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COMMENT

Peter J. Bickel', Elizaveta Levina?, Adam J. Rothman?® and Ji Zhu?

L University of California, Berkeley, ? University of Michigan
and 3 University of Minnesota

The authors offer insightful results on minimax rates for large covariance
matrix estimation under the matrix ¢;-norm that add to the previously known
results on the matrix fo-norm. Incidentally, we expect that some version of
the results on the ¢; and /5 norms in this context can also be developed for
the Wiener norm (see Bickeland Lindner (P011) for more details), defined by
| Xlw = maxy, > {|o;| : |¢ — j| = k}, particularly in the time series domain for
which it was introduced by Wiener.

Minimax risk is often used as a benchmark for the evaluation of an estimation
method, and having optimal tuning parameter rates is helpful for understanding
the behavior of various methods. However, there is also the issue of selecting
the tuning parameter in practice, mentioned in the paper as well, which cannot
be done using the theoretical bounds of this kind and requires cross-validation.
Since this paper studies the convergence in the matrix #;-norm, and most of the
previous literature focuses on convergence in the matrix fo-norm, we decided
to investigate the effect of using various norms for tuning parameter selection
via cross-validation, focusing on the thresholding estimator and the parameter
space P(Gq(p, cnp)). Our expectation was that the empirical risk calculated via a
particular norm would be minimized by the tuning parameter selected by cross-
validation using the same norm, but this turned out not to be the case.

Specifically, we evaluated the performance of the random splitting method
for tuning parameter selection described in Bickel_and Tevina (2008a,H). The
n observations are randomly partitioned M times into a validation set of size
Nva = n/logn and a training set of size ny, = n — ny,. Define the ¢1-norm
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empirical risk Ry, fo-norm empirical risk Ry, and Frobenius norm empirical risk
Ry as follows:

M
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where Z(tr ™) s the sample covariance computed from the training set of the

m-th spht and thresholded at A, and S (vam) ig the sample covariance computed
from the validation set of the m-th split.

We generated an i.i.d. sample of size n from N,(0,%), where ¥ has entries
oij = 0.4-I(|i—j| = 1)+1(i = j). Then we selected the tuning parameters A, Ao,
and Ap by minimizing the empirical risks R;(\), Ra(A), Rr()), respectively. For
each norm, we also computed the “oracle” tuning parameter 5\0 = arg miny Hi A—
Y||. The performance of each of the tuning parameters was evaluated using the
squared Lp risk, the squared Lo risk and the squared Frobenius risk, defined
respectively as

E|25 - 2|3, ElIZ; -3, and E|Z5 - X(Ep~,

where E is the average over simulation replications.

We considered two scenarios, n < p and n > p. In the n < p scenario, we set
n = p/2, where p=30, 50, 100, 200 and 500. We used M=10 random splits to
estimate the empirical risk and a 200 point resolution for A\. We performed 500
independent replications for p < 50 and 100 independent replications for p > 100.
In the n > p scenario, everything was the same, except for n=60, 100, 200, 500,
1,000 and p = n/4.

In Figures D.1 (for n < p) and D.2 (for n > p) we plot the estimated em-
pirical risks. Each plot corresponds to one evaluation criterion, and the curves
on each plot correspond to different methods of selecting the tuning parameter.
Surprisingly, the Frobenius norm tuning is always the closest to the oracle, re-
gardless of the evaluation criterion. This is quite counter-intuitive as one would
expect, and as was also argued in the paper, that for different evaluation criteria
the optimal threshold should be different. Interestingly, however, the Frobenius
norm cross-validation tuning is the only one that was analyzed theoretically, in
Bickel"and Tevina (2008H). We may be observing a finite sample phenomenon,
but it would be interesting to connect this practical observation to the authors’
results on optimal thresholds.
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Figure D.1.  The n < p scenario. Simulated risk for hard thresholding of
the sample covariance matrix with the threshold parameter Ay (solid), Ay
(dots), Ay (dash-dot), and Ap (dashes).
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Figure D.2.  The n > p scenario. Simulated risk for hard thresholding of
the sample covariance matrix with the threshold parameter Ag (solid), A\;
(dots), Ay (dash-dot), and Az (dashes).
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COMMENT

Wei Biao Wu

University of Chicago

I congratulate Professor Cai and Professor Zhou for their timely and im-
portant contribution of sharp minimax convergence rates for estimating large
covariance matrices. The argument for proving the lower bound is quite sophis-
ticated and is of independent interest. As a useful property, for a class of sparse
covariance matrices (cf G4(p, ¢) in their (ITT)), the well-known thresholded covari-
ance matrix estimate of Bickel'and Levina (20085) can achieve the minimax rate,
while for a class of covariance matrices with weakly correlations (cf Fy(p, M) in
(I2) and Hq(p, M) in (I33)), a tapered estimate can also have the minimax rate.
The paper provides, in the minimax sense, a rigorous justification of the use of
the thresholded and the tapered covariance matrix estimates.

My primary concern is the time series application of the large-p-small-n
results from the multivariate setting of independent and identically distributed
p-variate random vectors. In many time series applications, one has only one real-
ization, n = 1. This covariance matrix estimation problem has been discussed by
Wirand Pourahmadi (2009), McMurry and Politid (2010), Bickel and Gel (2001),
and Xiao_and Wil (2002). With n = 1, structural assumptions such as station-
arity are needed so that the covariance matrix is estimable. Here we propose a
possible link between these two settings via block sampling ([Politis, Romano, and
Wolf (1999)). With observations X7, ..., X, from a stationary process (X;)icz,
we can consider the [ = |p/b] blocks X; = (X1,...,Xp), Xo = (Xpi1,.-., X))/,
oo Xy = (X(—1)p415 - - - » X)), with b the block size. Consider the estimation of
3, the b x b covariance matrix of X;. Assuming weak dependence, one would
expect that results similar to (IZH) in their paper can hold.
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