A hierarchical Gauss-Pareto model for extreme precipitation Application to storms in southern Sweden

Robert A. Yuen¹ and Peter $Guttorp^2$

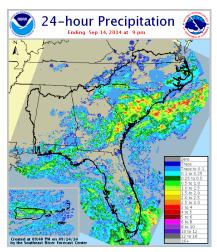
¹University of Michigan ²University of Washington

September 15th, 2014 UM Statistics Student Seminar Ann Arbor, MI

Statistical modeling of extreme precipitation

Reasons for a stochastic model

- Make comparisons with weather models and remotely sensed data.
- Evaluate climate model output.
- Make predictions at unobserved sites.
- Inform decisions regarding soil saturation, landslides and potential flooding.



source: radar.weather.gov

Statistical modeling of extreme precipitation

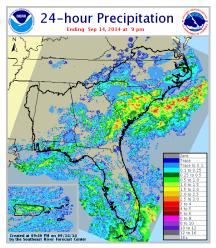
Let $\{W(s)\}_{s \in S}$ be a stochastic model for storms over region of interest $S \subset \mathbb{R}^2$.

Important characteristics of extreme precipitation data

- Non-smooth (non-differentiable).
- Left censored observations.
- Pareto tails.
- Non-trivial tail dependence:

$$\lim_{t\to\infty} \frac{P(\min\{W(s_1), W(s_2)\} > t)}{P(W(s_1) > t)} > 0.$$

Fact: Gaussian processes are tail independent.



source: radar.weather.gov

Statistical modeling of extreme precipitation

Let $\{W(s)\}_{s\in S}$ be a stochastic model for storms over region of interest $S \subset \mathbb{R}^2$.

Important characteristics of extreme precipitation data

- Non-smooth (non-differentiable).
- Left censored observations.
- Pareto tails.
- Non-trivial tail dependence:

 $\lim_{t\to\infty}\frac{P(\min\{W(s_1),W(s_2)\}>t)}{P(W(s_1)>t)}>0.$

Fact: Gaussian processes are tail independent.

A non-trivial model

$$V_i(s) := Z_i \exp \left\{ B_i(s) - \gamma_i(s) + \varepsilon(s) \right\}$$

• Z_i - generalized Pareto distributed (GPD) with distribution function

$$G(z) = 1 - (1 + \xi z)_{+}^{-1/\xi},$$

characterizes the overall intensity of the storm *i*.

• $\{B_i(s)\}_{s\in\mathbb{R}^2}$ - Gaussian process, independent of Z_i with semi-variogram

$$\gamma_i(s) = (\|s - \omega_i\|/\lambda_i)^{lpha}, \ \lambda > 0, lpha \in (0,2),$$

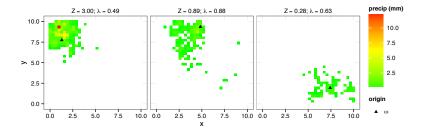
where $B_i(\omega_i) = 0$ a.s.

- ω_i and λ_i are the *random* center and range of a storm *i*.
- α controls smoothness of the storm profiles.
- {ε(s)}_{s∈ℝ²} large scale trend surface, captures local effects such as elevation.

A non-trivial model

$$V_i(s) := Z_i \exp \{B_i(s) - (\|s - \omega_i\|/\lambda_i)^{\alpha} + \varepsilon(s)\}$$

Three realizations from the Gauss-Pareto model



Values below 0.1mm have been censored.

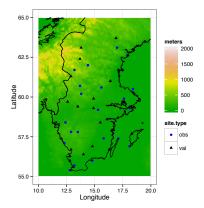
RA Yuen (UM)

Gauss-Pareto storm models

Storms in south central Sweden

Extreme 24 hour precipitation data

- Swedish Meteorological and Hydrological Institute (www.smhi.se)
- Observations from 1961-2011 at 42 synoptic stations with 21 locations held out for validation.
- Select *n* = 59 independent extreme 24 hour precipitation events during summer months June, July and August.
 - Compute observed maximum for each date in record.
 - Select dates corresponding to top 5% of observed maxima.
 - Remove temporal clustering by selecting date of largest maxima within each cluster



Inference

Observe that

$$V_i(s) := Z_i \exp \{B_i(s) - (\|s - \omega_i\|/\lambda_i)^{\alpha} + \varepsilon(s)\}$$

$$Y_i(s) := \log V_i(s)$$

$$= B_i(s) - (\|s - \omega_i\|/\lambda_i)^{\alpha} + \log Z_i + \varepsilon(s)$$

Hence, *d*-dimensional projections $\mathbf{Y}_i = (Y_i(s_1), \dots, Y_i(s_d))$ conditional on Z_i are multivariate Gaussian with covariance

$$\Sigma(s_1, s_2) = \lambda^{-\alpha} \{ \|s_1 - \omega_i\|^{\alpha} + \|s_2 - \omega_i\|^{\alpha} - \|s_1 - s_2\|^{\alpha} \},\$$

and mean

$$\mu_i(s) := \log Z_i + \varepsilon(s) - (\|s - \omega_i\|/\lambda_i)^{\alpha}.$$

Inference

An MCMC algorithm was developed to fit the model using three hierarchies

$$\begin{array}{ll} [\mathsf{Data}] & \times & [\mathsf{Process}] & \times & [\mathsf{Prior}] \\ \\ \prod_{i=1}^n p(\boldsymbol{Y}_i | Z_i, \varepsilon, \lambda_i, \omega_i, \alpha) \times p(Z_i | \xi) p(\varepsilon | \theta) \times p(\lambda_i, \omega_i, \alpha, \xi, \theta | \vartheta) \end{array}$$

where

$$p(\mathbf{Y}_i | Z_i, \varepsilon, \lambda_i, \omega_i, \alpha) = N_d(\mu_i, \mathbf{\Sigma}_i).$$

 $p(Z|\xi) = GPD(1, 1, \xi).$
 $p(\varepsilon|\theta) = N_d(0, C(\theta)).$

Partial censoring

Information from storm i is

$$\mathcal{D}_i = \{Y_i(s_j), j \in O_i\} \cup \{Y_i(s_j) \leq I, j \in C_i\},\$$

where $C_i \subset \{1, \ldots, d\}$ denote censored locations and $O_i = \{1, \ldots, d\} \setminus C_i$.

• Likelihood contribution from storm *i* is

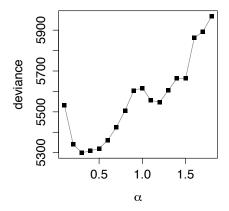
$$p(\mathbf{Y}_{O_i}|Z_i,\varepsilon,\lambda_i,\omega_i,\alpha)\int_{\mathbf{y}\leq 1} p(\mathbf{y}|\mathbf{Y}_{O_i},Z_i,\varepsilon,\lambda_i,\omega_i,\alpha)d\mathbf{y}$$

where $p(\mathbf{Y}_{O_i}|Z_i, \varepsilon, \lambda_i, \omega_i, \alpha)$ and $p(\mathbf{y}|\mathbf{Y}_{O_i}, Z_i, \varepsilon, \lambda_i, \omega_i, \alpha)$ are multivariate Gaussian densities derived from the model.

• Monte-Carlo integration is embedded in the Markov chain by sampling from the univariate truncated Gaussian at each iteration.

MCMC Results

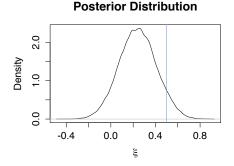
• Smoothness parameter α is difficult to estimate. Run multiple chains for $\alpha \in \{0.1, 0.2, \dots, 1.9\}$, select best α based on *deviance score*.



MCMC Results

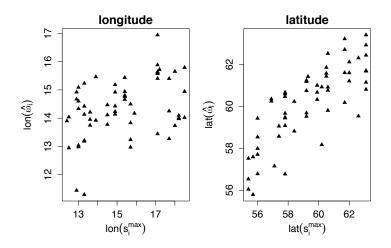
• Vague prior for ξ lead to poor mixing. Used informative prior

$$p(\xi) \propto \exp\left\{-\frac{(\xi-0.5)^2}{2(0.03)}\right\}.$$



Location of storms

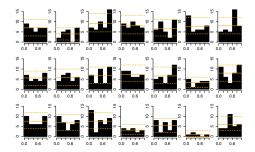
- $\hat{\omega}_i = \sum_{k=1}^N \omega_i^{(k)}$ estimated *center* of storm.
- $s_i^{max} = \underset{s \in \{s_1, \dots, s_d\}}{\operatorname{arg\,max}} Y_i(s)$ location of observed maximum.



Prediction

- Posterior predictive distribution at unobserved location š sample from conditional distribution p(Y_i(š)|Y_i, Z_i, λ_i, ω_i, α, ε) at each iteration.
- Evaluate predictions based on probability integral transform (PIT).

PIT histograms at 21 validation sites



Space-time extension

- Purely spatial model:
 - Limits in application.
 - Discarding of time dependent data.
- A Space-time extension:

$$V(s,t) = Z(t) \exp \{W(s,t) - \gamma(s,t)\}$$

- Incorporate more information of observations clustered in time.
- More challenging to model the time dependence in Z(t).

Thanks to Stilian Stoev and Veronica Berrocal for many ideas and helpful discussions.