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This note corrects an error in two related proofs of consistency of com-
munity detection: under stochastic block models by Bickel and Chen [Proc.
Natl. Acad. Sci. USA 106 (2009) 21068–21073] and under degree-corrected
stochastic block model by Zhao, Levina and Zhu [Ann. Statist. 40 (2012)
2266–2292].

This note provides a correction to the proof of consistency of community detec-
tion under degree-corrected stochastic block models [2], published in this journal.
The same error appeared earlier in the proof of consistency under the stochastic
block models [1]. In this note, we provide the correction for the proof of [2], using
the notation of that paper, since the case of the degree-corrected stochastic block
models is more general and includes the regular stochastic block models as a spe-
cial case. Very similar arguments can be used to correct the proof of [1] directly.

We start by very briefly restating notation. Let e be an arbitrary set of label
assignments, c be the true label assignments and ĉ be the maximizer of a com-
munity detection criterion. Let O(e) ∈ RK×K , V (e) ∈ RK×K×M , �̂ ∈ RK×M ,
f (e) ∈ RK , where

Okl(e) = ∑
ij

Aij I {ei = k, ej = l},

Vkau(e) =
∑n

i=1 I (ei = k, ci = a, θi = xu)∑n
i=1 I (ci = a, θi = xu)

,

�̂au = 1

n

n∑
i=1

I (ci = a, θi = xu),

fk(e) = 1

n

n∑
i=1

I (ei = k) = ∑
au

Vkau(e)�̂au.
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We considered community detection criteria that can be written in the form

Q(e) = F

(
O(e)
μn

,f (e)
)
,

where μn = n2ρn and ρn → 0 is the average probability of an edge in the network.
For any matrix B , ‖B‖∞ = maxkl |Bkl|.

The statement |�(e, c)| ≤ M1(‖X(e) − X(c)‖∞) below (A.11) in [2] is incor-
rect. (We have replaced M ′ and C′ in the original with M1 and C1 in this correction
since we will need more constants.) For the proof to go through, we need a differ-
ent way of proving

P

(
max

1≤|e−c|≤δnn

∣∣�(e, c)
∣∣ − C1

∥∥V (e) − I
∥∥

1/4 ≤ 0
)

→ 1,(1.1)

where δn → 0. Note that (1.1) is similar to the (A.14) in [2], with an extra con-
straint |e − c| ≤ δnn. Since we have already proved P( 1

n
|ĉ − c| ≤ δn) → 1 in [2],

(1.1) will complete the proof, and the conclusion of Theorem 4.1 in [2] remains
valid.

We first need a lemma based on Bernstein’s inequality.

LEMMA 1.1. For m ∈ {1, . . . , n},
P

(
max|e−c|≤m

∥∥X(e)
∥∥∞ ≥ ε

)
≤ 2

(
n

m

)
Km+2 exp

(
− 3μnε

2

4(ε + 3)

)
.(1.2)

The proof of Lemma 1.1 closely follows the proof of (A.2) and (A.3) in [2] and
hence is omitted here.

Proof of (1.1):
By Taylor’s expansion,

F

(
O(e)
μn

,f (e)
)

− F
(
T̂ (e), f (e)

)

= ∂F

∂M

∣∣∣∣
M=T̂ (e),t=f (e)

vec
(
X(e)

) + O
(∥∥X(e)

∥∥2
∞

)
,

where ∂F
∂M

is the partial derivative over the first component (vectorized) of F(M, t).
Similarly,

F

(
O(c)
μn

,f (c)
)

− F
(
T̂ (c), f (c)

)

= ∂F

∂M

∣∣∣∣
M=T̂ (c),t=f (c)

vec
(
X(c)

) + O
(∥∥X(c)

∥∥2
∞

)
.

Since ∂F
∂M

is continuous with respect to M and t , and T̂ (e) and f (e) are continuous
with respect to e,

∂F

∂M

∣∣∣∣
M=T̂ (e),t=f (e)

= ∂F

∂M

∣∣∣∣
M=T̂ (c),t=f (c)

+ O
(∥∥V (e) − I

∥∥
1

)
.(1.3)
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Therefore, since

�(e, c) = F

(
O(e)
μn

,f (e)
)

− F
(
T̂ (e), f (e)

) − F

(
O(c)
μn

,f (c)
)

+ F
(
T̂ (c), f (c)

)

= ∂F

∂M

∣∣∣∣
M=T̂ (c),t=f (c)

vec
(
X(e) − X(c)

) + O
(∥∥V (e) − I

∥∥
1

)
vec

(
X(e)

)

+ O
(∥∥X(e)

∥∥2
∞

) + O
(∥∥X(c)

∥∥2
∞

)
,

we have
∣∣�(e, c)

∣∣ ≤ M1
∥∥X(e) − X(c)

∥∥∞ + M2
∥∥V (e) − I

∥∥
1

∥∥X(e)
∥∥∞ + M3

∥∥X(e)
∥∥2
∞

+ M4
∥∥X(c)

∥∥2
∞.

Now we prove (1.1), which holds if the following four statements hold:

P

(
max

1≤|e−c|≤δnn
M1

∥∥X(e) − X(c)
∥∥∞ − C1

∥∥V (e) − I
∥∥

1/16 ≤ 0
)

→ 1,(1.4)

P

(
max

1≤|e−c|≤δnn
M2

∥∥X(e)
∥∥∞ − C1/16 ≤ 0

)
→ 1,(1.5)

P

(
max

1≤|e−c|≤δnn
M3

∥∥X(e)
∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 ≤ 0
)

→ 1,(1.6)

P

(
max

1≤|e−c|≤δnn
M4

∥∥X(c)
∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 ≤ 0
)

→ 1.(1.7)

The proof of (1.4) is similar to the proof of (A.15) in [2]. Note that 1
n
|e − c| ≤

1
2‖V (e) − I‖1. So for each m ≥ 1,

P

(
max|e−c|=m

M1
∥∥X(e) − X(c)

∥∥∞ − C1
∥∥V (e) − I

∥∥
1/16 > 0

)

≤ P

(
max|e−c|≤m

∥∥X(e) − X(c)
∥∥∞ >

C1m

8M1n

)
= I1.

Let α = C1/8M1 if α ≥ 6C, by (A.2) in [2],

I1 ≤ 2Km+2nm exp
(
−α

3m

8n
μn

)

= 2K2[
K exp

(
logn − αμn/(8/3n)

)]m
.

If α < 6C, by (A.3) in [2],

I1 ≤ 2Km+2nm exp
(
−α2 m

16Cn
μn

)

= 2K2[
K exp

(
logn − α2μn/(16Cn)

)]m
.
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In both cases, since λn/ logn → ∞ (λn = nρn),

P

(
max

1≤|e−c|≤δnn
M1

∥∥X(e) − X(c)
∥∥∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

≤
∞∑

m=1

P

(
max|e−c|=m

M1
∥∥X(e) − X(c)

∥∥∞ − C1
∥∥V (e) − I

∥∥
1/16 > 0

)
→ 0,

as n → ∞, which completes the proof of (1.4).
Equation (1.5) simply follows (A.1) in [2].
We next prove (1.6). For each 1 ≤ m ≤ δnn,

P

(
max|e−c|=m

M3
∥∥X(e)

∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

≤ P

(
max|e−c|≤m

∥∥X(e)
∥∥2
∞ >

C1m

8M3n

)
= I2.

Let ε =
√

C1m
8M3n

, α = C1/64M3. Then from Lemma 1.1,

I2 ≤ 2Km+2nm exp
(
− 3μnε

2

4(ε + 3)

)

≤ 2Km+2nm exp
(
−μnε

2

8

)

= 2Km+2nm exp
(
−α

μn

n
m

)

= 2K2
[
K exp

(
logn − α

μn

n

)]m

.

Since λn/ logn → ∞,

P

(
max

1≤|e−c|≤δnn
M3

∥∥X(e)
∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

≤
∞∑

m=1

P

(
max|e−c|=m

M3
∥∥X(e)

∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

→ 0,

as n → ∞, which completes the proof of (1.6).
We now complete the proof by showing (1.7). For each 1 ≤ m ≤ δnn,

P

(
max|e−c|=m

M4
∥∥X(c)

∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

= P

(∥∥X(c)
∥∥2
∞ >

C1m

8M4n

)
= I3.

Let ε =
√

C1m
8M4n

, α = C1/64M4. Then from Bernstein’s inequality,

I3 ≤ 2K2 exp
(
− 3μnε

2

4(ε + 3)

)
≤ 2K2 exp

(
−α

μn

n
m

)
.(1.8)
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Therefore,

P

(
max

1≤|e−c|≤δnn
M4

∥∥X(c)
∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
)

≤
∞∑

m=1

P
(
M4

∥∥X(e)
∥∥2
∞ − C1

∥∥V (e) − I
∥∥

1/16 > 0
) → 0 as n → ∞.
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