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Modeling spatial extremes

Why the standard geostatistical approach is undesireable

• Gaussian processes {W (s)}
s2R2 are independence models for spatial extremes, i.e. the probability of

two simultaneously extreme observations tends to zero:

lim
t!•

P(min{W (s1),W (s2)}> t)

P(W (s1)> t)
= 0

• Insufficient in capturing aggregate effects of extreme precipitation leading to soil saturation and sub-
sequent landslides and flooding.

• Marginals are not Pareto or generalized extreme value distributions that arise from exceedances or
block-maxima.

We seek a statistical model that...

• Exhibits non-trivial tail dependence.

• Can be fit with established methods.

• Provides predictions at unobserved locations.

A non-trivial storm model

V (s) := Z exp{e(s)+B(s)� g(s)}. (1)

• Z - generalized Pareto distributed (GPD) with distribution function

G(z) = 1� (1+x z)�1/x

+ ,

characterizes the overall intensity of the storm.

• {B(s)}
s2R2 - Gaussian process, independent of Z with semi-variogram

g(s) = (ks�wk/l )a, l > 0,a 2 (0,2),

where B(w) = 0 a.s.

– w and l are the random center and range of a storm.

– a controls smoothness of the storm profile.

• {e(s)}
s2R2 - large scale trend surface, captures local effects such as elevation.

Z = 3.00; � = 0.49 Z = 0.89; � = 0.88 Z = 0.28; � = 0.63
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Figure 1: Three simulated storms from the Gauss-Pareto model with a = 1 and e ⌘ 0. Precipitation

below 0.1mm has been censored.

Inference

An MCMC algorithm was developed to fit the model (1) using three hierarchies

[Data] ⇥ [Process] ⇥ [Prior]

p(y|Z,",l ,w,a)⇥ p(Z|x )p("|q)⇥ p(l ,w,a,x ,q |J)

where
Y (s) := {logV (s)|Z,e,w,l ,a,x}

s2R2 (2)

is a Gaussian process with covariance

S(s1,s2) = l

�a {g(s1)+ g(s1)�ks1� s2ka} ,

and mean
µ(s) := logZ + e(s)� g(s).

Hence, d-dimensional projections Y = (Y (s1), . . . ,Y (sd

)) of (2) have density

p(y|Z,",l ,w,a) = N

d

(µ,⌃). (3)

MCMC Details

• Gibbs sampler developed with a Gaussian process model for p("|q).

• By construction p(Z|x ) is GPD.

• Independent proper priors specified for p(w,l ,a,x ,q |J).

• Posterior predictive distributions at unobserved locations s̃ are generated by sampling from
the Gaussian distribution p(Y (s̃)|Y ) determined by (3).

• Censored observations can also be incorporated by sampling from truncated Gaussian at
each MCMC iteration.

Storms in southern Sweden

• Extreme 24 hour precipitation recorded by the Swedish Meteorological and Hydrological Institute
(www.smhi.se) from 1961-2011 at 42 synoptic stations with 21 locations held out for validation.

• Select n = 59 dates comprising independent extreme 24 hour precipitation events during summer
months June, July and August.
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Figure 2: Elevation map and location of 42 synoptic stations

in southern Sweden. Blue indicates station was used in model

fitting. Black stations were held out for validation.

Results

• MCMC algorithm run for 60,000 iterations.

• After a burn-in period, parameter estimates are constructed using posterior means.

• We found a difficult to estimate. Hence, we determine a by comparing the negative log-likelihood
(deviance) at the data level

D(a) =� log p(y|Z,",l ,w,a)

• Location of observed maxima s

max = argmin
s2{s1,...,s21}

V (s) expected to be close to estimated storm center ŵ .

• Posterior predictive distributions F

s

(v) = ÂN

k=1 1{vv

(k)(s)} at validation sites are evaluated using prob-
ability integral transforms, i.e. if F

s

is an ideal forecaster for V (s) then F

s

(V (s)) should be uniformly
distributed.
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Figure 3: (left panel) Deviance score for a 2 {0.1,0.2, . . . ,1.9}. (center and right panel) Location

of observed maxima versus estimated storm center.
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Figure 4: Probability integral transform histograms for predictive distributions at 21 validation

sites.

For details on this research and other projects
please visit:

http://www.stat.lsa.umich.edu/~bobyuen

For updates on this and other research, visit

http://www.stat.lsa.umich.edu/~bobyuen
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