Estimating Stochastic Bounds for Multivariate Tail Dependence

R．A．Yuen ${ }^{\dagger}$ ，Department of Statistics，University of Michigan

Max－linear models

－Let Z_{1}, Z_{2}, \ldots be heavy－tailed＂shocks＂to a system of components $D=\{1, \ldots, d\}$ ． －Consider weights $\theta_{j k}>0, j=1, \ldots, p$ ，such that

$$
\begin{equation*}
X_{j}=\bigvee_{k=1}^{p} \theta_{j k} Z_{k}, \tag{1}
\end{equation*}
$$

measures the peak stress on component j ，due to shocks Z_{1}, Z_{2}

$-Z_{1}, Z_{2}, \ldots$ are iid with $\mathbb{P}\left(Z_{1} \leq z\right)=e^{-1 / z}$

－Weights sum to unity：$\sum_{k=1}^{p} \theta_{j k}=1, j=1, \ldots, d$ ．
$-X_{j} \stackrel{d}{=} Z_{1}$ for all $j=1, \ldots, d$ ．
－Models of type（1）are frequently encountered in insurance，finance，and reliability，as models for dependence under worst case scenaria．
－The max－linear equation（1）can be expressed in matrix notation

$$
\begin{equation*}
\mathbf{X}=\Theta \oplus \mathbf{Z} \tag{2}
\end{equation*}
$$

where $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)^{\top}, \mathbf{Z}=\left(Z_{1}, \ldots, Z_{p}\right)^{\top}$ ，and Θ is the $d \times p$ matrix with entries $\theta_{j k}$ ． The max－linear operator \otimes performs matrix multiplication with sum replaced by max．

Characterizing tail dependence

－Distribution function：

$$
F_{\theta}(\mathbf{x}):=\mathbb{P}(\mathbf{X} \leq \mathbf{x})=\exp \left[-\sum_{k=1}^{p} \bigvee_{j=1}^{d} \theta_{j k} / x_{j}\right]
$$

－Tail exponent function：

$$
V_{\theta}(\mathbf{x}):=-\log F_{\theta}(\mathbf{x})=\sum_{k=1}^{p} \bigvee_{j=1}^{d} \theta_{j k} / x_{j} .
$$

Extremal coefficient function

Let $J \subset D$ ．A popular summary measure for tail dependence is the extremal coeffi－ cient function

$$
\vartheta(J):=\sum_{k=1}^{p} \bigvee_{j \in J} \theta_{j k}
$$

$\vartheta: 2^{D} \rightarrow[1,|D|]$ ，is roughly the effective number of independent variables in $\left\{X_{j}, j \in J\right\}$ ，for all $J \in 2^{D}$
$\mathbb{P}\left(X_{j} \leq x, j \in J\right)=\mathbb{P}\left(X_{1} \leq x\right)^{\vartheta(J)}$.

Inference problem

－Estimation of θ is a difficult problem．
－p maybe unknown or infinite．
－No likelihood for $d>2$ 2，no MLE or Bayesian inference．
－With respect to worst case scenario，estimating upper bounds is a viable alternative．

Upper bound model（UBM）

－Assume the following：
（A1）Power set factors：Exactly one Z_{k} effects a single subset J_{k} in the power set of the system $\{1, \ldots, d\}$ ．
Example：

$J_{k}=\{1,3,7\}$	$J_{\ell}=\{1,7\}$
X_{1}	X_{1}
${ }^{\text {日l少 }}$	${ }^{\text {日昂 }}$
$z_{k} \xrightarrow{\theta_{3 k}} X_{3}$	
$\theta_{\text {tk }}$	$\theta_{\theta \gamma}$
X_{7}	x_{7}

（A2）Homogeneity：$\theta_{1 k}=\theta_{3 k}=\theta_{7 k}=\beta_{k}, \theta_{1 \ell}=\theta_{3 \ell}=\beta_{\ell}$ ．
－Let Ψ be the $d \times p$ binary matrix whose columns correspond to the support of $J_{k}, k=$ $1, \ldots, p=2-1$ ．

$$
\Psi:=\left[\begin{array}{ccccccccccc}
1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 0 & \cdots & 1 & 1 \\
0 & 1 & \cdots & 0 & 1 & 0 & \cdots & 0 & \cdots & 1 & 1 \\
0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 & \cdots & 1 & 1 \\
\vdots & \vdots & \cdots & : & : & : & \cdots & 1 & \cdots & : & : \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 1 & \cdots & 0 & 1
\end{array}\right]_{d \times p}
$$

－Under（A1）and（A2），the model（2）becomes

$$
\begin{equation*}
\tilde{\mathbf{X}}=\Psi \otimes(\mathbf{Z} \circ \boldsymbol{\beta}), \tag{3}
\end{equation*}
$$

where $\boldsymbol{\beta}=\left(\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{p}\right)^{\top}$ and \circ is element－wise multiplication．

Properties of the UBM

－Tail exponent function

$$
\tilde{V}_{\beta}(\mathbf{x})=\left(\mathbf{x}^{-\top} \otimes \Psi\right) \boldsymbol{\beta},
$$

where $\mathbf{x}^{-\top}=\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{d}}\right)$
－Extremal coefficient function

$$
\tilde{\vartheta}(D)=\|\boldsymbol{\beta}\|_{1} .
$$

－（Strokorb and Schlather 2013）：If \mathbf{X} is a max－linear model of type（2）with $\vartheta(J)=\tilde{\vartheta}(J)$ for all $J \subset D$ ，then

$$
\mathbb{P}(\mathbf{X}>\mathbf{x}) \leq \mathbb{P}(\tilde{\mathbf{X}}>\mathbf{x})
$$

－Induced graph structure

$$
G=\Psi \operatorname{diag}(\boldsymbol{\beta}) \Psi^{\top},
$$

$G_{i j}=0$ implies \tilde{X}_{i} and \tilde{X}_{j} are independen．
－Model constraints on β
（C1）Non－negative： $\boldsymbol{\beta} \in \mathbb{R}_{+}^{p}$ ．
（C2）L_{1} bound： $1 \leq\|\boldsymbol{\beta}\|_{1} \leq d$ ．
（C3）Standard margins：$\Psi \beta=1$

Estimation for UBM

\bullet Observing iid $\mathbf{X}_{1} \ldots, \mathbf{X}_{n}$ ，estimate $\boldsymbol{\beta}$
Number of parameters $p=2^{d}-1 \gg$
－No tractable likelihood．

$$
\begin{aligned}
& \text { - Let } \mu \text { be a measure on }\left(\mathbb{R}_{+}^{d}, \mathcal{B}\left(\mathbb{R}_{+}^{d}\right)\right) \text { and define } \\
& \qquad \hat{\boldsymbol{\beta}}_{n}=\underset{\beta \in B}{\arg \sin } \int_{\mathbb{R}_{+}^{d}}\left\{\exp \left[-V_{\beta}(\mathbf{x})\right]-F_{n}(\mathbf{x})\right\}^{2} \mu(d \mathbf{x})
\end{aligned}
$$

－$\left.F_{n}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \mathbb{I} \mathbb{I} \mathbf{x}_{i} \leq \mathbf{x}\right\}$
$-B$ is a feasible region defined by constraints $\mathrm{C1}$－ C 3 ．
－If μ is discrete with atoms $\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}$ having equal mass，then

$$
\hat{\boldsymbol{\beta}}_{n}=\underset{\beta \in B}{\arg \min \left\|\mathbf{f}_{\beta}-\mathbf{f}_{n}\right\|^{2}, ~}
$$

where
$-\mathbf{f}_{\beta}=\left(\exp \left[-V_{\beta}\left(\mathbf{x}_{i}\right)\right], i=1, \ldots, M\right)$
$-\mathbf{f}_{n}=\left(F_{n}\left(\mathbf{x}_{i}\right), i=1, \ldots, M\right)$
－（Yuen and Stoev 2013）：Under mild regularity，$\hat{\boldsymbol{\beta}}_{n}$ in（4）is a consistent estimato

Simulation
We simulate $n=50$ iid realizations from the UBM with $d=7 \Longrightarrow p=2^{d}-1=127$ ．

Figure 1：Circles indicate estimates of $\hat{\boldsymbol{\beta}}_{n}$ under independence（left）and complete de－ pendence（right）．Red dots indicate true β ．

For details on this research and other projects please visit：
http：／／www．stat．Isa．umich．edu／～bobyuen

Partially supported by Univ．of Mich．Rackhan
Merit Fellowship and NSF－AGEP grant DMS
1106695.

