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Abstract

We introduce a hierarchical Gauss-Pareto model for spatial prediction of 24 hour cumulative precipitation over
south central Sweden, given that at least one observation is extreme. The model belongs to the max-domain of
attraction of popular Brown-Resnick max-stable processes (Brown and Resnick, 1977; Kabluchko et al., 2009) and
retains the essential dependence structure of their corresponding generalized Pareto processes (Ferreira and DeHaan,
2012). The hierarchical specification has flexibility to capture different range and intensities of various storms. An

MCMC algorithm is developed for inference.

The algorithm handles left censored data from precipitation that

accumulates below reporting precision, which often happens despite nearby observations that are extreme.

1 Introduction

Some of the consequences of our changing climate is a
change in the distribution of extreme rainfall (Field et al.,
2012). In order to develop adaptive strategies for dealing
with consequences such as insufficient drainage, soil satu-
ration with consequent land slides, and various aspects of
flooding, it is necessary to be able to estimate extremes at
unobserved sites. The standard geostatistical approach is
well suited to normally distributed spatial fields, but are
not appropriate for fields whose marginal distributions are
generalized extreme valued (GEV) or generalized Pareto
(GPD), which result from, respectively, block maxima or
exceedances (Coles, 2001). In order to attack this prob-
lem, climate literature suggests assimilating data into cli-
mate model output (Kharin and Zwiers, 2005). The dif-
ficulty of climate models, even on a regional scale, to re-
produce extreme precipitation is well documented (e.g.
Orskaug et al., 2011, showing that the high values are
particularly poorly reproduced even in a regional model
run in “weather forecasting” mode, using a reanalysis for
boundary conditions).

Statistical tools for spatial extremes include copula
methods (Sang and Gelfand, 2009; Fuentes et al., 2013)
and max-stable processes (Padoan et al., 2010; Davison
et al., 2012; Thibaud et al., 2013). Numerous difficulties
in dealing with max-stable models hamper their use in
practice, especially when spatial prediction is the goal (see
e.g. Davison et al. 2012; Dombry et al., 2012; Wang and
Stoev, 2011 and the references therein). Alternatively,
generalized Pareto processes (Ferreira and DeHaan, 2012)
have emerged as a flexible class of spatial models for ex-
tremes. Such processes arise as limiting conditional dis-

tributions given a threshold exceedance (See Section 2
below for a precise definition), and thus are natural mod-
els for spatial prediction given that nearby observations
are extreme.

In this work, we propose a Gauss-Pareto process model
for extreme precipitation which is closely related to the
Pareto type models employed in recent manuscripts of
Ferreira and DeHaan (2012) and Thibaud and Opitz
(2013). However, there exist key differences between our
methodology and previous approaches based on thresh-
old exceedances. First, we do not assume exact asymp-
totic distributions, rather our Gauss-Pareto model be-
longs to the max-domain of attraction of limiting max-
stable processes with certain spectral density governed
by an underlying Gaussian distribution (i.e. spectrally
Gaussian). The advantage is that the model can be fit
using standard MCMC methods for hierarchical models
with latent Gaussian structure. This greatly simplifies
inference while retaining the essential dependence char-
acteristics of the most commonly used models for spatial
extremes. A second key difference is the nature in which
we handle partial censoring. While most precipitation
measurements are essentially left-censored due to cumula-
tive precipitation falling below reporting precision, when
working with threshold exceedance models it is common
to partially censor marginal observations that fall below
a much higher threshold than those arising in data col-
lection. Justification lies in the fact that the model is
derived asymptotically and thus including marginal ob-
servations that may not be approaching the asymptotic
limit can lead to poor fit (Smith, 1994; Coles, 2001 Section
8.3.1). On the other hand, we found it very common that
24 hour cumulative precipitation at various locations fall



below desired thresholds even when nearby observations
are extreme. This motivated us to consider a model that
can account for such instances while maintaining essential
tail dependence characteristics. We believe our method-
ology is new in this approach and allows us to consider
larger spatial domains where there is greater chance of
observing low cumulative precipitation given at least one
extreme observation within the domain.

The rest of this paper is organized as follows: in the
following Section 2 we provide some basic motivating
theory, highlighting connections with existing max-stable
and Pareto processes. In Section 3 we define our model,
give a detailed construction of the model hierarchy and
specify the MCMC fitting procedure. The main applica-
tion: spatial prediction of extreme summer precipitation
in south central Sweden is presented in Section 4. Finally,
we conclude with summary and directions for future work.

2 Max-stable and Pareto processes

Let n = {n(s)}secs be a non-negative stochastic process
corresponding to a physical or environmental process over
a compact spatial region of interest S C R2. A classical
extreme value theory approach to spatial extremes consid-
ers the limiting distribution of suitably scaled point-wise
maxima

Condition 2.1. There exists a sequence of normalizing
functions a,(s) > 0 and b, (s) and a non-degenerate limit
process ¢ := {((s)}ses for which the following holds

. maX;<n ;i (8) — bu(s) fdd oo
{JE& an(s) }ges - s

where 7; are independent copies of n and f.d.d. denotes
equality in all finite dimensional distributions.

If Condition 2.1 holds, then it is well known (See e.g.
Resnick, 1987 Chp. 5) that the limit process ¢ must be
maz-stable. For simplicity and without loss of general-
ity (Resnick, 1987 Prop 5.10(a)) we will assume that the
max-stable process ( is simple mazx-stable, i.e. { has iden-
tical margins that are standard Fréchet. All simple max-
stable processes can be fully characterized by the follow-
ing spectral representation

Proposition 2.2 (cf. Ferreira and DeHaan, 2012, Prop.
2.3). Let ¢ := {((9)}ses be a simple maz-stable process
then .,
—1
((5) £ max 7 Vi(s),
where {I;}3°, are the points of a wunit rate Pois-
son point process on (0,00) and V;(s) are independent
copies of a stochastic process V. with EV(s) = 1 and
Esup,c5V(s) < o0 a.s.

The probability measure characterizing the distribution
of V' is known as the spectral measure of the max-stable
process (. While max-stable models have been used re-
cently in a variety of applications, inference suffers from
a lack of tractable likelihoods (See e.g. Einmahl et al.,
2012; Yuen and Stoev, 2014 and references therein). Fur-
thermore, the complicated dependence structure imposed
by taking point-wise maxima is often criticized as unre-
alistic because the point-wise maxima over a given time
block likely occurs at different times for different loca-
tions. This can obfuscate the true space-time dependence
structure of the underlying phenomena 7. Furthermore,
conditional sampling (prediction) with spectrally Gaus-
sian max-stable models is not straightforward and can be
quite computationally challenging (Dombry et al., 2012;
Wang and Stoev, 2011).

While max-stable processes and point-wise maxima can
still be a useful framework, the underlying scientific mo-
tivation for our work lies in the case where one wants
to characterize the dependence structure of n given that
7(s) is large for some s belonging to a finite collection
{s1,...,84} of observed locations. In statistical terms,
this rather precise objective would be to characterize p,, a
probability measure on C*(S) (the space of non-negative
continuous functions on S) such that for a large threshold
u >0

max
s€{s1,...,8a}

P(vea a0 > u) o), (21)
for A € B(C*(S)) where B denotes the Borel sigma field.
In practice, p, can rarely be inferred directly, but it’s
characteristics can be approximated by limit distributions

for the LHS of (2.1) in the following sense

Condition 2.3. There exists functions a,(s) > 0 and
b.(s), both continuous in s for every u, and for which the
following holds

(i) For every s € S, b, is increasing in w.
(ii) limy oo P (n(s) > by(s), for some s € S) = 0.

(iii) There exists p, a non-degenerate probability measure
on C(S) such that for all A € B(C(S)) with p(0A)=0

P (Tyu(n) € An(s) — bu(s) > 0 for some s € S)

— p(4), asu— oo (2.2)

where

£ o= { 1= e }

ay(s)
This suggests that if T,(n) € A|n(s) — b,(s) > 0 con-

verges, then under judicious normalization we may ap-
proximate of p, by the limit measure p when u is large.



The task then becomes characterizing the class of possible
limits p, this is the main subject of Ferreira and DeHaan
(2012) and we summarize their result with the following

Theorem 2.4. If Condition 2.3 holds, then there exists
a sequence of normalizing transformations

% () o {n<>—b<>} a0,
) seS

Gy (s

such that for all A € B(C(S))

uli_}rr;OP <Tu(n) € A|stelg {W} > 1)

)
—P(ZX € 4), (23)
where Z is a Pareto random variable and X := {X (8)}ses
is a mon-negative stochastic process, independent of Z,
with EX(s) > 0 for all s € S and sup,cg X(s) = ¢ > 0
a.s.

Proof. cf. Theorem 3.2, Condition 3.2, Corollary 3.1 and
Theorem 2.1(3) of Ferreira and DeHaan, 2012. O

Remark 2.5 (cf. Example 3.2 of Ferreira and De-
Haan, 2012). Theorem 2.4 is equivalent to n belonging
to the max-domain of attraction of a max-stable pro-

cess ¢ = {((8)}ses with spectral representation ¢ 4
max;en I 'V, where the {V;}7_, are independent copies
of ZX appearing in (2.3).

Theorem 2.4 suggests that processes of the form V =
Z X comprise a theoretically justified class of models for
threshold exceedances which share dependence character-
istics of popular max-stable models. Of the max-stable
processes that have been proposed to model precipitation,
most have spectral measure determined by an underlying
Gaussian law (See e.g. Davison et al., 2012; Thibaud
et al., 2013; Yuen and Stoev, 2014). These spectrally
Gaussian models are max-stable attractors of the Pareto
processes specified by X (s) = f(W(s)) where f is a con-
tinuous non-negative function and W = {W(s)}ses, is a
Gaussian process. This broad specification, however, is
not always useful with respect to inference or prediction.

The strategy we present here is to construct processes
which share essential characteristics of popular max-
stable and Pareto process models, yet remain amenable
to straightforward MCMC techniques for Bayesian hier-
archical models. For instance, we shall relax the require-
ment that sup,cg X (s) = ¢ > 0 a.s. To see why, consider
the process X := X/sup,cg X(s). Then sup,cg X(s) =
1 > 0 as., yet X retains the same spatial dependence
structure as X. For convenience, we will call the pro-
cesses V(s) := Zf(W(s)) Gauss-Pareto models. The

reason for the Gaussian assumption is obvious in that it
allows one to take advantage of the vast array of machin-
ery developed for Gaussian processes including the use
of parametric covariance functions, simulation of random
fields and conditional sampling. Here we introduce two
specifications of Gauss-Pareto models that belong to the
max-domain of attraction of the two spectrally Gaussian
max-stable processes that have prevailed within the liter-
ature. These include the Schlather or extremal Gaussian
type (Schlather, 2002) defined by

VSO () := Z max{W (s),0},

and Brown-Resnick (Brown and Resnick,
Kabluchko et al., 2009) type models

V(BR)(S) = Zexp (W(s) —~(s)),

1977;

where v is the semi-variogram of a centered intrinsi-
cally stationary Gaussian process W. The terms Schlather
model and Brown-Resnick model refer to max-stable pro-
cesses as defined in Remark 2.5. Nonetheless we adopt
identical names here for their associated Gauss-Pareto
processes. Two previous works using max-stable versions
of the Schlather and Brown-Resnick models for precipita-
tion extremes include Davison et al. (2012) where block
maxima of summer precipitation near Zurich Switzerland
is considered and Thibaud et al. (2013) who fit max-stable
models to threshold exceedances of precipitation in the
Val Ferret catchment, which also resides in Switzerland.
Davison et al. (2012) found the Brown-Resnick type mod-
els dominated the Schlater models in terms of goodness of
fit criterion. Conversely Thibaud et al. (2013) found that
the Schlather model produced a better fit over the small
Val Farret region. This is possibly due to the fact that
there exists a lower bound on the range of extremal de-
pendence at large lags under Schlather models as charac-
terized by the extremal coefficient (Davison et al., 2012).
Indeed, our preliminary data analyses of extreme precip-
itation over south central Sweden (See Section 4 below)
found that the Schlather type Gauss-Pareto model pro-
duced model fits that yielded overly strong spatial depen-
dence between pairs of sites that were far apart. This led
to spatial predictions that were biased towards heavier
precipitation.

3 A log-Gauss-Pareto model for
extreme precipitation

To develop our model, we began with an exploratory
data analysis which revealed that the location and spa-
tial range of extreme 24 hour cumulative precipitation
over our region of interest varied greatly from storm to
storm. Thus, in order to make accurate spatial predic-
tions, it is necessary to capture both the spatial range



and profile of an extreme precipitation event as well as
the approximate center. Consequently, we develop the
following Brown-Resnick type model, which can be spec-
ified in a hierarchical manner to achieve such flexibility.

Definition 3.1. Let Z ~ GPD(0,0,() and W :=
{W(s)}scs be a Gaussian process independent of Z. If

V(s) := Zexp{W(s)}, (3.1)

then V := {V(s)}ses a log-Gauss-Pareto process driven
by W.

The following are immediate
1. V(s)|W ~ GPD(0,0e" () €), for all s € S.

2. Y|Z := {log(V(s))|Z}ses is a Gaussian process on
S.

Without loss of generality, set 0 = 1, otherwise replace
W (s) in Definition 3.1 with W'(s) = W(s) + logo. To
capture varying location and range of 24 hour precipita-
tion events, we consider processes driven by a fractional
Brownian surface with drift. Specifically, we take the
process W to be

W(s) = e(s) + B(s) = ([ls —wll/N)®; a €(0,2),

where B := {B(s)}scs is a mean-zero Gaussian process
with B(w) = 0 almost surely for some origin point w € S,
and covariance function given by

K(Sl, 82|0) =\

xAlls1 —wl| 4+ [lsa —w]|* = [ls1 — 52"} (3.2)

with 6 := (A, a,w). Here || - || is Euclidean distance, A
determines range and « governs the smoothness of the
process. Lastly, £(s) is a trend surface that captures the
spatially varying scale. Hence our final model has the
form

V(s) = Zexp{e(s) + B(s) = (s = wll/A)}.

Note that the drift term ~(s) := (||s — w]||/A)* is indeed
the semi-variogram of the process B.

To interpret the model (3.3), consider E(s) :=
exp{e(s) + B(s) — (||s — w||/A\)*} as the profile of ex-
treme 24-hour cumulative precipitation which is roughly
centered at w. After controlling for scale within ¢, the
spatial maximum of the event profile is located, near the
event center w with high probability. Heuristically, this
explained by the drift term (||s — wl|/A)®, which tends to
infinity as one moves away from the origin w. The inten-
sity of the precipitation event is determined by Z, which
exhibits the power law behavior that is characteristic of
extreme precipitation. Simulated realizations from the
log-Gauss-Pareto process driven by fractional Brownian
surfaces are shown in Figure 1.

(3.3)

3.1 Model hierarchy

‘We now consider a series of independent extreme 24 hour
precipitation events V; = {V;(s)}ses,i=1,...,n. The V;
are identically distributed according to (3.3), each with
strength Z;, range A\; and center w;. We will assume
that the overall smoothness «, and trend surface ¢, re-
main constant across ‘time’ i = 1,...,n. At our dis-
posal are measurements V;(s;) at a sparse set of locations
51,...,8¢ € S C R2. It is convenient to write the log
transformation of model (3.3)

Yi(s) = log Vi(s) = log(Z;) + log (Bi(s)),  (3.4)
where log(F;(s)) = e(s) + Bi(s) — (|ls — wil|/Ai)®. Ob-
serve that the origin w; and scale \;, of the fractional
Brownian surface B; vary with each independent event.
Based on the the log transform (3.4), we formulate the
model in three hierarchies, the data generating level, pro-
cess level, and prior. Throughout, we use the notation
Y; = (Yi(s1),...,Yi(s4)) to denote the vector of log trans-
formed observations and g, to denote the d x d matrix
with entries 3¢, (j, k) = K(s;, sx|0;), where K is the co-
variance function defined in (3.2). Similarly, we denote
€ = (e(s1),...,e(sq)) and g, = (vi(51),...,7i(54))-

3.1.1 Data generation level

Let ¥; = (Z;,€) for each event i € {1...,n}. Following
the model (3.4), we have that

Yi|9;,0; ~ Ng (e, %0,) (3.5)

where p; = (i1, - ., ltiq) 1S a mean vector with elements

pij = log(Z;) +e(s;) — (Ilsj — will /)™

In our application, censoring limits arise from the data
collection process where observations below a threshold
are not available due to reporting precision. For a given
precipitation event ¢ € {1,...,n} we only observe the
elements of Y; that fall above a reporting threshold [ €
(—00,00). To be more concrete, we observe Yo, where
0O; C {1,...,d} indicates the subset of observations from
event ¢ that occur above the threshold [ whereas Y, with
C; = {1,...,d}\O; are the censored data falling in the
interval (—oo,l). Due to partial censoring, the observed
information D; for event 7 is

D; ={Yi(s;);d € Oi} U {Yi(s;) < 1;j € Ci}
Hence, the likelihood for the process 9¥; given 6;,D; is
L(946;,D;)
— (Yo, [9:.60) |

y<i1

p(y|YOi Y, ai)dy (3‘6)



Figure 1: Four realizations from the log-Gauss-Pareto process (3.3) with Z ~ GPD(u = 0,0 = 1,£ = 0.5), A ~ exp(1),
w ~ uniform(S), and a = 0.5. The process has been censored below 0.lmm. The A correspond to the process origin
w for each of the four realizations.

Z=3.00; A=0.49 Z=0.89;A=0.88
10.0 —
7.5 " .
] precip (mm)
5.0
" 10.0
2.5~ o
7.5
0.0-
5.0
> Z=0.27; . =0.59 Z=0.28; A =0.63
10.0 2.5
75 ‘a
. origin
50— "* )
n a" .. A ©
b
0.0- : - B

T T T T ™ T T T T
00 25 50 75 10000 25 50 7.5 100
X



where p(Yp,|9;,0;) and p(y|Yo,,¥;,0;) are multivariate
Gaussian densities derived from (3.5). To handle inte-
gration in (3.6) we follow the augmentation method of
DeOliveira (2005) by embedding Monte-Carlo integration
within our Bayesian MCMC. The exact algorithm is dis-
cussed in 3.2.

3.1.2 Process level

Here we specify the model for the process ¥; = (Z;,¢) .
By construction, we have that {Z;}7 “ GPD (0,1,¢).
The large scale trend ¢ is modeled as a Gaussian process
whose d-dimensional projection is multivariate normal:
e ~ Ng(0,02A4.), where Ay_ is a d x d correlation ma-
trix with entries Ay, (j,k) = exp (—||s; — skl|/¢:). Let-
ting v = (£,02,¢.), the density of the process model J;
given v is

[ -1/6-1
p(¥i|v) x exp {—%‘ge Ay s} (1+&Zi), :

3.1.3 Prior

Prior distributions for the parameters v = (£, 02, ¢.) and
0; = (\i,a,w;), are assumed to be independent. For o2
we use the conjugate prior 02 ~ IG (a./2,b./2) where
IG (a, b) stands for the inverse Gamma distribution with
mean b/(a — 1). We also specify ¢. ~ IG(ce, d.). For the
shape parameter £ we use a normal prior { ~ N(mg, Ug)

and we let {\;};_, “d Gamma (ax, Bx) where ay and by
may be determined by initial hypotheses about the spa-
tial extent of storms. Lacking a priori information about

the center of extreme 24 hour precipitation events, we
let {w;}i, % Uniform(S). Lastly, a is assumed to
be a fixed constant. In practice it is difficult to esti-
mate o unless the set of observations are very dense.
For our analysis of Section 4, we fit the model by fix-
ing a € {0.1,0.2,...,1.9} and select the corresponding «
with the best fit as judged by goodness of fit criterion.

Thus the prior distributions for » and 6; are given by

p(v) o< exp {_(5_”15)2} (U?)—as/zq

21}?
xexp{ -2\ (6.)"
p 20_3 €
p(0;) x )\?*_1 exp {—b A}

3.2 MCMC sampling

For each i € {1,...,n}, the hierarchical model detailed
above yields the following posterior density given the data

D;

p(Ye,, 9, 0;,v|D;)
x p(9;|v)p(0:)p(v)p(D;|Ye,, 94, 0:)p(Ye, |9, 6;)
oc p(9i|v)p(8;)p(v)
1

— T —
<80, e {5 (0 - ) 357 (% - )

< I1 1vien<nys
JjEC;

where Y; = (Yo,,Ye,) denotes the ‘full’ vector of log
transformed measurements. The censored components
{yij,j € Ci} of the vector Y; are initialized at the cen-
soring limit [ and then sampled individually at each itera-
tion of the MCMC from their respective full conditionals
which are univariate truncated normal:

p (yl]‘ﬁla 01'3 v, DZ?j S Cl)
=P <y2]|Y;(])71927 0i7 v, 7j € Cz)
T y-1 T -1
o N (%‘ + i) B, () Yiti) = i) vig = ”z’(j)zel(ﬂ”i(ﬁ)
X Ly <iy-
Here Yj(;) is ¥; with the jth element removed, v;(;) is the
Jjth column of ¥y, with the jth element removed, ¥, ;)
is Yg,with the jth row and column removed and wv;; is
the jth diagonal element of ¥g,. This data augmentation
for censored observations ensures that likelihood contri-
butions given the data D; follow (3.6). See DeOliveira
(2005) for further details. Under the assumption that

Y; and (Y¢,,D;) contain the same information, the full
conditionals for € and o2 can be sampled directly

p(ag‘ﬂi70iafv¢67YC”Di,i = 1,...,n>
:p(03|192-,02-,§,¢57y;,¢: 1,...,77,)

1 1
=1G (2(d + a.), §(b€ + sTA_lz-:)) ,

p(€|Zi70i7VaYCi7Di,i: 1,...,n)
:p(€|Zi70iay7Yi’i:1,...7’[’1)

- Nd (i:l’a7 KE) 3
where i, = .7 AN (Vi + g, — logZi1), A. =
A;j +30, 2511 and 74, = diag (Xg,) /2. The remaining

full conditionals are non-standard and require Metropolis
Hastings sampling. Letting

p(Yi|9:,60;) = Ng (1, 20,) 5



we have

p (Zi|67 01’7 v, YCﬂDl)
o p(Zile,0:.Y;) oc (1+€Z) 7 p(Y;]9:,0,).

p(€|Zi,0:,v.Ye,, Diyi=1,....n)

ool 55

=1

p(¢£|ﬂi70i7€’U§7YCi7IDiai = 1a cee 7”)
x p(¢ele, o2)

1
o [Ag.| Y% exp {—WETA%IS}
g

X (¢s)7c£71 exp {_Z)E} .

p(Ni] Y4, o, wi, Yo, D)
= p()\2|1927a7w17 YL)
oc XA Hexp {—baAi } p(Yi|94, 6;).

p(wi|19a >‘ia Q, YCm Dl)
= p(wl|19a )‘i7 a, K) X p(}/ﬂﬁu 91)

For most parameters, we use normal proposals. For the
non-negative parameters A\; and ¢. proposals are made
with log A} ~ N(logAi, 1) and log ¢, ~ N(log ¢, v:),
where the candidate values A}, ¢. are accepted with prob-
ability

p(\i|94, @, wi, Yo, Di) log A
max 4 0, ’
p()‘l|7~92) O, Wi, YC’i; Dz) log by

and

ma. {0 p(¢;‘19i,0i,§,0§,YCi,Di7i:].,...,TL) 10g¢/5}
x1 0, - .
p((btf‘ﬂia 01"570-527 YCi?Di7Z = 17 e 7n) IOg (be

Normal proposal distributions are also used for ¢ and
Z;, taking care that the initialized values for ¢ and
{Z}N | satisfy min;—1__ {1 + £Z;} > 0. Any propos-
als & ~ N(§,v¢), Z] ~ N(Z;,z) outside of the support
for their respective full conditionals are accepted with nil
probability. In the application below, proposals for the
origin parameters w; were uniform on S which worked
well, but a normal proposal could also be used.

3.3 Spatial prediction

Recall that our primary goal is to make predictions for
{Vi(s)}ses given observations {D;}"_,. In practice, pos-
terior predictive distributions can be produced by sam-
pling from the predictive distribution along a finite lat-

tice S = {31,...,8m}, conditional on Y;,4;,0;. In or-
der to do this, we must first sample the scale trend
€ = (e(51),...,e(8m)) € R™ at prediction sites condi-

tioned on the vales € at the observation sites. The distri-
bution of the Gaussian process model for the scale surface
€ at both the prediction and observation sites is

5 A, Al
< c ) |¢Ea0—g ~ Nm+d (070—? ( Adm X:L )> )

where A,,,, Agm are the corresponding matrices generated
from the correlation function exp(—||s — s'||/¢.). Hence,
we sample from the conditional distribution

le, 02,02 ~ N (i1 028 )

where A, = A, — A} AZ'Agy, and i, = A AZ'e. Next,
consider the distribution of the data generating model at

the prediction and observation sites

( Y ) 9,.0,,8
iu’i,m

o (( 5 ) )

where p; ., is a vector with entries y;; ,, = log Z; +¢(s;)—
(135 — will/A:)™ and Xg, m, Xe,,dm are the matrices gen-
erated from the covariance function K (s,s’|0;). Conse-
quently, we sample from the conditional distribution

T
Eei,dm,
S,

Eei,m
201 7d7TL

@i‘lfi’ﬁi’eivé ~ Np, (/]'m i97> )



Figure 2: Map of synoptic stations over south central

Sweden.
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where Sg, = S, m + 24, 4mZe, S6,.am and
B = +Egi,dm25i1 (Y, — ;).

The sampling is repeated for each iteration of the MCMC,
yielding a posterior predictive distribution {,;)l(k)}év:l =
{exp(#*)}Y_,. The resulting posterior predictive dis-
tributions can then be used to calculate point estimates
from quantiles and uncertainty is based on the distribu-

tion spread.

4 Extreme Summer precipitation
over south central Sweden

We apply our model to extreme Summer 24 hour pre-
cipitation totals gathered from synoptic stations of the
Swedish Meteorological and Hydrological Institute. The
data is open access and available at http://www.smhi.
se. We focus our study to south central Sweden (below
N 65° latitude) during the summer months June, July
and August where precipitation falls almost exclusively
as rain. Daily observations span years 1961-2011. We se-
lect only observations with highest quality control flags.
With these data, non-zero precipitation below 0.lmm is
reported as zero, hence we set the left-censoring limit
to 0.lmm for all observations. Based on record length
and completeness, 21 stations were selected as observation
sites while an additional 21 sites with sparse observations
were designated for validation. Figure 2 is a map of the
region of interest and locations of the synoptic stations.

Table 1: Specification of hyper-parameters for MCMC.

0’? Pe 3 A
a: =H| cc = me =.50| ay = .10
be=2|d.=.25| v7=.03| by=".10

To designate observations that are extreme, with each
day t in the record {1961 : 2011} we first calculate
VP = maXseys,,..,s,3 Ve(8) where {s1,...,54} is the set
of d = 21 observation locations. Then we select dates
t for which V™ exceeded the 95th percentile of daily
maximum observations {V;™**},ct1961:2011}. This subset
of data displayed strong temporal dependence containing
multiple clusters of consecutive dates. To rule out depen-
dent observations we select the dates corresponding to
the largest V;™** within each cluster of consecutive days.
This resulted in a final sample of n = 59 dates with no
evidence of temporal dependence. There were no missing
data in this sample.

We fit our model using the MCMC sampling scheme
described in Section 3.2 with 60,000 iterations. Pro-
posal variances ¥y, 1., %¢, 10z were tuned using prelim-
inary runs such that acceptance rates were between .25
and .40 (Gelman et al., 1996). Convergence of preliminary
runs were monitored using trace plots. Posterior distri-
butions for 02, ¢. and A were not sensitive to prior speci-
fication and for these parameters vague priors were used.
The specification of hyper-parameters is given in Table 1.
Preliminary MCMC runs indicated that the shape param-
eter ¢ is difficult to estimate which is typical for spatial
extremes (see e.g. Berrocal et al., 2014; Thibaud et al.,
2013). Hence, we chose an informative prior based on
previous literature for extreme precipitation where anal-
yses typically suggested & € (0,1). In the final MCMC,
the first 10,000 iterations were discarded as burn-in and
then further thinned every 50 iterations to reduce serial
correlations of the w;. This resulted in a posterior sample
of size N = 1000. Due to the difficulty in estimating «,
multiple chains were run for each a € {0.1,0.2,...,1.9}.
Because the number of parameters does not change as
we vary «, we can compare model fit directly using the
negative log-likelihood (deviance) at the data generating

level N
D=-2) log {me(%,én} NENCSY
i=1 k=1

where Y;(k) = (Yoi,YC(f)), represent MCMC draws for
censored observations concatenated with uncensored ob-
servations. Note that (4.1) is derived from (3.6) and lower
deviance scores correspond to better fit.

Figure 3 implies that the best model in terms of the
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Figure 3: Deviance scores (4.1) of model fit versus
smoothness parameter .

o
S
&
0
o
3 5 |
c ©~
g ©
= i
° 8 |
0
n
o
S |
@
Yo [ [ [
0.5 1.0 1.5
o

deviance score corresponds to @ = 0.3. Hence, the re-
mainder of the results are shown for @« = 0.3. Overall,
it was difficult to detect significant differences in results
for a € (0.1,1]. Varying a € (0.1,1] had little effect on
predictive performance and while the value of the range
parameter \; adjusted accordingly, posterior distributions
of the remaining parameters did not noticeably change.
We did notice that performance deteriorated for o > 1.
The MCMC procedure yields posterior point estimates

of the event centers @; := N~! Zivzl wl(k). As an addi-
tional diagnostic, we examine the concordance between
the estimated event center w; and location of observed
spatial maxima sj*** := argmax,e(s,,....s,} Vi(s). While
the true spatial maxima and even center w; are unknown,
one would expect the observed s;"®* to be “close” to ;.
Indeed, Figure 4 supports a positive association between
location of the observed maxima and the estimated event
centers, particularly in the meridional (N-S) direction.
The remaining fitted parameter estimates were con-
structed using posterior means. Specifically, é = 0.29,
62 = 3.70 and g?)e = 26.67. The distributions of the point

estimates {\;}7_, and {Z;}?_, are displayed in Figure 6.

4.1 Evaluating predictions

The MCMC algorithm generates posterior predictive dis-
tributions

N
Fgl) (v) =N~ Z l{vgug’”(g)p

where v(k)(§) represents the MCMC draw from the pre-

)

dictive distribution at location § for iteration k. We eval-

Figure 4: Posterior mean of origin centers @; versus loca-

tion of maximum observation s;"**
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Figure 5: Distribution of posterior means for the range
A; and intensities Z; for each fitted date 1 =1,...,59.

Range
o _
<t
o |
[sp]
>
(&)
&
g &
o
L
9_
e I ]
4 5
A
A
Intensity
A |
oA
(&)
5 © -
>
g © 1
LLq__
N_
cD_I T T T 1
04 06 08 10 1.2
Z

10

uate the predictive distribution using the probability inte-
gral transform (PIT). If the distribution £ is ideal, then
probability integral transforms {F’ g,(z)(Vi(é)}f:l should be
uniformly distributed on (0,1) (See e.g. Gneiting et al.,
2007). Figure 6 displays the PIT histograms evaluated
for the 21 validation sites. One should expect a reason-
able amount of variance from the solid horizontal line
indicating perfect uniformity. For reference, confidence
bands indicating approximate 90 percent confidence in-
tervals of the bar heights are shown. While some loca-
tions display a slight ‘U’ shape indicating underdisper-
sion, overall the predictive distributions appear skillful
when compared with random samples from a standard
uniform distribution.

5 Discussion

We introduced Gauss-Pareto processes as a flexible class
of models for extreme precipitation that can be fit us-
ing standard MCMC techniques for Bayesian hierarchical
modeling while retaining essential non-trivial dependence
characteristics of popular max-stable and Pareto process
models. Unlike the models used in Davison et al., 2012;
Thibaud et al., 2013; Sang and Gelfand, 2009, spatial pre-
diction is straightforward via conditional sampling from
latent Gaussian processes and the hierarchical structure
allows one to consider larger areas of interest by allow-
ing the center and range of precipitation events to vary
from storm to storm. Predictive distributions validated
at holdout locations appear skillful and simulations from
the process also appear realistic. There have been a very
limited number of works for spatial prediction of extreme
precipitation in the strict sense that we introduce in Sec-
tion 2. and comparison with the alternative methods de-
scribed in Ferreira and DeHaan (2012) and Thibaud and
Opitz (2013) are still pending, nonetheless our results ap-
pear promising.

Our methodology can be used for several applications
in climate modeling such as fusion of climate model out-
put with observational data for downscaling and testing
distributional concordance between observed extremes
and climate models, these are considerations for future
work. Another interesting extension is motivated by the
fact that extreme 24 hour precipitation displays strong
temporal dependence. Consider the spatio-temporal
model

V(s,t) = Z(t) exp (W (s, t))

where W is now a spatio-temporal Gaussian process and
7 is a Heavy-tailed time dependent process. Fitting a
spatio-temporal model would allow the borrowing of in-
formation from time-dependent observations leading to
the incorporation of more data, although characterizing
the dependence structure of Z is more challenging. A



Figure 6: Probability integral transform histograms of the predictive distributions at 21 validation sites . Solid
horizontal lines correspond to perfect uniformity. Confidence bands (dashed lines) are provided for reference, bin
heights from random draws of a standard uniform distribution should fall outside of the dashed lines in approximately
ten percent of cases.
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spatio-temporal model allows probabilistic forecasts of
future precipitation given past observations that are ex-
treme which is perhaps of greater interest than the purely
spatial prediction we consider in this work.
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