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Statistical modeling of extreme precipitation

Reasons for a stochastic model

Make comparisons with weather
models and remotely sensed data.
Evaluate climate model output.
Make predictions at unobserved sites.
Inform decisions regarding soil
saturation, landslides and potential
flooding.

source: radar.weather.gov
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Statistical modeling of extreme precipitation

Let {W (s)}s2S be a stochastic model for storms over region of interest S ⇢ R2.

Important characteristics of extreme
precipitation data

Non-smooth (non-di�erentiable).
Left censored observations.
Pareto tails.
Non-trivial tail dependence:

lim
t!•

P (min{W (s
1

),W (s
2

)}> t)
P (W (s

1

)> t) > 0.

Fact: Gaussian processes are tail
independent.

source: radar.weather.gov

RA Yuen (UM) Gauss-Pareto storm models UM Stat Student Seminar 3 / 16



Statistical modeling of extreme precipitation

Let {W (s)}s2S be a stochastic model for storms over region of interest S ⇢ R2.

Important characteristics of extreme
precipitation data

Non-smooth (non-di�erentiable).
Left censored observations.
Pareto tails.
Non-trivial tail dependence:

lim
t!•

P (min{W (s
1

),W (s
2

)}> t)
P (W (s

1

)> t) > 0.

Fact: Gaussian processes are tail
independent.

RA Yuen (UM) Gauss-Pareto storm models UM Stat Student Seminar 4 / 16



A non-trivial model

Vi(s) := Zi exp{Bi(s)� gi(s)+ e(s)}

Zi - generalized Pareto distributed (GPD) with distribution function

G(z) = 1� (1+xz)�1/x

+ ,

characterizes the overall intensity of the storm i .

{Bi (s)}s2R2

- Gaussian process, independent of Zi with semi-variogram

gi(s) = (ks �wik/li)
a , l > 0,a 2 (0,2),

where Bi (wi ) = 0 a.s.
I

wi and li are the random center and range of a storm i .
I

a controls smoothness of the storm profiles.
{e(s)}s2R2

- large scale trend surface, captures local e�ects such as elevation.

RA Yuen (UM) Gauss-Pareto storm models UM Stat Student Seminar 5 / 16



A non-trivial model

Vi(s) := Zi exp{Bi(s)� (ks �wik/li)
a + e(s)}

Three realizations from the Gauss-Pareto model

Z = 3.00; � = 0.49 Z = 0.89; � = 0.88 Z = 0.28; � = 0.63
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Values below 0.1mm have been censored.

RA Yuen (UM) Gauss-Pareto storm models UM Stat Student Seminar 6 / 16



Storms in south central Sweden

Extreme 24 hour precipitation data

Swedish Meteorological and
Hydrological Institute (www.smhi.se)
Observations from 1961-2011 at 42
synoptic stations with 21 locations
held out for validation.
Select n = 59 independent extreme 24
hour precipitation events during
summer months June, July and
August.

I Compute observed maximum for
each date in record.

I Select dates corresponding to
top 5% of observed maxima.

I Remove temporal clustering by
selecting date of largest maxima
within each cluster
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Inference

Observe that

Vi(s) := Zi exp{Bi(s)� (ks �wik/li)
a + e(s)}

Yi(s) := logVi(s)
= Bi(s)� (ks �wik/li)

a + logZi + e(s)

Hence, d-dimensional projections Yi = (Yi (s1

), . . . ,Yi (sd )) conditional on Zi are
multivariate Gaussian with covariance

⌃(s
1

,s
2

) = l

�a {ks
1

�wika +ks
2

�wika �ks
1

� s
2

ka} ,

and mean
µi(s) := logZi + e(s)� (ks �wik/li)

a .
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Inference

An MCMC algorithm was developed to fit the model using three hierarchies

[Data] ⇥ [Process] ⇥ [Prior]

n
’
i=1

p(Y i |Zi ,e,li ,wi ,a)⇥p(Zi |x )p(e|q)⇥p(li ,wi ,a,x ,q |J)

where
p(Y i |Zi ,e,li ,wi ,a) = Nd(µ i ,⌃i).

p(Z |x ) = GPD(1,1,x ).

p(e|q) = Nd(0,C(q)).
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Partial censoring

Information from storm i is

Di = {Yi(sj), j 2 Oi}[{Yi(sj) l , j 2 Ci} ,

where Ci ⇢ {1, . . . ,d} denote censored locations and Oi = {1, . . . ,d}\Ci .

Likelihood contribution from storm i is

p(Y Oi |Zi ,e,li ,wi ,a)
Z

yl1
p(y |Y Oi ,Zi ,e,li ,wi ,a)dy

where p(Y Oi |Zi ,e,li ,wi ,a) and p(y |Y Oi ,Zi ,e,li ,wi ,a) are multivariate Gaussian
densities derived from the model.
Monte-Carlo integration is embedded in the Markov chain by sampling from the
univariate truncated Gaussian at each iteration.
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MCMC Results

Smoothness parameter a is di�cult to estimate. Run multiple chains for
a 2 {0.1,0.2, . . . ,1.9}, select best a based on deviance score.
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MCMC Results

Vague prior for x lead to poor mixing. Used informative prior

p(x ) µ exp

⇢
�(x �0.5)2

2(0.03)
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Location of storms

ŵi = ÂN
k=1

w

(k)
i estimated center of storm.

smax
i = argmax

s2{s
1

,...,sd}
Yi (s) location of observed maximum.
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Prediction

Posterior predictive distribution at unobserved location s̃ - sample from conditional
distribution p(Yi (s̃)|Yi ,Zi ,li ,wi ,a,e) at each iteration.
Evaluate predictions based on probability integral transform (PIT).

PIT histograms at 21 validation sites
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Space-time extension

Purely spatial model:
I Limits in application.
I Discarding of time dependent data.

A Space-time extension:

V (s, t) = Z (t)exp{W (s, t)� g(s, t)}

I Incorporate more information of observations clustered in time.
I More challenging to model the time dependence in Z(t).
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Thanks to Stilian Stoev and Veronica Berrocal for many ideas and helpful discussions.
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