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This note corrects an error in two related proofs of consistency of com-
munity detection: under stochastic block models by Bickel and Chen [Proc.
Natl. Acad. Sci. USA 106 (2009) 21068-21073] and under degree-corrected

stochastic block model by Zhao, Levina and Zhu [Ann. Statist. 40 (2012)
2266-2292].

This note provides a correction to the proof of consistency of community detec-
tion under degree-corrected stochastic block models [2], published in this journal.
The same error appeared earlier in the proof of consistency under the stochastic
block models [1]. In this note, we provide the correction for the proof of [2], using
the notation of that paper, since the case of the degree-corrected stochastic block
models is more general and includes the regular stochastic block models as a spe-
cial case. Very similar arguments can be used to correct the proof of [1] directly.

We start by very briefly restating notation. Let e be an arbitrary set of label
assignments, ¢ be the true label assignments and ¢ be the maximizer of a com-
munity detection criterion. Let O (e) € REX*K | V(e) ¢ REXKXM 1 e RKXM,
f(e)e RK, where
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We considered community detection criteria that can be written in the form

Q(e)=F<0(e) 7©).

Pn

where 1, = n?p, and p, — 0 is the average probability of an edge in the network.
For any matrix B, || Bl|lco = maxg; | Bx|.

The statement |A(e, ¢)| < M(|| X (e) — X(¢)||oo) below (A.11) in [2] is incor-
rect. (We have replaced M’ and C’ in the original with M/ and C| in this correction
since we will need more constants.) For the proof to go through, we need a differ-
ent way of proving
(1.1) P<15|§l_li‘f§ann|A(e’ ol = Ci|V(e)~1],/4<0) -1,
where §, — 0. Note that (1.1) is similar to the (A.14) in [2], with an extra con-
straint |e — ¢| < §,n. Since we have already proved P(%lé —¢|<é,)— 1in[2],
(1.1) will complete the proof, and the conclusion of Theorem 4.1 in [2] remains
valid.

We first need a lemma based on Bernstein’s inequality.

LEMMA 1.1. Forme{l,...,n},

(1.2) P(ler_nczllim 1X©)|, = 8) <2 (Z) Km2 exp<_

3,un(92 )
4e+3))

The proof of Lemma 1.1 closely follows the proof of (A.2) and (A.3) in [2] and
hence is omitted here.

Proof of (1.1):

By Taylor’s expansion,

0(e) .
F( " f(e)) — F(T(e), f(e))

9
n

9F 2
= — X 0 X ’
oM M=T(e>,t=f(e>vec( @)+ 0(|X@])

where g—AF,I is the partial derivative over the first component (vectorized) of F (M, t).
Similarly,

O(c) .
F( [in ’f(c)> — F(T(0), f(0))
OF 2
oM X o(|x ,
oM M=f(c),t=f(c)vec( ©) +0(|X©])

Since % is continuous with respect to M and ¢, and f(e) and f(e) are continuous

with respect to e,
oF
oM

_OF
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Therefore, since
O(e)

)
n

O(c)

n

A(e,c):F(

_OF
OIM [ M=7(0),t=1 ()

+0(|x@]%) + 01X ©]2).

f(e)) _F(T©. f©) - F( , f(c)) (T, f©)

vec(X (e) — X(c)) + O(|V(e) = I||,) vec(X (e))

we have
|Ae, ¢)| < Mi|X(e) — X(©)| o+ Ma|V(e) 1|, | X (@], + M| X @]
+ Ma| X (©)] 2

Now we prove (1.1), which holds if the following four statements hold:

(1.4) ]P’(l max M| X (&) = X(©], — Ci[V(e)~1],/16 <0) - 1,

<le—c¢|<dun

(1.5) IP’( max M2||X(e)||oo—C1/16§0>—> 1,

1<|e—c|<§yn

(1.6) P(_max M| X@]2, - Ci|V(e)~T],/16 <0) —> 1,

I1<|e—c|<éun

(1.7) P(_max M| X(©|3,— Ci|V(e)=1[,/16 <0) — 1.

1<|e—c|<é,n
The proof of (1.4) is similar to the proof of (A.15) in [2]. Note that %le —c| <

1V (e) = I|l;. So for each m > 1,

P( max Mi[X(e) = X(©)], — Ci|V(e) ~T,/16 > 0)

le—c|=m

<}P’( max |X(e) — X (o), > Cum ) =1.
- le—c|<m " 8Min

Leta =C1/8M; if « > 6C, by (A.2) in [2],

3
I <2K™T2pm exp(—ag—mun>
n

=2K?[K exp(logn — aju,/(8/3n))]".
If ¢ < 6C, by (A.3) in [2],

1= TSP TY Tecn M

=2K*[K exp(logn — a*u,/(16Cn))]".
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In both cases, since A, /logn — oo (A, = npy),

P( max M| X(e) ~ X (@], — Ci|V(e) ~1|,/16> 0)

1<|e—c|<§,n
<X ]P’(ler_ncallém Mi[X(©) = X(© , — C1| V() ~1T],/16 > 0) 0,

as n — 0o, which completes the proof of (1.4).
Equation (1.5) simply follows (A.1) in [2].
We next prove (1.6). For each 1 <m < §,n,

2
P(|£‘1‘i‘m M| X (@2, - Ci

V(e) —]I||1/16>0>

2 C1m
P X — b
= (|e131ca§m [X @] > 8M3n> :

Lete =,/ Sallm a = C1/64M3. Then from Lemma 1.1,

I, < 2K™MT2pm exp(— 3ptne” )
4(e +3)

2
< 2K™H2m exp(— ,u,;s )

=2K™ 2" exp(—aﬂm>
n

2 un\1"
=2K“| Kexp|logn —a— .
n

Since A, /logn — oo,

P(_max  Ms|X(@|2, —Ci|V(e)—T],/16>0)

1<|e—c|<d,n
<Z (max M3|X (@[3, = C1[[V(e) ~ T[,/16 > 0) — 0,

as n — 0o, Wthh completes the proof of (1.6).
We now complete the proof by showing (1.7). For each 1 <m < §,n,

]P’(lemax My X @3, = C1[[V(©) ~ T],/16 > 0)

—c|l=m
2 Cim
=P(||X(c =1.
(1X@1% > gore) =15
Let e = 83}122, o = C1/64M4. Then from Bernstein’s inequality,
3 2
(1.8) I3§2K2exp< L) 2K2exp< Mnm)
4(e +3) n
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Therefore,

P(_max M X©]2,—Ci|ve-1],/16>0)

1<le—c|<8un

o0
<Y P(Ms|X @2, —Ci|V(@© —1|,/16>0) =0  asn— oo.
m=1
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