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Introduction
• Numerous events display the human and financial costs associated with extreme physical

and environmental phenomena
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• We are interested in characterizing the probability distribution of such extreme events

over a spatial region T ⊂ Rd
.

• Data consist of measurements recorded at fixed locations t j ∈ T, j = 1, . . . ,m resulting in

vector observations
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where Y(i), i = 1,2, . . . are independent and identically distributed.

• To characterize extremes we consider the limit of point-wise maximums
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where an (t) and bn (t) are normalization functions.

• The limiting process {Xt}t∈T
models worst case scenaria and must be max-stable

(Resnick 1987):

Max-stable process
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• All max-stable processes have a spectral representation for their finite dimensional distri-

bution functions (de Haan 1984):

de Haan’s spectral representation
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Max-stable models
• By specifying the measure λ and parametric family of spectral functions

{gt (s|θ) ,θ ∈ Θ ⊂ Rp}, one can construct flexible parametric models for multivariate ex-

tremes.

• Examples

– Max-linear model
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– Extremal Gaussian model (Schlather 2002)
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where ρ (ti, t j|θ) = ∑m

k=1
ρ̃ (ti, tk|θ) ρ̃ (tk, t j|θ) is the correlation function of a Gaussian

random field on T .

• Realizations from the extremal Gaussian model with stable correlation function

ρ (t,s|θ) = exp

�
−(�t− s�/θ1)

θ2

�
,θ1 > 0,θ2 ∈ (0,2] (4)
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Problem Formulation
• Many useful max-stable models including (2) and (3) have no tractable likelihood
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• Standard inferential methods unavailable.

MLE BayesianIInference

• Bivariate maximum composite likelihood estimator (MCLE) exists (Padoan et. al 2010)

for some models including (3)
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– Not available for max-linear models (2).

– Some models are unidentifiable through pairwise marginals.

Solution
• Minimum distance method (Wolfowitz 1957).
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where Fn is the empirical distribution function.

– Equivalent to minimizing the continuous ranked probability score (CRPS).

CRPS M-estimation
• Let F (x|θ)=Pθ (X ≤ x) be a multivariate CDF. Define the continuous ranked probability

score (CRPS) as
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where µ is a tuning measure.

• For X(1),X(2), . . . ,X(n) i.i.d.∼ Fθ0
, define the minimum CRPS estimate of θ0 as
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Consistency and asymptotic normality

Subject to mild regularity conditions the following results hold as n → ∞

• (Consistency) θ̂n

p−→ θ0.

• (Asymptotic normality)
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where elements of the p× p matrices Hθ0
and Jθ0

are
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with βθ0
(z1,z2) = F (z1∧ z2|θ0)−F (z1|θ0)F (z2|θ0) .

Remark: We have identified a concrete specification of the tuning measure µ that allows

accurate numerical evaluation of the expressions (5) - (8) in a wide variety of max-stable

models.

Simulation Study
• Using the model (3) with correlation function (4), we set θ0 = (100,1) and simulated 100

replications at m = 30 uniformly sampled locations over a 500× 500 grid. Realizations

were generated using the R package SpatialExtremes (Ribatet 2012).

• For sample sizes n = 100 and n = 1000 we numerically optimize CRPS criterion (6).

Table: Empirical mean and standard deviation from 100 replications of the CRPS M-

estimator. Coverage rates are calculated numerically using plug-in estimates of expres-

sions (7) and (8).

θ1 (100) θ2 (1)

n 100 1000 100 1000

mean 110.56 97.00 1.25 1.10

sd 113.73 32.89 0.63 0.34

.95 coverage 0.98 0.96 0.90 0.92
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