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In this letter, we derive an algorithm that computes the entire solution
path of the support vector regression (SVR). We also propose an unbiased
estimate for the degrees of freedom of the SVR model, which allows
convenient selection of the regularization parameter.

1 Introduction

The support vector regression (SVR) is a popular tool for function estimation
problems, and it has been widely used in many applications in the past
decade, such as signal processing (Vapnik, Golowich, & Smola, 1996), time
series prediction (Müller et al., 1997), and neural decoding (Shpigelman,
Crammer, Paz, Vaadia, & Singer, 2004).

In this letter, we focus on the regularization parameter of the SVR and
propose an efficient algorithm that computes the entire regularized solution
path. We also propose an unbiased estimate for the degrees of freedom of
the SVR, which allows convenient selection of the regularization parameter.

We briefly introduce the SVR and refer readers to Vapnik (1995) and
Smola and Schölkopf (2004) for a detailed tutorial. Suppose we have a set of
training data (x1, y1), . . . , (xn, yn), where the input xi ∈ R

p is a vector with p
predictor variables (attributes), and the output yi ∈ R denotes the response
(target value). The standard criterion for fitting a linear ε-SVR is:

min
β0,β

1
2
‖β‖2 + C

n∑
i=1

(ξi + δi ), (1.1)

subject to yi − β0 − βTxi ≤ ε + ξi ,

β0 + βTxi − yi ≤ ε + δi ,

ξi , δi ≥ 0, i = 1, . . . n.

The idea is to disregard errors as long as they are less than ε, and the ξi , δi

are nonnegative slack variables that allow for deviations larger than ε. C is
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Figure 1: The ε-insensitive loss function. Depending on the values of (yi − fi ),
the data points can be divided into five sets: left, right, center, left elbow, and
Right elbow.

a cost parameter that controls the trade-off between the flatness of the fitted
model and the amount up to which deviations larger than ε are tolerated.

Alternatively, we can formulate the problem using a loss + penalty cri-
terion (Vapnik, 1995; Smola & Schölkopf, 2004):

min
β0,β

n∑
i=1

∣∣yi − β0 − βTxi
∣∣
ε
+ λ

2
βTβ, (1.2)

where |r |ε is the so-called ε-insensitive loss function:

|r |ε =
{

0, if |r | ≤ ε,

|r | − ε, otherwise.

Figure 1 plots the loss function. Notice that it has two nondifferentiable
points at ±ε. The penalty is the L2-norm of the coefficient vector, the same as
that used in a ridge regression (Hoerl & Kennard, 1970). The regularization
parameter λ in equation 1.2 corresponds to 1/C , with C in equation 1.1, and
it controls the trade-off between the ε-insensitive loss and the complexity
of the fitted model.
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In practice, one often maps x onto a high- (often infinite) dimensional
reproducing kernel Hilbert space (RKHS), and fits a nonlinear kernel SVR
model (Vapnik, 1995; Smola & Schölkopf, 2004):

min
f ∈HK

n∑
i=1

∣∣yi − f (xi )
∣∣
ε
+ λ

2
‖ f ‖2

HK
, (1.3)

where HK is a structured RKHS generated by a positive definite kernel
K (x, x′). This includes the entire family of smoothing splines and additive
and interaction spline models (Wahba, 1990). Some other popular choices
of K (·, ·) in practice are

dth degree polynomial : K (x, x′) = (1 + 〈x, x′〉)d ,

Radial basis : K (x, x′) = exp(−‖x − x′‖2/2σ 2),

where d and σ are prespecified parameters.
Using the representer theorem (Kimeldorf & Wahba, 1971), the solution

to equation 1.3 has a finite form:

f (x) = β0 + 1
λ

n∑
i=1

θi K (x, xi ). (1.4)

Notice that we write f (x) in a way that involves λ explicitly, and we will see
later that θi ∈ [−1, 1]. Given the format of the solution 1.4, we can rewrite
equation 1.3 in a finite form:

min
β0,θ

n∑
i=1

∣∣∣∣∣yi − β0 − 1
λ

n∑
i ′=1

θi ′ K (xi , xi ′ )

∣∣∣∣∣
ε

+ 1
2λ

n∑
i=1

n∑
i ′=1

θiθi ′ K (xi , xi ′ ), (1.5)

which we will focus on for the rest of the letter.
Both equations 1.2 and 1.5 can be transformed into a quadratic pro-

gramming problem; hence, most commercially available packages can be
used to solve the SVR. In the past, many specific algorithms for the SVR
have been developed, for example, interior point algorithms (Vanderbei,
1994; Smola & Schölkopf, 2004), subset selection algorithms (Osuna, Fre-
und, & Girosi, 1997; Joachims, 1999), and sequential minimal optimization
(Platt, 1999; Keerthi, Shevade, Bhattacharyya, & Murthy, 1999; Smola &
Schölkopf, 2004). All these algorithms solve the SVR for a prefixed regular-
ization parameter λ (or equivalently C). As in any other smoothing prob-
lem, to get a good fitted model that performs well on future data (i.e., small
generalization error), choice of the regularization parameter λ is critical.
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In practice, people usually prespecify a grid of values for λ that cover a
wide range and then use either cross-validation (Stone, 1974) or an upper
bound of the generalization error (Chang & Lin, 2005) to select a value
for λ.

In this letter, we make two main contributions:

� We show that the solution θ (λ) is piecewise linear as a function of λ,
and we derive an efficient algorithm that computes the exact entire
solution path {θ (λ), 0 ≤ λ ≤ ∞}, ranging from the least regularized
model to the most regularized model.

� Using the framework of Stein’s unbiased risk estimation (SURE) the-
ory (Stein, 1981), we propose an unbiased estimate for the degrees of
freedom of the SVR model. Specifically, we consider the number of data
points that are exactly on the two elbows (see Figure 1): yi − fi = ±ε.
This estimate allows convenient selection of the regularization param-
eter λ.

We acknowledge that some of these results are inspired by one of the au-
thor’s earlier work in the support vector machine setting (Hastie, Rosset,
Tibshirani, & Zhu, 2004).

Before delving into the technical details, we illustrate the concept of
piecewise linearity of the solution path with a simple example. We generate
10 training observations using the famous sinc(·) function:

y = sin(πx)
πx

+ e, (1.6)

where x is distributed as Uniform(−2, 2), and e is distributed as
Normal(0, 0.22). We use the SVR with a one-dimensional spline kernel
(Wahba, 1990),

K (x, x′) = 1 + k1(x)k1(x′) + k2(x)k2(x′) − k4(|x − x′|), (1.7)

where k1(·) = · − 1/2, k2 = (k2
1 − 1/12)/2, k4 = (k4

1 − k2
1/2 + 7/240)/24. Fig-

ure 2 shows a subset of the piecewise linear solution path θ(λ) as a function
of λ.

The rest of the letter is organized as follows. In section 2, we derive the
algorithm that computes the entire solution path of the SVR. In section 3,
we propose an unbiased estimate for the degrees of freedom of the SVR,
which can be used to select the regularization parameter λ. In section 4, we
present numerical results on both simulation data and real-world data. We
conclude with a discussion section.
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Figure 2: A subset of the solution path θ (λ) as a function of λ. Different line
types correspond to θi (λ) of different data points, and all paths are piecewise
linear.

2 Algorithm

2.1 Problem Setup. Criterion 1.5 can be rewritten in an equivalent way:

min
β0,θ

n∑
i=1

(ξi + δi ) + 1
2λ

θTKθ ,

subject to −(δi + ε) ≤ yi − f (xi ) ≤ (ξi + ε),

ξi , δi ≥ 0, i = 1, . . . , n,

where

f (xi ) = β0 + 1
λ

n∑
i ′=1

θi ′ K (xi , xi ′ ), i = 1, . . . , n

K =

 K (x1, x1) · · · K (x1, xn)
...

. . .
...

K (xn, x1) · · · K (xn, xn)


n×n

.
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For the rest of the letter, we assume the kernel matrix K is positive definite.
Then the above setting gives us the Lagrangian primal function:

L P :
n∑

i=1

(ξi + δi ) + 1
2λ

θTKθ +
n∑

i=1

αi (yi − f (xi ) − ξi − ε)

−
n∑

i=1

γi (yi − f (xi ) + δi + ε) −
n∑

i=1

ρiξi −
n∑

i=1

τiδi .

Setting the derivatives to zero, we arrive at:

∂

∂θ
: θi = αi − γi (2.1)

∂

∂β0
:

n∑
i=1

αi =
n∑

i=1

γi (2.2)

∂

∂ξi
: αi = 1 − ρi (2.3)

∂

∂δi
: γi = 1 − τi , (2.4)

where the Karush-Kuhn-Tucker conditions are

αi (yi − f (xi ) − ξi − ε) = 0 (2.5)

γi (yi − f (xi ) + δi + ε) = 0 (2.6)

ρiξi = 0 (2.7)

τiδi = 0. (2.8)

Since the Lagrange multipliers must be nonnegative, we can conclude from
equations 2.3 and 2.4 that both 0 ≤ αi ≤ 1 and 0 ≤ γi ≤ 1. We also see from
equations 2.5 and 2.6 that if αi is positive, then γi must be zero, and vice
versa. These lead to the following relationships:

yi − f (xi ) > ε ⇒ αi = 1, ξi > 0, γi = 0, δi = 0
yi − f (xi ) < −ε ⇒ αi = 0, ξi = 0, γi = 1, δi > 0
yi − f (xi ) ∈ (−ε, ε) ⇒ αi = 0, ξi = 0, γi = 0, δi = 0
yi − f (xi ) = ε ⇒ αi ∈ [0, 1], ξi = 0, γi = 0, δi = 0
yi − f (xi ) = −ε ⇒ αi = 0, ξi = 0, γi ∈ [0, 1], δi = 0.

Notice from equation 2.1 that for every λ, θi is equal to (αi − γi ). Hence,
using these relationships, we can define the following sets that will be used
later when we calculate the regularization path of the SVR:
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� R = {i : yi − f (xi ) > ε, θi = 1} (right of the elbows)
� ER = {i : yi − f (xi ) = ε, 0 ≤ θi ≤ 1} (right elbow)
� C = {i : −ε < yi − f (xi ) < ε, θi = 0} (center)
� EL = {i : yi − f (xi ) = −ε, −1 ≤ θi ≤ 0} (left elbow)
� L = {i : yi − f (xi ) < −ε, θi = −1} (left of the elbows).

For points in R, L, and C, the values of θi are known; therefore, the
algorithm will focus on points resting at the two elbows ER and EL.

2.2 Initialization. Initially, when λ = ∞, we can see from equation 1.4
that f (x) = β0. We can determine the value of β0 via a simple one-
dimensional optimization. For simplicity, we focus on the case that all the
values of yi are distinct, and furthermore, the initial sets ER and EL have at
most one point combined (which is the usual situation). In this case, β0 will
not be unique, and each of the θi will be either −1 or 1. This is so because
we can easily shift β0 a little to the left or the right such that our θi do not
change and we will still get the same error.

Since β0 is not unique, we can focus on one particular solution path, for
example, by always setting β0 equal to one of its boundary values (thus
keeping one point at an elbow). As λ decreases, the range of β0 shrinks,
and at the same time, one or more points come toward the elbow. When a
second point reaches an elbow, the solution of β0 becomes unique, and the
algorithm proceeds from there.

We note that this initialization is different from that of classification. In
classification, quadratic programming is needed to solve for the initial solu-
tion, which can be computationally expensive (Hastie et al., 2004). However,
this is not the case for regression. In the case of regression, the output y is
continuous; hence, it is almost certain that no two yi ’s will be in ER and EL
simultaneously when λ = ∞.

2.3 The Path. The algorithm focuses on the sets of points ER and EL.
These points have either f (xi ) = yi − ε with θi ∈ [0, 1] or f (xi ) = yi + ε with
θi ∈ [−1, 0]. As we follow the path, we will examine these sets until one or
both of them change, at which time we will say an event has occurred. Thus,
events can be categorized as:

1. The initial event, for which two points must enter the elbow(s).

2. A point from R has just entered ER, with θi initially 1.

3. A point from L has just entered EL, with θi initially −1.

4. A point from C has just entered ER, with θi initially 0.

5. A point from C has just entered EL, with θi initially 0.

6. One or more points in ER and/or EL have just left the elbow(s) to join
either R, L, or C, with θi initially 1, −1, or 0, respectively.



1640 L. Gunter and J. Zhu

Until another event has occurred, all sets will remain the same. As a point
passes through ER or EL, its respective θi must change from 1 → 0 or −1 → 0
or vice versa. Relying on the fact that f (xi ) = yi − ε or f (xi ) = yi + ε for all
points in ER or EL, respectively, we can calculate θi for these points.

We use the subscript � to index the sets above immediately after the �th
event has occurred, and let θ�

i , β�
0 and λ� be the parameter values immedi-

ately after the �th event. Also let f � be the function at this time. We define
for convenience β0,λ = λ · β0 and hence β�

0,λ = λ� · β�
0 . Then, since

f (x) = 1
λ

(
β0,λ +

n∑
i=1

θi K (x, xi )

)

for λ�+1 < λ < λ�, we can write

f (x) =
[

f (x) − λ�

λ
f �(x)

]
+ λ�

λ
f �(x)

= 1
λ

(
β0,λ − β�

0,λ

) +
∑

i∈(E�
R∪E�

L)

(
θi − θ�

i

)
K (x, xi ) + λ� f �(x)

 ,

where the reduction occurs in the second line since the θi ’s are fixed for
all points in R�, L�, and C�, and all points remain in their respective sets.
Define |E�

R| = n�
ER and |E�

L| = n�
EL , so for the n�

ER + n�
EL points staying at the

elbows, we have that

yk − ε = 1
λ

(
β0,λ − β�

0,λ

) +
∑

i∈(E�
R∪E�

L)

(
θi − θ�

i

)
K (xk, xi ) + λ� f �(xk)

,∀k ∈ E�
R

ym + ε = 1
λ

(
β0,λ − β�

0,λ

) +
∑

i∈(E�
R∪E�

L)

(
θi − θ�

i

)
K (xm, xi ) + λ� f �(xm)

,∀m ∈ E�
L.

To simplify, let νi = θi − θ�
i , i ∈ (E�

R ∪ E�
L) and ν0 = β0,λ − β�

0,λ. Then

ν0 +
∑

i∈(E�
R∪E�

L)

νi K (xk, xi ) = (λ − λ�)(yk − ε), ∀k ∈ E�
R

ν0 +
∑

i∈(E�
R∪E�

L)

νi K (xm, xi ) = (λ − λ�)(ym + ε), ∀m ∈ E�
L.
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Also, by condition 2.2, we have that

∑
i∈(E�

R∪E�
L)

νi = 0.

This gives us n�
ER + n�

EL + 1 linear equations we can use to solve for each
of the n�

ER + n�
EL + 1 unknown variables νi and ν0.

Now, define K� to be a (n�
ER + n�

EL ) × (n�
ER + n�

EL ) matrix with first n�
ER

rows containing entries K (xk, xi ) where k ∈ E�
R and i ∈ (E�

R ∪ E�
L), and the

remaining n�
EL rows containing entries K (xm, xi ) where m ∈ E�

R and i ∈ (E�
R ∪

E�
L), and let ν denote the vector with first n�

ER components νk, k ∈ E�
R and

remaining n�
EL components νm, m ∈ E�

L. And finally let y�
ε be a (n�

ER + n�
EL )

vector with first n�
ER entries being (yk − ε) and last n�

EL entries (ym + ε). Using
these, we have the following two equations:

ν01 + K�ν = (λ − λ�) y�
ε (2.9)

νT1 = 0. (2.10)

Simplifying further, if we let

A� =
(

0 1T

1 K�

)
, ν0 =

(
ν0

ν

)
, and y0 =

(
0
y�
ε

)
,

then equations 2.9 and 2.10 can be combined as

A�ν0 = (λ − λ�) y0.

Then if A� has full rank, we can define

b = (A�)−1 y0, (2.11)

to give us

θi = θ�
i + (λ − λ�)bi , ∀i ∈ (E�

R ∪ E�
L); (2.12)

β0,λ =β�
0,λ + (λ − λ�)b0. (2.13)

Thus, for λ�+1 < λ < λ�, the θi and β0,λ proceed linearly in λ. Also

f (x) = λ�

λ

[
f �(x) − g�(x)

] + g�(x), (2.14)
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where

g�(x) = b0 +
∑

i∈(E�
R∪E�

L)

bi K (x, xi ).

Given λ�, equations 2.12 and 2.14 allow us to compute λ�+1, the λ at
which the next event will occur. This will be the largest λ less than λ�, such
that either θk for k ∈ E�

R reaches 0 or 1, or θm for m ∈ E�
L reaches 0 or −1, or

one of the points in R, L, or C reaches an elbow. The latter event will occur
for a point j when

λ = λ�

(
f �(x j ) − g�(x j )
yj − g�(x j ) − ε

)
, ∀ j ∈ (R� ∪ C�)

and

λ = λ�

(
f �(x j ) − g�(x j )
yj − g�(x j ) + ε

)
, ∀ j ∈ (L� ∪ C�).

We terminate the algorithm either when the sets R and L become empty
or when λ has become sufficiently close to zero. In the latter case, we must
have f � − g� sufficiently small as well.

2.4 Computational Cost. The major computational cost for updating
the solutions at any event � involves two things: solving the system of
(n�

ER + n�
EL + 1) linear equations and computing g�(x). The former takes

O((n�
ER + n�

EL )2) calculations by using inverse updating and downdating
since the elbow sets usually differ by only one point between consecutive
events, and the latter requires O(n(n�

ER + n�
EL )) computations.

According to our experience, the total number of steps taken by the
algorithm is on average some small multiple of n. Letting m be the average
size of (E�

R ∪ E�
L), the approximate computational cost of the algorithm is

O
(
cn2m + nm2

)
.

We make a note that errors can be accumulated by inverse updating and
downdating as the number of steps increases. To get around this problem,
we may directly compute the inverse using equation 2.11 after every several
steps. As we will see in section 4, for a fixed underlying true function, the
average size of (E�

R ∪ E�
L) does not seem to increase with n, so the direct com-

putation of equation 2.11 does not seem to add much extra computational
cost.

3 Degrees of Freedom

It is well known that an appropriate value of λ is crucial for the performance
of the fitted model in any smoothing problem. One advantage of computing
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the entire solution path is to facilitate the selection of the regularization
parameter. Degrees of freedom is an informative measure of the complexity
of a fitted model. In this section, we propose an unbiased estimate for the
degrees of freedom of the SVR, which allows convenient selection of the
regularization parameter λ.

Since the usual goal of regression analysis is to minimize the predicted
squared-error loss, we study the degrees of freedom using Stein’s unbiased
risk estimation (SURE) theory (Stein, 1981). Given x, we assume y is gener-
ated according to a homoskedastic model, that is the errors have a common
variance:

y ∼ (µ(x), σ 2),

where µ is the true mean and σ 2 is the common variance. Notice that there
is no restriction on the distributional form of y. Then the degrees of freedom
of a fitted model f (x) can be defined as

df( f ) =
n∑

i=1

cov( f (xi ), yi )/σ 2.

Stein showed that under mild conditions, the quantity

n∑
i=1

∂ f (xi )
∂yi

(3.1)

is an unbiased estimate of df( f ). Later Efron (1986) proposed the concept of
expected optimism based on equation 3.1, and Ye (1998) developed Monte
Carlo methods to estimate equation 3.1 for general modeling procedures.
Meyer and Woodroofe (2000) discussed equation 3.1 in shape-restricted
regression and also argued that it provided a measure of the effective di-
mension. (For detailed discussion and complete references, see Efron, 2004.)

Notice that equation 3.1 measures the sum of the sensitivity of each fitted
value with respect to the corresponding observed value. It turns out that
in the case of SVR, for every fixed λ,

∑n
i=1 ∂ fi/∂yi has an extremely simple

formula:

d̂f ≡
n∑

i=1

∂ fi

∂yi
= |ER| + |EL|. (3.2)

Therefore, |ER| + |EL| is a convenient unbiased estimate for the degrees of
freedom of f (x).
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In applying equation 3.2 to select the regularization parameter λ, we plug
it into the generalized cross validation (GCV) criterion (Craven & Wahba,
1979) for model selection:

∑n
i=1(yi − f (xi ))2

(1 − d̂f/n)2
. (3.3)

The GCV criterion is an approximation to the leave-one-out cross validation

n∑
i=1

(yi − f −i (xi ))2,

where f −i (xi ) is the fit at xi with the ith point removed. The GCV can be
mathematically justified in that asymptotically, it minimizes mean squared
error for estimation of f . We shall not provide details but instead refer read-
ers to O’Sullivan (1985). The advantages of this criterion are that it does not
assume a known σ 2, and it avoids cross validation, which is computationally
more intensive. In practice, one can first use the path algorithm in section 2
to compute the entire solution path and then identify the appropriate value
of λ that minimizes the GCV criterion.

We outline the proof of equation 3.2 in this section, the details are in
the appendix. We make a note that the theory in this section considers the
scenario when λ and x1, . . . , xn are fixed, while y1, . . . , yn can change; the
proof relies closely on our algorithm in section 2, and follows the spirit of
Zou, Hastie, and Tibshirani (2005).

As we have seen in section 2, for a fixed response vector y = (y1, . . . , yn)T,
there is a sequence of λ’s, ∞ = λ0 > λ1 > λ2 > · · · > λL = 0, such that in the
interior of any interval (λ�+1, λ�), the sets R,L, C, ER, and EL are constant
with respect to λ. These sets change only at each λ�. We thus define these
λ�’s as event points.

Lemma 1. For any fixed λ > 0, the set of y = (y1, . . . , yn)T such that λ is an
event point is a finite collection of hyperplanes in R

n.

Denote this set as Nλ. Then for any y ∈ R
n\Nλ, λ is not an event point.

Notice that Nλ is a null set, and R
n\Nλ is of full measure.

Lemma 2. For any fixed λ > 0, θλ is a continuous function of y.

Lemma 3. For any fixed λ > 0 and any y ∈ R
n\Nλ, the sets R,L, C, ER, and

EL are locally constant with respect to y.
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Theorem 1. For any fixed λ > 0 and any y ∈ R
n\Nλ, we have the divergence

formula

n∑
i=1

∂ fi

∂yi
= |ER| + |EL|.

We note that the theory applies when λ is not an event point. Specifically,
in practice, for a given y, the theory applies when λ �= λ0, λ1, . . . , λL ; when
λ = λ�, we may continue to use |ER| + |EL|, or d̂fλ�− as an estimate of d̂fλ�

.

4 Numerical Results

In this section we demonstrate our path algorithm and the selection of λ

using the GCV criterion on both simulation data and real-world data.

4.1 Computational Cost. We first compare the computational cost of the
path algorithm and that of the LIBSVM (Chang & Lin, 2001). We used the
sinc(·) function 1.6 from section 1. Both algorithms have been implemented
in the R programming language, and the comparison was done on a Linux
server that has two AMD Opteron 244 processors running at 1.8 GHz with
a 1 MB cache each, and the system has 2 GB of memory.

The setup of the function and the error distribution are similar to those in
section 1. We used the one-dimensional spline kernel, equation 1.7, and we
generated n = 50, 100, 200, 400, 800 training observations from the sinc(·)
function. For each simulation data set, we first ran our path algorithm
to compute the entire solution path and retrieved the sequence of event
points, λ0 > λ1 > λ2 > · · · > λL ; then for each λ�, we ran the LIBSVM to
get the corresponding solution. Elapsed computing times (in seconds) were
recorded carefully using the system.time() function in R. We repeated this
30 times and computed the average elapsed times and their corresponding
standard errors. The results are summarized in Table 1. The number of steps
along the path (or the number of event points L) and the average size of the
elbow |ER ∪ EL| were also recorded and summarized in Table 1. As we can
see, in terms of the elapsed time in computing the entire solution path, our
path algorithm dominates the LIBSVM. We can also see that the number of
steps increases linearly with the size of the training data, and interestingly,
the average elbow size does not seem to change much when the size of the
training data increases.

We note that these timings should be treated with great caution, as they
can be sensitive to details of implementation (e.g., different overheads on
I/O). We also note that the LIBSVM was implemented using the cold start
scheme: for every value of λ�, the training was done from scratch. In recent
years, interest has grown in warm start algorithms that can save computing
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Table 1: Computational Cost.

n Path LIBSVM Number of Steps |ER ∪ EL|
50 0.172 (0.030) 4.517 (4.044) 104.3 (16.6) 8.8 (0.8)

100 0.398 (0.057) 20.13 (29.49) 209.6 (28.1) 9.6 (0.6)
200 1.018 (0.114) 54.00 (30.62) 430.1 (46.2) 9.8 (0.4)
400 2.205 (0.180) 219.3 (239.8) 830.8 (44.0) 10.0 (0.6)
800 6.072 (0.594) 1123.1 (917.9) 1681.4 (122.7) 10.4 (0.4)

Notes: The first column n is the size of the training data; the second column, Path, is the
elapsed time (in seconds) for computing the entire solution path using our path algorithm;
the third column, LIBSVM, is the total elapsed time (in seconds) for computing all the
solutions at the event points along the solution path (using the cold start scheme); the
fourth column, Number of Steps, is the number of event points; the fifth column |ER ∪ EL|
is the average elbow size at the event points. All results are averages of 30 independent
simulations. The numbers in the parentheses are the corresponding standard errors.

Table 2: Average Elapsed Time of the LIBSVM for a Single Value of λ�.

n LIBSVM

50 0.042 (0.036)
100 0.090 (0.110)
200 0.123 (0.063)
400 0.261 (0.269)
800 0.656 (0.510)

time by starting from an appropriate initial solution (Gondzio & Grothey,
2001; Ma, Theiler, & Perkins, 2003).

To further study the computational cost of our path algorithm, we also
computed the average elapsed time of the LIBSVM for a single value of λ�,
which is defined as follows:

Average elapsed time for a single value of λ = Total elapsed time
# steps

.

The results are summarized in Table 2. It takes our path algorithm about 4
to 10 times as long to compute the entire solution path as it takes LIBSVM to
compute a single solution. We note that these timings should be treated with
some caution, as for the LIBSVM, the computing time varies significantly
for different values of λ. It is very likely that in the total elapsed time for the
LIBSVM, many of the computing times were wasted on useless (too big or
too small) λ values.

Finally, we have no intention of arguing that our path algorithm is the
ultimate SVR computing tool (or it dominates the LIBSVM; in fact, according
to Table 2, it is very likely that even in terms of total elapsed time, the
LIBSVM with a warm start scheme can be comparable to or even faster
than the path algorithm); the advantage of our path algorithm is to give
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a full presentation of the solution path without knowing the locations of
the event points a priori. We hope our numerical results make our path
algorithm an interesting and useful addition to the toolbox for computing
the SVR.

4.2 Simulated Data. Next we demonstrate the selection of λ using the
GCV criterion. For simulated data, we consider both additive and mul-
tiplicative kernels using the one-dimensional spline kernel, equation 1.7,
which are, respectively,

K (x, x′) =
p∑

j=1

K (xj , x′
j ) and K (x, x′) =

p∏
j=1

K (xj , x′
j ).

Simulations were based on the following four functions found in Friedman
(1991):

1. One-dimensional sinc(·) function:

f (x) = sin(πx)
πx

+ e1,

where x is distributed as uniform (−2, 2).

2. Five-dimensional additive model:

f (x) = 0.1e4x1 + 4
1 + e−20(x2−.5)

+ 3x3 + 2x4 + x5 + e2,

where x1, . . . , x5 are distributed as Uniform (0, 1).

3. Alternating current series circuit:
a. Impedance

f (R, ω, L , C) =
[

R2 +
(

ωL − 1
ωC

)2
]1/2

+ e3;
b. Phase angle

f (R, ω, L , C) = tan−1

[
ωL − 1

ωC

R

]
+ e4;

where (R, ω, L , C) are distributed uniformly in (0, 100) ×
(40π, 560π) × (0, 1) × (1, 11).

The errors ei are distributed as N(0, σ 2
i ), where σ1 = 0.19, σ2 = 1, σ3 = 218.5,

and σ4 = 0.18.
We generated 300 training observations from each function along with

10,000 validation observations and 10,000 test observations. For the first
two simulations, we used the additive one-dimensional spline kernel and
for the second two simulations the multiplicative one-dimensional spline
kernel. We then found the λ that minimized the GCV criterion, equation 3.3.
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Table 3: Simulation Results on Four Different Functions.

Prediction Error Degrees of Freedom

Gold Standard GCV Gold Standard GCV

1 0.0390 (0.0012) 0.0394 (0.0015) 21.9 (4.0) 17.2 (3.7)
2 1.116 (0.030) 1.135 (0.037) 24.9 (4.5) 22.2 (5.1)
3a 50779 (1885) 51143 (1941) 16.6 (3.3) 13.4 (3.2)
3b 0.0464 (0.0019) 0.0474 (0.0024) 41.9 (8.0) 40.8 (13.4)

The validation set was used to select the gold standard λ, which minimized
the prediction error. Using these λ’s, we calculated the prediction error
with the test data for each criterion. Suppose the fitted function is f (x); the
prediction error is defined as

Prediction error = 1
10,000

10,000∑
i=1

(yi − fi )2.

We repeated this 30 times and computed the average prediction errors
and their corresponding standard errors. We also compared the degrees
of freedom selected by the two methods. The results are summarized in
Table 3. As we can see, in terms of the prediction accuracy, the GCV criterion
performs close to the gold standard, and the GCV tends to select a slightly
simpler model than the gold standard.

4.3 Real Data. For demonstration on real-world data, we consider the
eight benchmark data sets used in Chang and Lin (2005) (available online at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/). Table 4 con-
tains a summary of these data sets. To be consistent with their analysis, we
also used the radial basis kernel, with same values for σ 2 and ε as specified
in Chang and Lin (2005). For each data set, we randomly split the data into
training and test sets, with the training set comprising 80% of the data. We
calculated the path and used GCV to select the best λ. This λ was used
to get a prediction error on the test set. We also computed the prediction
error on the test set for each λ and found the minimum prediction error.
Notice that in this case, the test set serves more like a separate validation
set for selecting a value of λ, and unlike in the simulation study where there
is another test set, this minimum prediction error is overly optimistic. We
repeated this process 30 times and computed the average prediction errors
and their corresponding standard errors. We also computed the degrees of
freedom selected by the two different methods. The results are summarized
in Table 5. In terms of the prediction accuracy, the GCV performs close to
the overly optimistic minimum, and once again, we observe that the GCV
tends to select a slightly simpler model than the validation method.
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Table 4: Summary of the Eight Benchmark Data Sets.

Data Set n p ln(σ 2) ln(ε)

pyrim 74 27 3.4 −6.6
triazines 186 60 4.0 −4.7
mpg 392 7 0.4 −1.7
housing 566 13 1.4 −1.7
add10 1000 10 2.9 −1.2
cpusmall 1000 12 1.7 −2.1
spacega 1000 6 1.1 −4.6
abalone 1000 8 1.2 −2.1

Table 5: Real Data Results

Prediction Error Degrees of Freedom

“Minimum” GCV “Minimum” GCV

pyrim 0.0037 (0.0034) 0.0067 (0.0071) 31.2 (11.3) 40.1 (9.0)
triazines 0.0185 (0.0073) 0.0247 (0.0083) 46.9 (37.7) 32.3 (36.2)
mpg 6.85 (1.92) 7.37 (2.38) 94.7 (20.7) 74.8 (10.0)
housing 9.87 (3.12) 10.84 (3.69) 226.3 (51.7) 186.2 (30.1)
add10 1.77 (0.20) 1.82 (0.20) 348.1 (35.1) 317.3 (38.8)
cpusmall 26.65 (10.22) 27.60 (10.28) 305.4 (53.9) 277.4 (29.8)
spacega 0.0119 (0.0015) 0.0124 (0.0015) 138.0 (35.2) 121.8 (27.5)
abalone 4.26 (1.04) 4.35 (1.05) 72.1 (20.4) 57.4 (21.7)

5 Discussion

In this letter, we have proposed an efficient algorithm that computes
the entire regularization path of the SVR. The general technique em-
ployed is known as parametric programming via active sets in the convex
optimization literature (Allgower & Georg, 1993). The closest we have seen
to our work in the literature is the employment of similar techniques in
incremental learning for the SVM (DeCoste & Wagstaff, 2000) and the SVR
(Ma et al., 2003). These authors, however, do not construct exact paths as
we do, but rather focus on updating and downdating the solutions as more
(or fewer) data arise.

We have also proposed an unbiased estimate for the degrees of freedom
of the SVR model, which allows convenient selection of the regularization
parameter λ. Using the solution path algorithm and the proposed degrees
of freedom, the GCV criterion seems to work sufficiently well on both
simulated data and real-world data.

Due to the difficulty of also selecting the best ε for the SVR, an alternate
algorithm exists that automatically adjusts the value of ε, called the ν-SVR
(Schölkopf, Smola, Williamson, & Bartlett, 2000; Chang & Lin, 2002). The
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linear ν-SVR can be written as

min
β0,β,ε

1
2
‖β‖2 + C

n∑
i=1

(ξi + δi ) + νε

subject to yi − β0 − βTxi ≤ ε + ξi

β0 + βTxi − yi ≤ ε + δi

ξi , δi ≥ 0, i = 1, . . . , n,

where ν > 0 is prespecified. In this scenario, ε is treated as another free
parameter. There are at least two interesting directions where our work
can be extended: (1) Using arguments similar to those for β0 in our above
algorithm, one can show that ε is piecewise linear in 1/λ and its path can
be calculated similarly. (2) As Schölkopf et al. (2000) point out, ν is an
upper bound on the fraction of errors and a lower bound on the fraction of
support vectors. Therefore, it is worthwhile to consider the solution path as
a function of ν and develop a corresponding efficient algorithm.

Appendix: Proofs

A.1 Proof of Lemma 1. For any fixed λ > 0, suppose R,L, C, ER, and
EL are given. Then we have

1
λ

β0,λ +
∑

i∈(ER∪EL)

θi K (xk, xi ) −
∑
i∈L

K (xk, xi ) +
∑
i∈R

K (xk, xi )


= yk − ε,∀k ∈ ER; (A.1)

1
λ

β0,λ +
∑

i∈(ER∪EL)

θi K (xm, xi ) −
∑
i∈L

K (xm, xi ) +
∑
i∈R

K (xm, xi )


= ym + ε,∀m ∈ EL; (A.2)∑

i∈(ER∪EL)

θi − nL + nR = 0. (A.3)

These can be reexpressed as(
0 1T

1 KE

) (
β0,λ

θE

)
=

(
b

λyE − a

)
,

where KE is a (nER + nEL ) × (nER + nEL ) matrix, with entries equal to
K (xi , xi ′ ), i, i ′ ∈ (ER ∪ EL). θE and yE are vectors of length (nER + nEL ),
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with elements equal to θi and yi , i ∈ (ER ∪ EL), respectively. a is also a
vector of length (nER + nEL ), with elements equal to −∑

m∈L K (xi , xm) +∑
k∈R K (xi , xk) ± λε, i ∈ EL ∪ ER, and b is a scalar b = nL − nR. Notice that

once λ,R,L, C, ER, and EL are fixed, KE , a, and b are also fixed.
Then β0,λ and θE can be expressed as

(
β0,λ

θE

)
= K̃

(
b

λyE − a

)
,

where

K̃ =
(

0 1T

1 KE

)−1

.

Notice that β0,λ and θE are affine in yE .
Now corresponding to the six events listed at the beginning of section

2.3, if λ is an event point, one of the following conditions has to be satisfied:

1. θi = 0, ∃i ∈ (ER ∪ EL)

2. θk = 1, ∃k ∈ ER
3. θm = −1, ∃m ∈ EL

4. yj = 1
λ

(
β0,λ + ∑

i∈(ER∪EL) θi K (x j , xi ) − ∑
i∈L K (x j , xi )

+∑
i∈R K (x j , xi )

)
+ ε, ∃ j ∈ (R ∪ C)

5. yj = 1
λ

(
β0,λ + ∑

i∈(ER∪EL) θi K (x j , xi ) − ∑
i∈L K (x j , xi )

+∑
i∈R K (x j , xi )

)
− ε, ∃ j ∈ (L ∪ C).

For any fixed λ,R,L, C, ER and EL, each of the above conditions defines
a hyperplane of y in R

n. Taking into account all possible combinations of
R,L, C, ER, and EL, the set of y such that λ is an event point is a collection
of a finite number of hyperplanes.

A.2 Proof of Lemma 2. For any fixed λ > 0 and any fixed y0 ∈ R
n, we

wish to show that if a sequence ym converges to y0, then θ ( ym) converges
to θ ( y0).

Since θ ( ym) are bounded, it is equivalent to show that for every converg-
ing subsequence, say, θ ( ymk

), the subsequence converges to θ ( y0). Suppose
θ ( ymk

) converges to θ∞; we will show θ∞ = θ ( y0).
Denote the objective function in equation 1.5 as h(θ ( y), y), and let

�h(θ ( y), y, y′) = h(θ ( y), y) − h(θ ( y), y′).
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Then we have

h(θ ( y0), y0) = h(θ ( y0), ymk
) + �h(θ ( y0), y0, ymk

)

≥ h(θ ( ymk
), ymk

) + �h(θ ( y0), y0, ymk
)

= h(θ ( ymk
), y0) + �h(θ ( ymk

), ymk
, y0) + �h(θ ( y0), y0, ymk

). (A.4)

Using the fact that |a | − |b| ≤ |a − b| and ymk
→ y0, it is easy to show that

for large enough mk , we have

�h(θ ( ymk
), ymk

, y0) + �h(θ ( y0), y0, ymk
) ≤ c‖y0 − ymk

‖1,

where c > 0 is a constant. Furthermore, using ymk
→ y0 and θ ( ymk

) → θ∞,
we reduce equation A.4 to

h(θ ( y0), y0) ≥ h(θ∞, y0).

Since θ ( y0) is the unique minimizer of h(θ , y0), we have θ∞ = θ ( y0).

A.3 Proof of Lemma 3. For any fixed λ > 0 and any fixed y0 ∈ R
n\Nλ,

since R
n\Nλ is an open set, we can always find a small enough η > 0, such

that Ball( y0, η) ⊂ R
n\Nλ. So λ is not an event point for any y ∈ Ball( y0, η).

We claim that if η is small enough, the sets R,L, C, ER, and EL stay the
same for all y ∈ Ball( y0, η).

Consider y and y0. Let Ry,Ly, Cy, ERy, ELy,R0,L0, C0, ER0, EL0 denote
the corresponding sets, and θ y, f y, θ0, f 0 denote the corresponding fits.

For any i ∈ ER0, since λ is not an event point, we have 0 < θ0
i < 1. There-

fore, by continuity, we also have 0 < θ
y

i < 1, i ∈ ER0 for y close enough
to y0; or equivalently, ER0 ⊆ ERy,∀y ∈ Ball( y0, η) for small enough η. The
same applies to EL0 and ELy as well.

Similarly, for any i ∈ R0, since y0
i − f 0(xi ) > η, again by continuity,

we have yi − f y(xi ) > η for y close enough to y0; or equivalently, R0 ⊆
Ry,∀y ∈ Ball( y0, η) for small enough η. The same applies to L0,Ly and
C0, Cy as well.

Overall, we then must have ER0 = ERy, EL0 = ELy,R0 = Ry,L0 = Ly and
C0 = Cy for all y ∈ Ball( y0, η) when η is small enough.

A.4 Proof of Theorem 1. Using lemma 3, we know that there exists η >

0, such that for all y ∈ Ball( y, η), the sets R,L, C, ER, and EL stay the same.
This implies that for points in (ER ∪ EL), we have fi = yi + ε or fi = yi − ε

when y ∈ Ball( y, η); hence,

∂ fi

∂yi
= 1, i ∈ (ER ∪ EL).
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Furthermore, from equations A.1 to A.3, we can see that for points in R, L
and C, their θi ’s are fixed at either 1, −1 or 0, and the other θi ’s are determined
by yE . Hence,

∂ fi

∂yi
= 0, i ∈ (R ∪ L ∪ C).

Overall, we have

n∑
i=1

∂ fi

∂yi
= |ER| + |EL|.
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