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1. Introduction

Sum- and max-stable processes are two classes of stochastic processes, which have been investigated for a long time.
Many results are available about their representations, stochastic properties, and structure (see e.g. Samorodnitsky and
Taqqu, 1994, Rosiriski, 1995, 2000, Samorodnitsky, 2005, Pipiras and Taqqu, 2002, 2004 and Roy and Samorodnitsky, 2008,
as well as, e.g. de Haan, 1984, de Haan and Pickands, 1986, Davis and Resnick, 1993, Stoev and Taqqu, 2006, de Haan and
Ferreira, 2006, and Resnick, 2007).

The deep connection between heavy-tailed sum- and max-stable processes has long been suspected. As observed, for
example, in Davis and Resnick (1989) the moving maxima and the moving averages are statistically indistinguishable
in the extremes. Also, the maxima of independent copies of a sum-stable process (appropriately rescaled) converge in
distribution to a max-stable process and the two processes have very similar spectral representations (see e.g. Theorem 5.1
in Stoev and Taqqu (2006)). In Stoev (2008), the ergodic properties of max-stable processes were characterized by borrowing
ideas and drawing parallels to existing work in the sum-stable domain. Recently Kabluchko (2009) codified the notion
of association between sum- and max-stable processes. This was done by essentially identifying the spectral measures
of the finite-dimensional distributions of the two processes. In this paper we provide another, equivalent, definition of
association between sum- and max-stable processes, which is based on relating their spectral functions. The combination
of two perspectives provides a more clear picture about the fundamental connections between the two classes of processes.

In the rest of this section, we briefly introduce the main results of this paper. We will only consider infinite variance
symmetric «-stable (SaS, @« € (0, 2)) sum-stable processes and «-Fréchet max-stable processes. Recall that an infinite
variance SaS variable X has characteristic function gx(t) = Eexp{—itX} = exp{—o*|t|*},Vt € R, where @ € (0, 2).
On the other hand, Y has an «-Fréchet distribution if Fy(y) = P(Y < y) = exp{—oc®y~“},Vy € (0, oc0), where now
« is in (0, 0o). The ¢’s in both cases are positive parameters referred to as scale coefficients. Observe that the form of the
characteristic function ¢x of an S«S variable is preserved under multiplication, which reflects the sum-stability of this class
of distributions. Similarly, the form of the distribution function Fy is preserved under multiplication, which corresponds to
stability with respect to taking independent maxima.
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More similarities can be observed on the level of processes. Recall that X = {X;};cr is an SaS stochastic process if all
its finite linear combinations Z};l aiXy,a; € R, t; € T, are SaS. These processes have convenient integral (or spectral)
representations:

Xeheer = {/ﬁ(s)Ma,+(ds)} . (1.1)
N teT
Here {fi};er C L*(S, 1), f stands for the stable integral and M,, ; is an Sa'S random measure on measure space (S, ©) with
control measure u (see Chapters 3 and 13 in Samorodnitsky and Taqqu, 1994).
On the other hand, Y = {Y;};cr is an a-Fréchet max-stable process if all its positive max-linear combinations
\/?=1 a;Yy;, a; > 0, t; € T are o-Fréchet. Such processes have extremal integral representations of the form

{Yeheer 4 {/ft(S)Moz,v(ds)} . (1.2)
S teT

Here {fi}ter C L5(S, ) := {f € L*(S, u) : f = 0}, “[" stands for the extremal integral and M, is an a-Fréchet random
sup-measure with control measure u (see e.g. Stoev and Taqqu, 2006 and de Haan, 1984 for an alternative treatment). The
fi’sin(1.1) and (1.2) are called the spectral functions of the sum- or max-stable processes, respectively. In this paper, we will
assume (S, u) to be a standard Lebesgue space (see Appendix A in Pipiras and Taqqu, 2004) and let T denote an arbitrary
index set, which may be sometimes equipped with a measure A. Two common settings are (S, u) = ([0, 1], Leb), T = Z
with A being the counting measure and T = R with A being the Lebesgue measure. A brief review on stable and extremal
integrals is given in Table 1 in Section 2.

The representation (1.1) implies that

n

Eexp[—iZa]-X[j} = exp [—/S. Zajﬁj(s)
j=1 Jj=1

which determines the finite-dimensional distributions (f.d.d.) of the SaS process {X;};cr. The f.d.d. of the a-Fréchet process
{Y;}ter in (1.2), on the other hand, are expressed as:

M(ds)}, geRteT, (1.3)

P(Yy, <ai,...,Y, <a,) = exp[—/s<\n/ﬁj(5)/aj)aﬂ(ds)}, a>0,t€T. (1.4)
j=1

Note that the r.h.s. of (1.3) and (1.4) are similar. Indeed, they both involve exponentials of either linear (}_) or max-linear
(\/) combinations of spectral functions. The characterizations (1.3) and (1.4) and their close connections play an important
role throughout this paper. In particular, the key result behind our notion of association is the following theorem.

Theorem 1.1. Consider two arbitrary collections ofﬁinctionsf(i), e ,.,(i) € L7 (Si, mi),i=1,2,0 < a < 2. Then,
n n
> af? = af? , forallg € R, (1.5)
=1 L¥(S1,181) =1 L¥(Sp,142)
if and only if
n n
\ o =\ af® , forallg; > 0. (1.6)
= L% (S1.141) =1 L% (S2.12)

The proof of this result is given in Section 3. We now briefly discuss its role. It is well known that the spectral representations
in (1.1) and (1.2) are not unique. Let {gt(l)}teT C L§(Si, mi), i = 1,2 be two spectral representations of an SaS process
{X:}ter. Relation (1.3) shows that (1.5) holds with gt(j') replaced byfj('), i = 1, 2. Relation (1.4) and Theorem 1.1 then imply
that {g[(i) }ter, 1 = 1,2 are two spectral representations of the same «-Fréchet process {Y;};cr. Conversely, two equivalent
spectral representations of an a-Fréchet process {Y;};cr yield also equivalent representations of an SaS process {X;}ct.
Therefore, we define the association as follows:

Definition 1.1 (Associated SaS and «-Fréchet Processes). We say that an SaS process {X; };cr and an a-Fréchet process {Y; };er
are associated, if there exist {f;}ccr C L%(S, ) such that:

Oeher & { [ R ] | and oer £ ..}
s teT S teT

In this case, we say {X;};cr and {Y;};cr are associated by {f; }sct.
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Table 1
Basic properties of stable and extremal stochastic integrals.
SaS,a € (0,2),f € L“(S, n) a-Fréchet, o € (0, 00), f € L (S, n)
Stochastic integral: Extremal integral:
Z= fsf(s)Mu_+(ds) is SaS Z= Efsf(s)Ma,v(ds) is a-Fréchet
Scale coefficient: Scale coefficient:
1Zll, = (f5 F1*dpe) /™ 1Z1l, = (fsf*du)"e
Independently scattered: Independently scattered:
[sFidMn [ frdMo 4 5 fifp =0 1My 1°[fodMy . & fify =0
Linearity:Va; € R, f; € L*(S, ) Max-linearity:Va; € Ry, f; € L (S, )
Js@ifi + axf)dMy . = a1 [ fidMo 4 + s [ oMo 4 Jo@fi v aaf)dM, v = a [ idMyy v @[ fodMy

Theorem 1.1 ensures the consistency of this definition (see Theorem 4.1) and it also shows that our notion of association is
not merely formal. For example, stationary or self-similar max-stable processes are associated with stationary or self-similar
sum-stable ones, respectively (see Corollary 4.1).

We will also see, however, that there are SaS processes that cannot be associated to any «-Fréchet processes (see
Theorem 4.2). In particular, we provide a practical characterization of the max-associable SaS processes {X:};cr with
stationary increments characterized by dissipative flow, indexed by T = R or T = Z (see Proposition 4.1).

The paper is organized as follows. In Section 2, some preliminaries are provided. In Section 3, we prove Theorem 1.1. In
Section 4, we establish the association of SaS and «-Fréchet processes and give examples of both max-associable and non-
max-associable SaS processes. In Section 5, we show how the association can serve as a tool to translate available structural
results for SaS processes to a-Fréchet processes, and vice versa. We conclude with a comparison between our approach and
that of Kabluchko (2009) in Section 6.

2. Preliminaries

The basic properties of the stable and extremal stochastic integrals involved in Representations (1.1) and (1.2) are
summarized in Table 1. For more details, see e.g. Samorodnitsky and Taqqu (1994) and Stoev and Taqqu (2006).

In the rest of this section, we draw a connection between the linear isometries and max-linear isometries, which play
important roles in relating two representations of a given SaS or an «-Fréchet process, respectively. The notion of a linear
isometry is well known. To define a max-linear isometry, we say that a subset ¥ C L% (S, n) is a max-linear space if for all
neNfie F,a >0\, af € Fandif F is closed w.r.t. the metric p,, o defined by p,. . (f,g) = [, [f* — g“|du.

Definition 2.1 (Max-linear Isometry). Let « > 0 and consider two measure spaces (S1, ;1) and (S,, ) with positive and
o -finite measures w1 and . Let 1 C L% (S1, 1) be a max-linear space. A mapping U : F1 — L5 (S2, u2), is said to be
a max-linear isometry, if: (i) for all f;, f, € 7 and a;, a, > 0, U(a:f; Vv az f1) = a1 (Ufy) Vv ay(Uf), up-a.e. and (ii) for all
f e FulUf e spmp) = I i 5y.00)-

Alinear (max-linear resp.) isometry may be defined only on a small linear (max-linear resp.) subspace of L* (S, 1) (L.(S, )

resp.). However, this linear (max-linear resp.) isometry can be extended uniquely to the extended ratio space (extended
positive ratio space resp.), which will turn out to be closed w.r.t. both linear and max-linear combinations.

Definition 2.2 (Extended Ratio Spaces). Let F be a collection of functions in L* (S, w).

(i) The ratio o-field of F, written p(F) := o ({f1/f2, f1, f» € F}), is defined as the o-field generated by ratio of functions in
F, with the conventions +1/0 = 400 and 0/0 = 0.
(ii) The extended ratio space of F, written R, (F), is defined as:

Re(F) :={if :1f € LS, w),r ~ p(F),f € F}. (2.1)
Similarly, we define extended positive ratio space:
Re+(F) :=1{1f :1f e LTS, w), 1 ~ p(F),r > 0,f € F}. (2.2)

The following result is due to Hardin (1981) and Wang and Stoev (2009).

Theorem 2.1. Let F be a linear (max-linear resp.) subspace of L* (S, u1) with 0 < a < 2 (L§(S1, 1) with0 < a < o0
resp.). If U is a linear (max-linear resp.) isometry from ¥ to U(F ), then U can be uniquely extended to a linear (max-linear resp.)
isometry U : Re(F) = Re(U(F)) (U : Re +(F) = Re+(U(F)) resp.), with the form

uaf) =TmU), (2.3)

for all f € R(F) in (21) if € Re(F) as in (2.2) resp.). Here T is the mapping from L%(S1, p(F), u1) to
L*(Sq, p(U(F)), i2), induced by a regular set isomorphism T from p(F) to p(U(F)).
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For the precise definition of a regular set isomorphism T and the induced mapping T, see Lamperti (1958), Hardin (1981) or
Wang and Stoev (2009). The following remark provides some intuition. Part (iii) is especially important since it shows that
the two types of isometries can be identified.

Remark 2.1. (i) U is well defined in the sense that for any rifi € R.(¥),i = 1,21in (2.1), if rifi = rofs, n1-a.e, then
U(rif1) = U(r2f2), po-a.e. Similar result holds for rif; € R +(F) asin (2.2).

(ii) T maps any two almost disjoint sets to almost disjoint sets. See Lamperti (1958).

(iii) The mapping T is both linear and max-linear, i.e., fora, b > 0,

T(af + bg) = aTf +bTg and T(af v bg) = aTf Vv bTg. (2.4)

This follows from the definition T14 = 174 for measurable A C S; and the construction of T via simple functions. It is via
T that the linearity and max-linearity are identified.

To make good use of (iii) in Remark 2.1, we introduce the notion of positive-linearity. We say a linear isometry U is positive-
linear, if U maps all nonnegative functions to nonnegative functions. Accordingly, we say that ¥ C L%.(S, ) is a positive-
linear space, if it is closed w.r.t. the metric p,, , and all positive-linear combinations, i.e, foralln € N, f; € #,a; > 0, we

have g .= Z?:] aifi € F. Note that the metric (f,g) — |If — gll}?&m restricted to L% (S, u) generates the same topology
as the metric p,, 4. Clearly, Theorem 2.1 holds if ¥ is a positive-linear (instead of a linear) subspace of L} (S, 1). In this case,

U is also positive-linear. We conclude this section with the following refinement of statement (iii) in Remark 2.1.

Proposition 2.1. Let U be as in Theorem 2.1. If F is a positive-linear subspace of L% (S1, 1), then the linear isometry Uin(2.3)
is also a max-linear isometry from Re +(F) to R+ (U(F)). If ¥ is a max-linear subspace of L*(S1, jt1), then the max-linear

isometry U in (2.3) is also a positive-linear isometry from R(F) to R.(U(F)).

Proof. Suppose ¥ is max-linear and U is a max-linear isometry. We show U is also positive-linear. First, if U in (2.3) is max-
linear, then the mapping T from LY (Sq, o(F), 1) to LY (S2, o(U(F)), u2) is both max-linear and linear, by Remark 2.1(iii).
Moreover, it is easily seen that T is positive-linear. Now, for r1f;, r2fy € R, (F) as in (2.2), we have

U(alrlfl + azrzfz) = U((alr]f] sz + a2r2f1 fjfz

= T(amfi] + a1y f2 )U(ﬂ Vo) = aiU(rify) + aaU(rafy).

fivh fiVvh

That is, U is positive-linear. The proof of the other case is similar, except that we need the existence of full support function
f in ¥, guaranteed by Lemma 3.2 in Hardin (1981). O

NGRZ:))

3. Identification of max-linear and positive-linear isometries

In this section we prove Theorem 1.1. It will be used to relate SaS and «a-Fréchet processes in the next section. To do so,
we need to introduce a subspace of LY (S, 1), which is closed w.r.t. the max-linear and positive-linear combinations. For any
F CLE(S, p), let

F4 :=span, {F} and ¥, := V-span{F} (3.1)

denote the smallest positive-linear and max-linear subspace of L% (S, ) containing the collection of functions F,
respectively. We call them the max-linear and positive-linear spaces generated by F, respectively. (We also write ¥ =
span{F} as the smallest linear subspace of L*(S, 1) containing F.) In general, we have ¥, # #,. This means both . and
F., are too small to be closed w.r.t. both ‘Y and *\/’ operators. However, these two subspaces generate the same extended
positive ratio space, on which the two types of isometries are identical. The following fact is proved in the Appendix.

Proposition 3.1. Suppose F C L5 (S, ). Then Re  (F1) = Re 4 (F).

Proof of Theorem 1.1. Let F? := {f", ... "} ¢ L% (Si, ii). We prove the ‘if part. Suppose Relation (1.6) holds and we
will show (1.5). Relation (1.6) implies that there exists a unique max-linear isometry U from qu(ﬂ onto },v(z)‘ such that

Ufj(” =jj.(2), 1 <j < n.Thus, Theorem 2.1 implies that the mapping
U Re (FV) = Re 1 (UFM))

with form (2.3) is a max-linear isometry. By Proposition 2.1, we have that U is also a positive-linear isometry. By
Proposition 3.1, U is a positive-linear isometry defined on R, (Ti”), which implies (1.5). The proof of the ‘if’ part is similar.
O
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To conclude this section, we will address the following question: for f; (1) n(]) € L*(S1, 11), do there always exist

nonnegatlvef]( ), . (2) € L% (S2, u2) such that Relation (1.5) holds for any a; € R? The answer is ‘No’. As a consequence,
in the next section we w1ll see that there are SaS processes, which cannot be associated to any «-Fréchet process.

Proposition 3.2. Consider fj(l) € L*(S1, m1), 1 < j < n. Then, there exist somefj(z) € L%(S2, u2), 1 < j < nsuch that (1.5)
holds, if and only if

FP©FY () = 0, ur-ae. foralll <i,j<n. (3.2)

When (3.2) is true, one can takefi(z) (s) := |fi(l)(s)|, 1 <i<nand(S;, ) = (51, 1) for (1.5) to hold.

The proof is given in the Appendix. We will call (3.2) the associable condition.

4. Association of max- and sum-stable processes

In this section, by essentially applying Theorem 1.1, we associate an SaS process to every a-Fréchet process by
Definition 1.1. The associated processes will be shown to have similar properties. However, we will also see that not all
the SaS processes can be associated to «-Fréchet processes. We conclude with several examples.

Remark 4.1. In Definition 1.1, the associated SaS and «-Fréchet processes have the same « € (0, 2). It is easy to see that, for

any a-Fréchet process {Y;};er with spectral functions {f; };cr, {Yf‘ }eer 1S o/ B-Fréchet with spectral functions {ff }eer, for all
0 < «, B < oo. This transformation shows that the parameter « plays essentially no role in characterizing the dependence
structure of the a-Fréchet process. Given an SaS process with nonnegative spectral functions, one could associate it to the
1-Fréchet process with spectral functions {f };cr. This leads to no loss of generality. Here, we chose to pair up the two «’s
for technical convenience.

The following result, a simple application of Theorem 1.1, shows the consistency of Definition 1.1, i.e., the notion of
association is independent of the choice of the spectral functions.

Theorem 4.1. Suppose an S « S process {X; }:er and an a-Fréchet process {Y; }:cr are associated by {f[(l) Jeer C LY(S1, p1). Then,
{ft(z)}fg C L% (S2, 12) is a spectral representation of {X;}ier, if and only if it is a spectral representation of {Y}.cr. Namely,

{ ﬁ”dMSi} é{ J”dMﬁl} <=>{ / ff”dMéf)} { / ffz)dMQ)} , (4.1)
S1 S teT 75

where M, ® . and MS?V are S « S random measures and «a-Fréchet random sup-measures, respectively, on S; with control measure
mi, i=1,2.

teT

As an immediate consequence, stationarity and self-similarity are preserved under association. Here we assume T = RY
or Z°.
Corollary 4.1. Suppose an S « S process {X; };er and an «-Fréchet process {Y,}.cr are associated. Then,

(i) {Xt}eer is stationary if and only if {Y;}ccr is stationary.
(ii) {X¢}eer is self-similar with exponent H, if and only if {Y;}¢er is self-similar with exponent H.

Proof. Suppose {X;}cr and {Y;};cr are associated by {fi};er C L5(S, ). (i) Forany h € T, letting g = fr4p, Vt € T, by
stationarity of {X;};cr, we obtain {g;};cr as another spectral representation. Namely, { fs fedMy 4 }rer 4 { fs 8:dMy 4 }rer. By

Theorem 4.1, the previous statement is equivalent to {efsftha,\/}teT 4 {efsgtha,v}ter, which is equivalent to the fact that
{Y:}¢er is stationary. The proof of part (ii) is similar and thus omitted. O

Observe that not all SaS processes can be associated to «-Fréchet processes, since not all SaS processes have nonnegative
spectral representations. For an SaS process {X;}:cr with spectral representation {f;};cr to have an associated «-Fréchet
process, a necessary and sufficient condition is that for all ¢y, ..., t, € T, f;, ..., f, satisfy the associable condition (3.2).
We say such SaS processes are max-associable. Now, Proposition 3.2 becomes:

Theorem 4.2. Any S « S process {X; };cr with representation (1.1) is max-associable, if and only if forall t,, t; € T,

fe, )fi,(5) >0, p-ae. (4.2)

Indeed, by Theorem 4.2 for any max-associable spectral representation {f; };er, {|ft|}s<r is also a spectral representation for
the same process. Clearly, if the spectral functions are nonnegative, then the SaS processes are max-associable. We give two
simple examples next.
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Example 4.1 (Association of Mixed Fractional Motions). Consider the self-similar SaS processes {X;};er, with the following
representations

s, £ [ [0 (5 ) M ax s | H e .00 (43
E

where (E, &, v) is a standard Lebesgue space, M, ; is an SaS random measure on X x R with control measure m(dx, du) =
v(dx)duand g € L*(E x R, m). Such processes are called mixed fractional motions (see Burnecki et al., 1998). When g > 0
a.e,, the process {X;};er, is max-associable. The Corollary 4.1 implies the associated a-Fréchet process is H-self-similar.

Example 4.2 (Association of Chentzov SaS Random Fields). Recall that {X;};cgn is a Chentzov S«S random field, if

d
Kedeemn = (Mo (Vo heewr = | / 1y, (WM, (du)
S teRr"
Here, 0 < o < 2, (S, ) is a measure space and V;, t € R" is a family of measurable sets such that u(V;) < oo forall t € R"
(see Ch. 8 in Samorodnitsky and Taqqu, 1994). Since 1y, (u) > 0, all Chentzov SaS random fields are max-associable.

We conclude this section with some examples of SaS processes that are not max-associable. In particular, recall that the
SaS processes with stationary increments (zero at t = 0) characterized by dissipative flows were shown in Surgailis et al.
(1998) to have representation

(e £ { [ [ Gox e+ - G M @x ] (44
EJR

teR

Here, (E, &, v) is a standard Lebesgue space, M, +, @ € (0, 2), is an SoS random measure with control measure m(dx, du) =
v(dx)du and G : E x R — R is a measurable function such that, forall t € R,

Gi(x,u) =Gx,t +u) —Gx,u), x€E,ueR

belongs to L* (E x R, m). The process {X; };cr in (4.4) is called a mixed moving average with stationary increments. The following
result provides a partial characterization of the max-associable SaS processes {X;}:cr, which have the representation (4.4).
We shall suppose that E is equipped with a metric p and endow E x R with the product topology.

Proposition 4.1. Consider an S « S process {X;};cr With representation (4.4). Suppose there exists a closed set N C E X R, such
that m(N') = 0 and the function G is continuous at all (x, u) € N¢ := E x R\ N, w.r.t. the product topology. Then, {X;};cr is
max-associable, if and only if

G(x, u) = f() 14, (u) + c(x), onNC. (4.5)
Namely, for all x € E, G(x, u) can take at most two values on N€.
Proof. By Theorem 4.2, {X;};cr is max-associable, if and only if for all t{, t; € R,

Ge, (X, )G, (%, u) = (G(x, t1 +1u) — G(x, )(G(X, t; +u) — G(x,u)) >0, m-ae (x,u) €E xR (4.6)

First, we show the ‘if’ part. Define E(XLH) = G(x,u) (gixen by (4.5)lon M€ and EQ( u) = f(x)14, (li) + c(x) on NV (if
A, and c(x) are not defined, then set G(x, u) = 0). Set G;(x,u) = G(x,u + t) — G(x, u). Note that G;(x, u) is another
spectral representation of {X;};cz and for all (x, u), {IAX (U41t) — 1a, (”)}:em can take at most 2 values, one of which is 0.
This observation implies (4.6) with G, (x, u) replaced by Et (x, u), whence {X;};cr is max-associable.

Next, we prove the ‘only if part. We show that (4.6) is violated, if G(x, u) takes more than 2 different values on
({x} x R) N N for some x € X. Suppose there exist x € E, u; € R such that (x, u;) € N and g := G(x, u;) are mutually
different, fori = 1, 2, 3.Indeed, without loss of generality we may suppose that gy,; < g, < g«3. Then, by the continuity of G,
there exists € > OsuchthatB; := B(x, €) X (uj—e€,u;j+¢€),i = 1, 2, 3aredisjoint sets with B(x, €) :={y € E : p(x,y) < €},
p is the metric on E and

sup G(x,u) < inf G(x,u) < sup G(x,u) < inf G(x,u). (4.7)
BNNC ByNN€ ByNN€ B3NNC

Putt; = uy —uy and t; = u3z—uy.Inequality (4.7) implies that G, (x, u)G, (x, u) < 0onB, NN . This, in view of Theorem 4.2,
contradicts the max-associability. We have thus shown (4.5). O

We give two classes of SaS processes, which cannot be associated to any «-Fréchet processes, according to Proposition 4.1.

Example 4.3 (Non-associability of Linear Fractional Stable Motions). The linear fractional stable motions (see Ch. 7.4 in
Samorodnitsky and Taqqu, 1994) have the following spectral representations:



486 Y. Wang, S.A. Stoev / Statistics and Probability Letters 80 (2010) 480-488

ees £ { [ o (0w = a7 b (0w ) e

HereH € (0, 1), € (0,2),H # 1/, a,b € Rand |a] 4 |b| > 0.By Proposition 4.1, these processes are not max-associable.

Example 4.4 (Non-associability of Telecom Processes). The Telecom process offers an extension of fractional Brownian motion
consistent with heavy-tailed fluctuations. It is a large scale limit of renewal reward processes and it can be obtained by
choosing the distribution of the rewards accordingly (see Levy and Taqqu, 2000 and Pipiras et al., 2004). A Telecom process
{X:}ter has the following representation

Keheer = | / f BV (F(e'(t +w) — F(e'w) My 1 (ds. dw)}
RJR €

where1 <« < 2,1/a <H < 1,F(z) = (zA0+ 1)1,z € R and the SaS random measure M,  is with control measure
mg (ds, du) = dsdu. By Proposition 4.1, the Telecom process is not max-associable.

Remark 4.2. It is important that the index T in Proposition 4.1 is the entire real line R. Indeed, in both Examples 4.3 and
4.4, when the time index is restricted to the half-line T = R, (or T = R_), the processes {X; };cr satisfy condition (4.2) and
are therefore max-associable.

5. Association of classifications

In this section, we show how to apply the association technique to relate various classification results for SaS
and «a-Fréchet processes. Note that, many classifications of SaS («-Fréchet as well) processes are induced by suitable
decompositions of the measure space (S, ). The following theorem provides an essential tool for translating classification
results for SaS to a-Fréchet processes, and vice versa.

Theorem 5.1. Suppose an SaS process {X;}icr and an «-Fréchet process {Y; };cr are associated by two spectral representations
Y eer € L%(Si, o) for i = 1,2. That is,

d i i d ‘ i i i
{xt}ferz{ J”dMSL} and {Yf}mT:{ /s ﬁ“)dM;?v} =12
Si J90

teT teT

Then, for any measurable subsets A; C S;, i = 1, 2, we have
1 1 d 2 2 1 d )y 2
{/ flaml ) £ {/ iPam ) e / iam ) E1) Pam@)
A teT Ay teT J Ay teT

The proof follows from Theorem 1.1 by restricting the measures onto the sets A;, i = 1, 2.

For an SaS process {X[}tey with spectral functions {f; };cr C L*(S, u), a decomposition typically takes the form {X;};cr L
. XV er, where X = [pfidMyy forallt € Tand A?,1 < j < n are disjoint subsets of S = Ui, A?.

The components {X }fer, 1 < j < n are independent SaS processes. When {X;};cr is max-associable, Theorem 5.1
enables us to define the associated decomposition, for the «-Fréchet process {Y;};cr associated with {X;};cr. Namely, we
have {Y;}ier = {\/] 1Y }teT, where Y(’) = / Ift|dM,\ for all t € T. Conversely, given a decomposition for a-Fréchet
processes, we can define a corresponding decomposition for the associated SaS processes.

Example 5.1 (Conservative-dissipative Decomposition). In the seminal work, Rosiriski (1995) established the conserva-
tive-dissipative decomposition for SaS processes. Namely, for any {X;};cr with representation (1.1), one has

d
{Xt}teT = {X[C +X[D}teT7
where XS = [ f;dM, ; and X = [} f;dM, 4 forallt € T, with C and D defined by

= {s:fﬁ(s)"‘x(dt):oo} and D:=5\C. (5.1)
T

When {X;};cr is stationary, the sets C and D correspond to the Hopf decomposition S = C U D of the non-singular flow
associated with {X; };cr (see Rosiriski, 1995 for details). Therefore, {Xf}teT and {XtD}[ET are referred to as the conservative and
dissipative components of {X;};cr, respectively. Theorem 5.1 enables us to use (5.1) to establish the parallel decomposition

of the associated «a-Fréchet process {Y;};cr. Namely, for the associated {Y;};cr, we have, {Y;};cr 4 {Yf \% Y[D}teT, where
€

€

YE = C[ft|dMD[,v and Y = DWdMu,v for all t € T. This decomposition was established in Wang and Stoev (2009) by
using different tools.
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Remark 5.1. Similar associations can be established for other decompositions, including positive-null decomposition (see
Samorodnitsky, 2005 and Wang and Stoev, 2009), and the decompositions of the above two types for random fields (T = z¢
or RY; see Roy and Samorodnitsky, 2008 and Wang et al., 2009). A more specific decomposition for SaS processes with
representation (4.4) was developed in Pipiras and Taqqu (2002), and one can obtain the corresponding decomposition for
the associated «-Fréchet process by Theorem 5.1.

6. Discussion

Recently, Kabluchko (2009) introduced a similar notion of association. We became aware of his result toward the end of
our work. The two approaches are technically different. Kabluchko’s approach utilizes spectral measures, while ours is based
on the structure of max-linear and linear isometries. These two approaches lead to the equivalent notions of association
(see Lemma 2 in Kabluchko, 2009). For example, our Corollary 4.1 can also be obtained following his approach. On the other
hand, our approach leads to a more direct proof of the following, which is Lemma 3 in Kabluchko (2009).

Lemma 6.1. Let {X;};cr be an S « S process and {Y;};cr be an a-Fréchet process. Suppose {X; }:cr and {Y;};er are associated by
{filter C LS.(S, p). Then for any t1, to, ... € T, as n — 00, X, converges in probability to X,, if and only if Y;, converges in
probability to Y.

Proof. By Proposition 3.5.1 in Samorodnitsky and Taqqu (1994), X, 2 X, asn — oo, if and only if

£, —ftHwa — 0Oas
n — oo. This is equivalent to, by Theorem 2.1 and Lemma 2.3 in Stoev and Taqqu (2006), Y;, LY Yiasn—oc0. 0O

Kabluchko (2009) also proved (Theorem 9 therein) that an «-Fréchet process is mixing (ergodic resp.) if and only if
the associated SaS process is mixing (ergodic resp.). The proofs of these results, however, are not simple consequences of
the notion of association. By association one can easily obtain new classes of a-Fréchet processes, while the probabilistic
properties of the new processes (e.g. the associated «-Fréchet processes in examples in Section 4), however, do not
automatically follow ‘by association’ and are yet to be investigated.
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Appendix. Proofs of auxiliary results

We first need the following lemma.

LemmaA.l. If F C L% (S, n), then

(i) p(F) = p(spany (F)) = p(V-span(F)), and
(i) for any fV € span, (F) and f® € V-span(F), fV /f@ € p(F).

Proof. (i) First, foranyf;,g; € F,a; > 0,b; > 0,i € N, we have

V aif aif; aif; 1
ieN ifi ifi

S X = [ S X} = [ =X + 7},
V big mN V big Q IQ]Lg big; k
JE je

hence p(VvV-span(F)) C p(span, (F)).
To show p(span, (F)) C p(V-span(F)), we shall first prove that p(span_(F)) C p(V-span(F)), where span, (F)
involves only finite positive-linear combinations. For all fi, f>, g1 € F, ay, by, b, > 0, we have

[a1f1b;:12f2 } U([;:{; ]}ﬂ{% <x—q]-}).

This shows that (a.f; + axf2)/b1g;1 is p(V-span span(F)) measurable. By using the fact that F contains only nonnegative

. . big _ | afitaf
functions and since {01f11+;2f2 < x} = [ 1;“;1 2 > ; , for x > 0, we similarly obtain that (aif; + a2f>)/(b1g1 + b2g2)

is p(\V-span(F)) measurable. Similarly arguments can be used to show that (Zi=1 aJ,—)/(Zi=1 bigi) is p(V-span(F))
measurable foralla;, b; > 0, fi, g € F,1<i<n.

We have thus shown that p(span, (F)) C p(Vv-span(F)). If now f, g € span, (F), then there exist two sequences
fn, & € span, (F), such thatf, — fand g, — g a.e.. Thus, h, = f,/g — h = f/g asn — oo, a.e.. Since h, are
p(span_ (F)) measurable for all n € N, so is h. Hence p(span, (F)) = p(span, (F)) C p(V-span(F)).
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(ii) By the previous argument, it is enough to focus on finite linear and max-linear combinations. Suppose f(V = ZLI aifi
and f® = \/le b;gj for some f;, g € F,a;,b; > 0,1 <i<n,1<j<p.Then, forallx > 0,

n
Zaif" p n fi
1?7 <X :U[ = <xbj] e p(F).
Ung | AEE
=1

It follows that fV /f® e p(F). O

Proof of Proposition 3.1. First we show R, () D R +(F,), where F, and F, are defined in (3.1). By (2.2), it suffices
to show that, forany r, € p(F,), f® e #,, there existr; € p(F,) and fV e F,, such that

rif U =rf @, (A1)

To obtain (A.1), we need the concept of full support. We say a function g has full support in F (an arbitrary collection of
functions defined on (S, 1)), ifg € F and for all f € F, pu(supp(g) \ supp(f)) = 0. Here supp(f) := {s € S : f(s) # O}.
By Lemma 3.2 in Wang and Stoev (2009), there exists function f(" € #,, which has full support in #,. One can show that

this function has also full support in &, . Indeed, let g € #, be arbitrary. Then, there exist g, = Zf;] (nigni, Ani > 0 and

gni € F C ¥, such that g, BN g asn — oo. Note that u(supp(g,) \ supp(f)) = 0 for all n. Thus, for all € > 0, we have
u(lgn—gl > €) = n({lgl > €} \supp(f)). Since u(Ig, — gl > €) — 0asn — oo, it follows that u({|g| > €} \ supp(f)) =0
forall e > 0,i.e., u(supp(g) \ supp(f)) = 0. We have thus shown that f has full support in .

Now, set ry := 1, (f@/f(V), we have (A.1). (Note that f® = 0, u-a.e. on S \ supp(fV). By setting 0/0 = 0, f® /fD
is well defined.) Lemma A.1 (ii) implies that f@ /f( e p(F), whence r; € p(F) = p(F;). We have thus shown
Re.+(Fy) D Re +(F1).In asimilar way one can show R,  (F,) C Rev(Fy). O

Proof of Proposition 3.2. First, suppose (3.2) does not hold but (1.5) holds. Then, without loss of generality, we can assume
that there exists Sél) C Sp such thatflm(s) > O,fz(l)(s) < Oforalls e 5(()1) and M(Sél)) > 0. It follows from (1.5) that
there exists a linear isometry U such that, by Theorem 2.1, Ufi“) = f,(2) = T(r;)U(f), with certain f and r; = fi(l)/f, for
i =1, 2. In particular, f can be taken with full support. Note that sign(r;) # sign(r,) on Sél). It follows that 1(2) and f2(2> have
different signs on a set of positive measures (indeed, this set is the image of the S(()]) under the regular set isomorphism T).
This contradicts the fact that fl(z) and fz(z) are both nonnegative on S,.

On the other hand, suppose (3.2) is true. Define Ufi(” = [fi“) |. It follows from (3.2) that U can be extended to a positive-
linear isometry from L*(S1, uq) to L% (Sz, 2), which implies (1.5). O
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