > p* — 6) — P(K < k)) = §'kP(K > k).

Now the random variable K follows a geometric distribution with parameter p = %'
So we have ER,, > §'k(1 — p)*. Taking § = §’n~*/(®+1) and ¢’ a constant value in (0, ;u*) (for

8
instance (202)’1/[3 to ensure p < 2¢20%), we have x = nT+7 and p is of order 1/x and obtain the
desired result.

Theorem 4 For any horizon time n > 2, the expected regret of the UCB-AIR algorithm satisfies

ER, < { C(logn)?y/n ifg<landp* <1

1
C(log n)Qn% otherwise, ie. if u* =lor 8 > 1 M

with C' a constant depending only on ¢, ¢3 and 3.



Proof of Theorem 4. We essentially need to adapt the proof of Theorem 1. We recall that K,
denote the number of arms played up to time n. Let Iy, ..., Ik, denote the selected arms: I; is the
first arm drawn, /5 the second, and so on. Let Si denote the time arm k being played for the first
time. 1 = Sy, < 81, < -+ < Spy, . Since arms Iy, ..., I, progressively enter in competition,
Lemma 1 no longer holds but an easy adaptation of its proof shows that for k € {I1,..., Ik, },

E(Te(n)| 1, ... Ik,) S u+ 3 i Do u P(Biysye > 7) + )
with .
Q) = Z H P(3s’ € [0,t], Br sy < 7).
t=u+1 g/ £k S, <t

As in the proof of Theorem 1, since the exploration sequence satisfies £ > 2log(101logt), we have
P(3s" € [0,t], Brrsrp < T) < 1/2 for arms £’ such that uy > 7. Consequently, letting Ny
denote the cardinal of the set {k’ : k' # k, pupr > 7, Sy < t}, we have

Qk < E?:l 2_N7,k,t .

Let us first consider the case p* = 1 or 3 > 1. In the case of UCB-AIR, 57, is the smallest integer
strictly larger than (5 — 1)(5‘“)/ . To shorten notation, let us write S; for Sp,. According to the
arm-increasing rule (try a new arm if K; | < t8/(8+1)), [S;,Sj+1) is the time interval in which the
competing arms are Iy, I, ..., I;.

As in the proof of Theorem 1, we consider 7 = p* — Ay /2. We have

EQll =k < Y1 ijsrl E(Q*vakvsj I, = k)
= LI (S — SHE(2 N L = k) 3)
< X (S — SHE(2 s,

Since N oo,s;_, follows a binomial distribution with parameter j — 1 and P(u > 7), we have
B(2 V) = (1 B(u > 1) /2,

and

i (S — Sj)E<27NT’°°’Sj*1) i (Sjan = S5) (1= P(p > 7)/2)7

1 , 4)
S (L4 B (1 = ef2(ur — )P,

IN

where ¢ = ¢;27 177, Plugging (4) into (3), we obtain
K, .1 - i—1
E(ALQy,) < 2 Y0 GRE(AL[1 - Al ) ™).

Now this last expectation can be bounded by the same computations as for Ex (A1) in the proof of
Theorem 1. We have, for appropriate positive constants C'; and Cy depending on ¢; and /3,

E(AL,Q,) < C1 30 5577181 < Cy(log ) )
Using (2) and ER,, = Y"1, E(A,91,), we obtain
ER, < KnE{ [50(%%) v 1) logn} A (nAy) + Cs(log Kn)2}7 ©6)

from which Theorem 4 follows for the case u* = 1 or 8 > 1. For the case 8 < 1 and p* < 1,
replacing % by g leads to a similar version of (5) as

. 1-5
E(A7,Q,) < C1 i 5717180 < Cy(log K,) K™

which gives the desired convergence rate since K, is of order n/2.



