Introduction

e Numerous events display the human and financial costs associated with extreme physical

and environmental phenomena

6/08 Cedar Rap1ds IA (Dav1d Greedy/Getty Images) 1/13 Beijing, China (Diego Azubel/EPA)

9/11 Manor, TX (Jay Janner/Austin American Statesman/AP) 2/13 Boston, MA (Gene J. Puskar/Associated Press)

e We are interested in characterizing the probability distribution of such extreme events

over a spatial region T C R¢.

e Data consist of measurements recorded at fixed locations t; € T, j = 1,...,m resulting in

vector observations
v — (Yt(i) y ()
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D"~ o
¢ th) CR
where Y i =1,2,... are independent and identically distributed.

e To characterize extremes we consider the limit of point-wise maximums

1 (n) d
max Y, —b, (t)} — {Xt}er, aSn —> o0 (1)
{an (t) i=1,...n teT el

where a, (t) and b, (t) are normalization functions.

e The limiting process {Xi},.; models worst case scenaria and must be max-stable
(Resnick 1987):

Max-stable process

For independent copies Xt(i), i=1,..

such that

.,n of Xy, there exists functions ¢, (t) and d,, (t)

1 (n) d
max X, —d, (t)} = {X;}
{Cn (t) i=1,...n teT et

e All max-stable processes have a spectral representation for their finite dimensional distri-
bution functions (de Haan 1984):

de Haan’s spectral representation

Let A be a measure on S and g¢(s) : T xS — R, such that for all t € T,
J58t(s) A (ds) < oo. Then for every x = (xq,,...,x;,) € R”

A (ds)
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F(x):=P (X, <x,j=1,...,
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Max-stable models

e By specifying the measure A and parametric family of spectral functions
{g¢(s]@),0 € ® C R”}, one can construct flexible parametric models for multivariate ex-

tremes.

e Examples

— Max-linear model

L
0.

F(x|0) =exp{ — Y max 23}, 6y > 0. (2)
kzlj:L...,m xtj

— Extremal Gaussian model (Schlather 2002)

F (x|0) =exp —/ max Zﬁ t],tk\H

j=1,...m

ds ;. (3)

m—1
Y], /) (V)
where p (t;,t;]0) =Y, p (t;,t]0) P (tk, t;|0) is the correlation function of a Gaussian

random field on 7.

e Realizations from the extremal Gaussian model with stable correlation function

p (t,s10) = exp |~ ([lt—s] /61)*| .6, > 0,6, € (0,2 @)
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Problem Formulation

e Many useful max-stable models including (2) and (3) have no tractable likelihood

d

8Xt1 s 8xtm

F (x]|0) =?

e Standard inferential methods unavailable.
MLE Bayesian Inference
e Bivariate maximum composite likelihood estimator (MCLE) exists (Padoan et. al 2010)

for some models including (3)

Ovicie = arg mmZ Z / (X |9)

0cO =11<j<k<m

— Not available for max-linear models (2).

— Some models are unidentifiable through pairwise marginals.

Solution

e Minimum distance method (Wolfowitz 1957).

argmin/m(Fn (z) — F (2|0))° 1 (dz)

0cO
where F, 1s the empirical distribution function.

— Equivalent to minimizing the continuous ranked probability score (CRPS).
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CRPS M-estimation

o Let F (x]|0) =Py (X < x) be a multivariate CDF. Define the continuous ranked probability
score (CRPS) as

Eo(x) = | (F(2/6)~1{x<2})’u(d2) 8
where UL 1s a tuning measure.

e For X\ X® X £ Fy,, define the minimum CRPS estimate of 6 as
0, = arg minz Eo (X(i)) (6)
0cO —1

Consistency and asymptotic normality
Subject to mild regularity conditions the following results hold as n — oo
e (Consistency) 0,5 0.
o (Asymptotic normality) /n (én — 90) 4N (07H9_0 1]90H0_O 1)

where elements of the p X p matrices Hg, and Jg, are

(HHO)ij: Rmaae (z]0) 89] (z|0) u (dz) (7)
and
d d

) = [ o Bon(o1:72) 3 (2160) S5 F (l60) 1 ) s ) ®)

with By, (21,22) = F (21 \22|00) — F (21|60) F (22/60) .

Remark: We have identified a concrete specification of the tuning measure u that allows

accurate numerical evaluation of the expressions (3) - (8) 1in a wide variety of max-stable

models.

Simulation Study

e Using the model (3) with correlation function (4), we set 8y = (100, 1) and simulated 100
replications at m = 30 uniformly sampled locations over a 500 x 500 grid. Realizations

were generated using the R package SpatialExtremes (Ribatet 2012).

e For sample sizes n = 100 and n = 1000 we numerically optimize CRPS criterion (6).

Table: Empirical mean and standard deviation from 100 replications of the CRPS M-

estimator. Coverage rates are calculated numerically using plug-in estimates of expres-

sions (7) and (8).

0 (100) 6, (1)

n 100 1000 | 100 1000

mean 110.56 97.00 1.25 1.10

sd 113.73 32.890.63 0.34

95 coverage| 0.98 0.96 [0.90 0.92
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