

Max-stable models

• For iid observations $Y^{(i)}(\mathbf{s})$, i = 1, 2, ... at fixed points $\mathbf{s} \in S$, we consider the limit of point-wise maxima

$$\left\{\frac{1}{a_n(\mathbf{s})}\max_{i=1,\ldots,n}Y^{(i)}(\mathbf{s})-b_n(\mathbf{s})\right\}_{\mathbf{s}\in S}\xrightarrow{d}\left\{X(\mathbf{s})\right\}_{\mathbf{s}\in S},$$

where $a_n(\mathbf{s})$ and $b_n(\mathbf{s})$ are normalization functions.

• The limiting process $X := \{X(\mathbf{s})\}_{\mathbf{s} \in S}$ is a model for worst case scenaria and must be max-stable (Resnick 1987):

Max-stable process

For independent copies $X^{(i)}(\mathbf{s}), i = 1, ..., n$ of $X(\mathbf{s})$, there exists functions $c_n(\mathbf{s})$ and $d_n(\mathbf{s})$ such that

$$\left\{\frac{1}{c_n(\mathbf{s})}\max_{i=1,\dots,n}X^{(i)}(\mathbf{s})-d_n(\mathbf{s})\right\}_{\mathbf{s}\in S} \stackrel{d}{=} \{X(\mathbf{s})\}$$

• All max-stable processes have a spectral representation for their finite dimensional distribution functions (de Haan 1984):

$$\mathbb{P}(X(\mathbf{s}_1) \le x_1, \dots, X(\mathbf{s}_d) \le x_d) := F(\mathbf{x}) = \exp\left\{\int_{\mathbb{W}} \left(\prod_{j=1}^{m} \left(\sum_{j=1}^{m} \left(\sum_{j=1}^{$$

where the *spectral measure* H controls the dependence structure of X.

• Many flexible max-stable models have been proposed by specifiying a parametric family of spectral measures, $\{H_{\theta} : \theta \in \mathbb{R}^p\}$. Examples include the well known Smith storm model (Smith 1990), Brown-Resnick (Brown and Resnick 1977) and the following extremal Gaussian.

Extremal Gaussian model (Schlather 2002)

$$F_{\boldsymbol{\theta}}(\mathbf{x}) = \exp\left\{-\int_{\mathbb{R}^d} \left(\max_{j=1,\dots,d} \frac{w_j}{x_j}\right) \frac{\sqrt{|\Omega_{\boldsymbol{\theta}}|} e^{-\frac{1}{2}\mathbf{w}^\top \Omega}}{\left(\sqrt{2\pi}\right)^{d-1}}\right\}$$

where Ω_{θ} is the precision matrix induced by a correlation function $\rho(\mathbf{s}_i, \mathbf{s}_j | \boldsymbol{\theta})$.

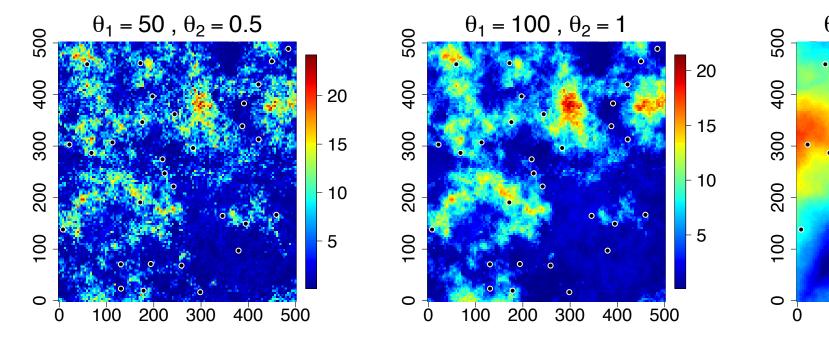


Figure 1: Three realizations from the extremal Gaussian model with stable *correlation function:* $\rho(\mathbf{s}_i, \mathbf{s}_j | \boldsymbol{\theta}) = \exp\left[-\left(\|\mathbf{s}_i - \mathbf{s}_j\| / \boldsymbol{\theta}_1\right)^{\boldsymbol{\theta}_2}\right], \boldsymbol{\theta}_1 > 0, \boldsymbol{\theta}_2 \in (0, 2]$

- Most useful max-stable models including (1) have no tractable likelihood when d > 2, making inference very challenging.
- Current state of art: Bivariate maximum composite likelihood estimator (MCLE) (Padoan et. al 2010)

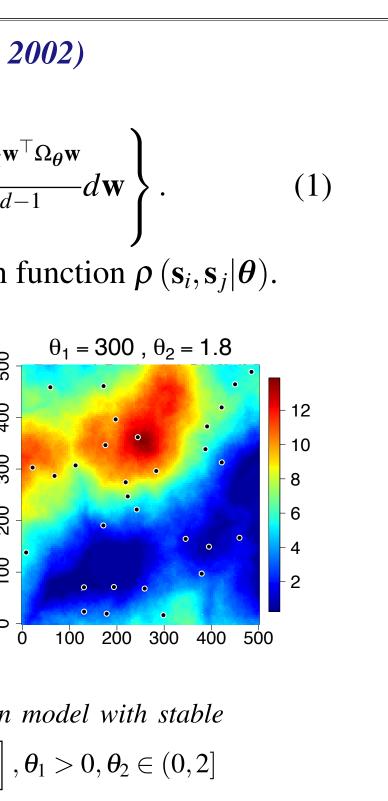
Minimum distance estimation for max-stable models

R.A. Yuen[†] and Stilian Stoev, Department of Statistics, University of Michigan

as $n \to \infty$

s∈S

$$\max_{j,\dots,d} \frac{w_j}{x_j} H(d\mathbf{w}) \\
= \text{ of } X$$



Minimum distance estimation

- Let $F_n(\mathbf{z}) = n^{-1} \sum_{i=1}^n \mathbb{I} \{ X^{(i)}(\mathbf{s}_j) \le z_j, j = 1, \dots, d \}$ be the *d*-dimensional empirical distribution function generated by a random sample $X^{(i)}(\mathbf{s}_1), \ldots, X^{(i)}(\mathbf{s}_d), i = 1, \ldots, n$.
- Let μ be a tuning measure that emphasizes regions of the sample space.

Minimum distance criterion
$$M_{n}(\boldsymbol{\theta}) = \int_{\mathbb{R}^{d}_{+}} \left(F_{n}\left(\mathbf{z}\right) - F_{\boldsymbol{\theta}}\left(\mathbf{z}\right)\right)^{2} \boldsymbol{\mu}\left(d\mathbf{z}\right)$$

Minimum distance estimator

$$\hat{D}_n = \operatorname*{arg\,min}_{\boldsymbol{ heta}\in\Theta} M_n(\boldsymbol{ heta})$$
 \circ

• Subject to mild regularity conditions, $\hat{\theta}_n \xrightarrow{p} \theta_0$ and \sqrt{p} where elements of the $p \times p$ matrices J_{θ_0} and D_{θ_0} are

 $\left(J_{\boldsymbol{\theta}_{0}}\right)_{ij} = \int_{\mathbb{R}^{d}} \frac{\partial}{\partial \boldsymbol{\theta}_{i}} F_{\boldsymbol{\theta}}\left(\mathbf{z}\right) \frac{\partial}{\partial \boldsymbol{\theta}_{i}} F_{\boldsymbol{\theta}}\left(\mathbf{z}\right) \boldsymbol{\mu}\left(d\mathbf{z}\right)$

and

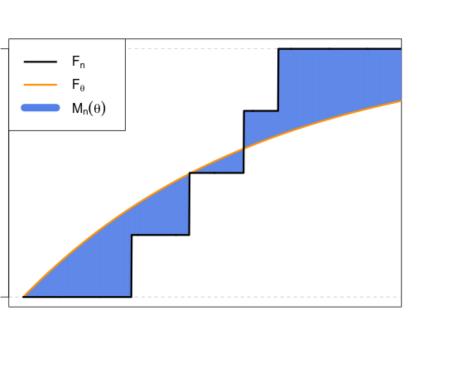
with
$$B_{\theta_0}(\mathbf{z}_1, \mathbf{z}_2) = F_{\theta_0}(\mathbf{z}_1 \wedge \mathbf{z}_2) - F_{\theta_0}(\mathbf{z}_1) F_{\theta_0}(\mathbf{z}_2)$$
.

Simulation Study

- Using the model (1) with stable correlation function we set $\theta_0 = (100, 1)$ and simulated 100 replications at d = 30 uniformly sampled locations over a 500×500 grid. Realizations were generated using the **R** package **SpatialExtremes** (Ribatet 2012).
- For each replication, we generate samples of n = 100 and n = 1000. \land
- We specify an emperical measure for μ and numerically optimize the criterion $M_n(\theta)$.

Table: *Empirical mean and standard deviation from 100 replications of the minimum* distance estimator. Coverage rates are calculated numerically using plug-in estimates of the matrices $J_{\hat{\theta}_n}$ and $D_{\hat{\theta}_n}$.

		$\boldsymbol{ heta}_{1}\left(100 ight)$		$\theta_2(1)$	
	п	100	1000	100	1000
	mean	110.56	97.00	1.25	1.10
	sd	113.73	32.89	0.63	0.34
	.95 coverage	0.98	0.96	0.90	0.92



$$\sqrt{n}\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right) \xrightarrow{d} \mathcal{N}\left(0, J_{\boldsymbol{\theta}_{0}}^{-1} D_{\boldsymbol{\theta}_{0}} J_{\boldsymbol{\theta}_{0}}^{-1}\right)$$

 $\overline{\mathbf{F}}_{\boldsymbol{\theta}_{0}}(\mathbf{z}_{2}) \boldsymbol{\mu}(d\mathbf{z}_{1}) \boldsymbol{\mu}(d\mathbf{z}_{2})$

Application to Swiss rainfall

• We model maximum single day rainfall during summer months using the extremal Gaussian model (1) with Matérn correlation function

 $\rho\left(\mathbf{s}_{i},\mathbf{s}_{j}|\boldsymbol{\theta}\right) = \frac{\left(\|\mathbf{s}_{i}-\mathbf{s}_{j}\|/\boldsymbol{\theta}_{1}\right)^{\boldsymbol{\theta}_{2}}}{2^{\boldsymbol{\theta}_{2}-1}\Gamma(\boldsymbol{\theta}_{2})} K_{\boldsymbol{\theta}_{2}}\left(\|\mathbf{s}_{i}-\mathbf{s}_{j}\|/\boldsymbol{\theta}_{1}\right), \quad \boldsymbol{\theta}_{1} > 0, \boldsymbol{\theta}_{2} > 0.$

 K_{θ_2} denotes the modified Bessel function of order θ_2 .

• Data are recorded from 1962-2008 at 35 observation locations near Zurich, Switzerland. (Data courtesy of R package SpatialExtremes)



- Summer maxima are first transformed to unit Fréchet margins. Each year is treated as an independent observation.
- Specifying an empirical measure for μ , we optimize the criterion $M_n(\theta)$ resulting in estimates

$$\hat{\theta}_1 = 18.46(25.58),$$

Standard errors are in parentheses.

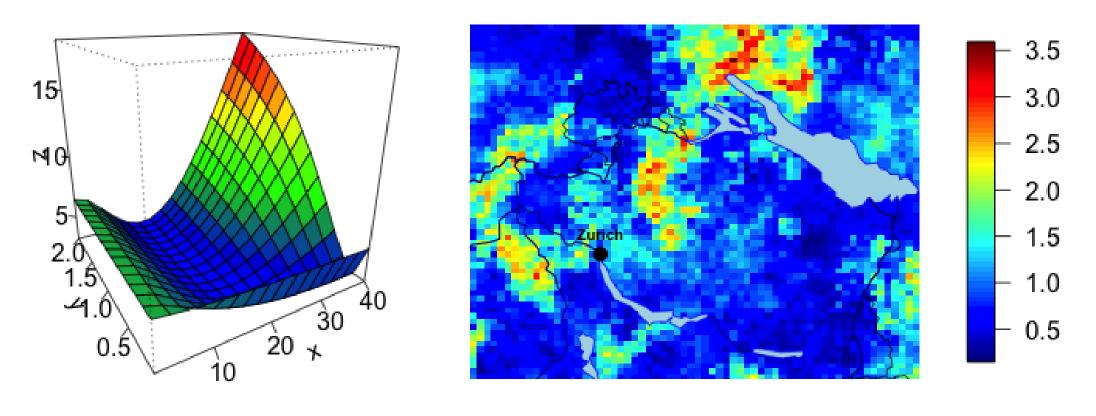


Figure 2: $M_n(\theta)$ criterion surface for Swiss rainfall data (left). A single realization from the fitted model (right)

For details on this research and other projects please visit:

http://www.stat.lsa.umich.edu/~bobyuen

[†]Partially supported by Univ. of Mich. Rackham Merit Fellowship and NSF-AGEP grant DMS 1106695.Thank you to the STATMOS research network on Statistical Methods in Oceanic and Atmospheric Sciences.

 $\hat{\theta}_2 = 0.5038(1.133).$

