Max-linear models

eletZ,Z,,...beheavy-tailed “shocks” to a system of components D = {1,...,d}.
e Consider weights 6, >0, j=1,..., p, such that

p
X;=\/ 03z (1)
k=1

measures the peak stress on component j, due to shocks Zy,2,, ...
~Z1,2,,... are iid with P (Z; < 7) = e /%,

— Weights sum to unity: Yr ,0x=1, j=1,....d.

~X; L7 forall j=1,....,d.

e Models of type (1) are frequently encountered in insurance, finance, and reliability, as

models for dependence under worst case scenaria.

e The max-linear equation (1) can be expressed 1n matrix notation
X=0QZ, (2)

where X = (Xi,....X,) . Z = (Z,,... ,Zp)T, and O is the d X p matrix with entries 0.

The max-linear operator @ performs matrix multiplication with sum replaced by max.

Characterizing tail dependence

e Distribution function:

Fo (x):=P(X <x)=exp —Z\/ij/xj .

e Tail exponent function:

Vo (x) := —logFy (x) = i \/ Oir/x;.
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Upper bound model (UBM)

e Assume the following:

(A1) Power set factors: Exactly one Z; effects a single subset J; in the power set of
the system {1,...,d}.

Example:
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(A2) Homogeneity: 0, = 03 = 07 = By, 01, = 03 = L.
e Let W be the d X p binary matrix whose columns correspond to the support of Ji,k =
l,....,p=2¢—1.

_10...011...()...11_
01---010---0---11
Y—=100---001---0---11
00---100---1---01
_ ddxp
e Under (A1) and (A2), the model (2) becomes
X=Y©(Zog), (3)
where B = (f,. .. ,B,,)T and o is element-wise multiplication.
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Estimation for UBM

e Observing 1id Xi,...,X,, estimate 3.
e Number of parameters p =29 —1>> n.

e No tractable likelihood.

An M-estimator for max-linear models

e Let 1 be a measure on (Ri, B (]Ri)) and define

B, = argmin | {exp[~V; (x)] — F, ()} 1 (d
peB  JRY
- Fn (X) — %Z?:l H{X,-gx}-

— B 1s a feasible region defined by constraints C1- C3.

e If 1 1s discrete with atoms Xy, ..., Xy having equal mass, then
A . 2
/Bn:argmlan,B_an ’ (4)
B€B
where

—f3=(exp[—Vz(x)],i=1,....M)".
~f,=(F,(x),i=1,....M)".

Extremal coefficient function

LetJ C D. A popular summary measure for tail dependence 1s the extremal coeffi-
cient function )
O(J) =) \ O
k=1 jeJ
O : 2P — [1,|D]|], is roughly the effective number of independent variables in
{X;,jeJ}, forall J € 2P

P(X;,<x,jel)=PXx <x)*V.

Inference problem

e Estimation of 0 is a difficult problem.
e p maybe unknown or infinite.
e No likelihood for d > 2, no MLE or Bayesian inference.

e With respect to worst case scenario, estimating upper bounds is a viable alternative.

Properties of the UBM

e Tail exponent function

~

Vs (x) = (X_T @‘P) 3,
where x~ ' = (l l) .

X0 Xy

e Extremal coefficient function
(D) =18l -
e (Strokorb and Schlather 2013): If X 1s a max-linear model of type (2) with

~

¥ (J) =9 (J) forall J C D, then

~

P(X >x) <P(X>x).

e Induced graph structure
G = Wdiag (3)¥',

G,; = 0 implies X; and X; are independent.

e Model constraints on 3
(C1) Non-negative: 3 € RE.
(C2) Libound: 1 < ||8||, <d.
(C3) Standard margins: W3 = 1.

e (Yuen and Stoev 2013): Under mild regularity, 3, in (4) is a consistent estimator.

Simulation

e We simulate n = 50 iid realizations from the UBM withd =7 = p=2¢—-1=127.

Complete Dependence

Independence n=100, d=7, p=127 n=100, d=7, p=127
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Figure 1: Circles indicate estimates of BA,,, under independence (left) and complete de-

pendence (right). Red dots indicate true (3.
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