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Graphical Models for Ordinal Data

Jian GUO, Elizaveta LEVINA, George MICHAILIDIS, and Ji ZHU

This article considers a graphical model for ordinal variables, where it is assumed
that the data are generated by discretizing the marginal distributions of a latent mul-
tivariate Gaussian distribution. The relationships between these ordinal variables are
then described by the underlying Gaussian graphical model and can be inferred by
estimating the corresponding concentration matrix. Direct estimation of the model is
computationally expensive, but an approximate EM-like algorithm is developed to pro-
vide an accurate estimate of the parameters at a fraction of the computational cost.
Numerical evidence based on simulation studies shows the strong performance of the
algorithm, which is also illustrated on datasets on movie ratings and an educational
survey.

Key Words: Lasso; Ordinal variable; Probit model.

1. INTRODUCTION

Graphical models have been successful in identifying directed and undirected structures
from high-dimensional data. In a graphical model, the nodes of the network correspond to
random variables and the edges represent their corresponding associations (Lauritzen 1996).
Two canonical classes of graphical models are the Gaussian one, where the dependence
structure is fully specified by the inverse covariance matrix and the Markov one, where
the dependence structure is captured by the interaction effects in an exponential family
model. In the latter model, each interaction effect can be interpreted as the conditional
log-odds-ratio of the two associated variables given all other variables. In both models,
a zero element in the inverse covariance matrix or a zero interaction effect determines a
conditionally independent relationship between the corresponding nodes in the network.

Estimation of such models from high-dimensional data under a sparsity assumption
has attracted a lot of interest in the statistics and machine learning literature, including
regularized likelihood and regression methods, for example, see Yuan and Lin (2007);
Banerjee, El Ghaoui, and d’Aspremont (2008); Friedman, Hastie, and Tibshirani (2008);
Rothman et al. (2008); Fan, Feng, and Wu (2009); Meinshausen and Buhlmann (2006);
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184 J. GUO ET AL.

Rocha, Zhao, and Yu (2008); Peng et al. (2009) and references therein. For a Markov
network, direct estimation of a regularized likelihood is infeasible due to the intractable
partition function in the likelihood. Instead, existing methods in the literature employ
variants of approximation estimation methods. Examples include the surrogate likelihood
methods (Banerjee, El Ghaoui, and d’Aspremont 2008; Kolar and Xing 2008) and the
pseudo-likelihood methods (Höefling and Tibshirani 2009; Ravikumar, Wainwright, and
Lafferty 2010; Guo et al. 2010).

In many applications involving categorical data, an ordering of the categories can be
safely assumed. For example, in marketing studies consumers rate their preferences for a
wide range of products. Similarly, computer recommender systems use customer ratings
to make purchase recommendations to new customers; this constitutes a key aspect of the
business model behind Netflix, Amazon, Tripadvisor, etc. (Koren, Bell, and Volinsky 2009).

Ordinal variables are also an integral part of survey data, where respondents rate items
or express level of agreement/disagreement on issues/topics under consideration. Such
responses correspond to Likert items, and a popular model to analyze such data is the
polychotomous Rasch model (von Davier and Carstensen 2010) that obtains interval level
estimates on a continuum—an idea that we explore in this work as well. Ordinal response
variables in regression analysis give rise to variants of the classical linear model, including
the proportional odds model (Walker and Duncan 1967; McCullagh 1980), the partial
proportional odds model (Peterson 1990), the probit model (Bliss 1935; Albert and Chib
1993; Chib and Greenberg 1998), etc. A comprehensive review of ordinal regression was
given by McCullagh and Nelder (1989) and O’Connell (2005).

In this article, we introduce a graphical model for ordinal variables. It is based on the
assumption that the ordinal scales are generated by discretizing the marginal distributions of
a latent multivariate Gaussian distribution and the dependence relationships of these ordinal
variables are induced by the underlying Gaussian graphical model. In this context, an EM-
like algorithm is appropriate for estimating the underlying latent network, which presents
a number of technical challenges that have to be addressed for successfully pursuing this
strategy.

Our work is related to Albert and Chib (1993), Chib and Greenberg (1998), and Stern,
Herbrich, and Graepel (2009) in the sense that they are all built on the probit model
and/or the EM algorithmic framework. Albert and Chib (1993) proposed an MCMC algo-
rithm for the probit-model-based univariate ordinal regression problem, where an ordinal
response is fitted on a number of covariates, while Chib and Greenberg (1998) can be
considered an extension to the multivariate case. Stern, Herbrich, and Graepel (2009)
aimed to build an online recommender system via collaborative filtering and applied the
discretization/thresholding idea in the probit model to the ordinal matrix factorization prob-
lem. Our model, on the other hand, has a completely different motivation from these works.
Our objective is to explore associations between a set of ordinal variables, rather than pre-
diction and/or regression problems. Nevertheless, the EM framework employed is related to
that in Chib and Greenberg (1998), but due to the different goal, the form of the likelihood
function of the proposed model is different from that of the ordinal regression problem.
Further, as seen in Section 2, we do not use any MCMC or Gibbs sampling scheme.

The remainder of the article is organized as follows. Section 2 presents the probit
graphical model and discusses algorithmic and model selection issues. Section 3 evaluates
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GRAPHICAL MODELS FOR ORDINAL DATA 185

the performance of the proposed method on several synthetic examples and Section 4
applies the model to two data examples, one on movie ratings and the other on a national
educational longitudinal survey study.

2. METHODOLOGY

2.1 THE PROBIT GRAPHICAL MODEL

Suppose we have p ordinal random variables X1, . . . , Xp, where Xj ∈ {1, 2, . . . , Kj } for
some integer Kj , which is the number of the ordinal levels in variable j. In the proposed pro-
bit graphical model, we assume that there exist p latent random variables Z1, . . . , Zp from
a joint Gaussian distribution with mean zero and covariance matrix � = (σj,j ′ )p×p. With-
out loss of generality, we further assume that Zj ’s have unit variances (σj,j = 1 for
j = 1, . . . , p), that is, the Zj ’s marginally follow standard Gaussian distributions. Each
observed variable Xj is discretized from its latent counterpart Zj . Specifically, for the jth
variable (j = 1, . . . , p), we assume that (−∞,+∞) is split into Kj disjointed intervals
by a set of thresholds −∞ = θ

(j )
0 < θ

(j )
1 < · · · < θ

(j )
Kj −1 < θ

(j )
Kj

= +∞, such that Xj = k if

and only if Zj falls in the interval [θ (j )
k−1, θ

(j )
k ). Thus,

Pr(Xj = k) = Pr
(
θ

(j )
k−1 ≤ Zj < θ

(j )
k

) = �
(
θ

(j )
k

)− �
(
θ

(j )
k−1

)
, (1)

where �(·) denotes the cumulative density function of the standard normal distribution.
Let � = �−1 = (ωj,j ′ )p×p, � = {θ (j )

k : j = 1, . . . , p; k = 1, . . . , Kj }, X =
(X1, . . . , Xp), Z = (Z1, . . . , Zp). Let C(X,�) be the hypercube defined by
[θ (1)

X1−1, θ
(1)
X1

) × · · · × [θ (p)
Xp−1, θ

(p)
Xp

). Then we can write the joint density function of
(X, Z) as

fX,Z(x, z; �,�) = f(z; �)
p∏

j=1

f�(xj |zj ; �) = det (�)

(2π )p/2
exp

(
−1

2
z�zT

)
I(z ∈ C(x,�)),

(2)

where I(·) is the indicator function. Thus, the marginal probability density function of the
observed X is given by

fX (x; �,�) =
∫

z∈Rp

fX,Z(x, z; �,�)d z. (3)

We refer to (1)–(3) as the probit graphical model, which is motivated by the probit re-
gression model (Bliss 1935; Albert and Chib 1993; Chib and Greenberg 1998) and the
polychotomous Rasch model (von Davier and Carstensen 2010).

To fit the probit graphical model, we propose maximizing an �1-regularized log-
likelihood of the observed data. Let xi,j and zi,j be the ith realizations of the ob-
served variable Xj and the latent variable Zj , respectively, with xi = (xi,1, . . . , xi,p) and
zi = (zi,1, . . . , zi,p). The criterion is given by

n∑
i=1

log fX (xi ; �,�) − λ
∑
j �=j ′

|ωj,j ′ |. (4)
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186 J. GUO ET AL.

The tuning parameter λ in (4) controls the degree of sparsity in the underlying network.
When λ is large enough, some ωj,j ′ ’s can be shrunken to zero, resulting in the removal of
the corresponding links in the underlying network. Numerically, it is difficult to maximize
criterion (4) directly, because of the integral in (3). Next, we introduce an EM-type algorithm
to maximize (4) in an iterative manner.

2.2 AN ALGORITHM FOR FITTING THE PROBIT GRAPHICAL MODEL

Criterion (4) depends on the parameters � and � and the latent variable Z. The former
has a closed-form estimator. Specifically, for each j = 1, . . . , p, we set

θ̂
(j )

k =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∞, if k = 0;

�−1

(
n−1

n∑
i=1

I(xi,j < k)

)
, if k = 1, . . . , Kj − 1;

+∞, if k = Kj ;

(5)

where � is the cumulative distribution function of the standard normal. One can show that
�̂ consistently estimates �. The estimation of �, on the other hand, is nontrivial due to the
multiple integrals in (3). To address this problem, we apply the EM algorithm to optimizing
(4), where the latent variables zi,j ’s (i = 1, . . . , n; j = 1, . . . , p) are treated as “missing
data” and are imputed in the E-step, and the parameter � is estimated in the M-step.

E-step. Suppose �̂ is the updated estimate of � from the M-step. Then the E-step
computes the conditional expectation of the joint log-likelihood given the estimates �̂ and
�̂, which is usually called the Q-function in the literature:

Q(�,�) =
n∑

i=1

EZ[log fX,Z(xi , Z; �̂, �̂)] = n

2
[log det(�) − trace(S�) − p log(2π )].

(6)

Here S is a p × p matrix whose (j, j ′)th element is sj,j ′ = n−1 ∑n
i=1 E(zi,j zi,j ′ |

xi ; �̂, �̂) (1 ≤ j, j ′ ≤ p). The distribution of zi conditional on xi is equal to that of
zi conditional on zi ∈ C(xi ,�), which follows a truncated multivariate Gaussian distri-
bution on the hypercube C(xi ,�). Therefore, E(zi,j zi,j ′ | xi ; �̂, �̂) is the second moment
of a truncated multivariate Gaussian distribution and it can be directly estimated using
the algorithms proposed by Tallis (1961), Lee (1979), Leppard and Tallis (1989), and
Manjunath and Wilhelm (2012). Nevertheless, the computational cost of these direct esti-
mation algorithms is extremely high and thus not suitable for even moderate size problems.
An alternative approach is based on the Markov chain Monte Carlo (MCMC) method.
Specifically, we randomly generate a sequence of samples from the conditional distribution
fZ|X (zi | xi ; �̂, �̂) using a Gibbs sampler from a multivariate truncated normal distribu-
tion (Kotecha and Djuric 1999) and then E(zi,j zi,j ′ | xi ; �̂, �̂) is estimated by the empirical
conditional second moment from these samples. Although the MCMC approach is faster
than the direct estimation method, it is still not efficient for large-scale problems. To ad-
dress this computational issue, we develop an efficient approximate estimation algorithm,
discussed in Section 2.3.
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GRAPHICAL MODELS FOR ORDINAL DATA 187

M-step. The M-step updates � by maximizing the �1-regularized Q-function (up to a
constant and a factor):

	̃ = arg max
�

log det (�) − trace(S�) − λ
∑
j �=j ′

|ωj,j ′ |. (7)

The optimization problem (7) can be solved efficiently by existing algorithms such as
the graphical lasso (Friedman, Hastie, and Tibshirani 2008) and SPICE (Rothman et al.

2008). However, the estimated covariance matrix, �̃ = �̃
−1

, does not necessarily have unit
diagonal elements postulated by the probit graphical model. Therefore, we postprocess
�̃ by scaling it to a unit-diagonal matrix �̂ and update �̂ = �̂

−1
, which will be used in the

E-step of the next iteration.

2.3 APPROXIMATING THE CONDITIONAL EXPECTATION

Note that when j = j ′, the corresponding conditional expectation is the conditional
second moment E(z2

i,j | xi ; �̂, �̂); when j �= j ′, we use a mean field theory approach

(Peterson and Anderson 1987) to approximate it as E(zi,j zi,j ′ | xi ; �̂, �̂) ≈ E(zi,j |
xi ; �̂, �̂)E(zi,j ′ | xi ; �̂, �̂). Note that the approximation decouples the “interaction” be-
tween the two variables zi,j and zi,j ′ . Therefore, one would expect that the approximation
performs well when zj and zj ′ are close to independence given all other random variables,
which often holds when � or the corresponding graph is sparse. With this approxima-
tion, it is sufficient to estimate the first moment E(zi,j | xi ; �̂, �̂) and the second moment
E(z2

i,j | xi ; �̂, �̂). In general, the latent variable zi,j not only depends on xi,j , but also
on all other observed variables xi,−j = (xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p). We can write the
first and second conditional moments as

E(zi,j | xi ; �̂, �̂) = E[E(zi,j | zi,−j , xi,j ; �̂, �̂) | xi ; �̂, �̂], (8)

E
(
z2
i,j | xi ; �̂, �̂

) = E
[
E
(
z2
i,j | zi,−j , xi,j ; �̂, �̂

) | xi ; �̂, �̂
]
, (9)

where zi,−j = (zi,1, . . . , zi,j−1, zi,j+1, . . . , zi,p). The inner expectations in (8) and (9) are
relatively straightforward to compute: given the parameter estimate �̂, zi,1, . . . , zi,p jointly
follow a multivariate Gaussian distribution with mean zero and covariance matrix
�̂ = �̂

−1
. A property of the Gaussian distribution is that the conditional distribution

of zi,j given zi,−j is also Gaussian, with mean μ̃i,j = �̂j,−j �̂
−1
−j,−j zi,−j

T and variance

σ̃ 2
i,j = 1 − �̂j,−j �̂

−1
−j,−j �̂−j,j . Moreover, given the observed data xi,j , conditioning zi,j on

zi,−j , xi,j in (8) is equivalent to conditioning on zi,−j , θ
(j )
xi,j −1 ≤ zi,j < θ

(j )
xi,j

, which follows

a truncated Gaussian distribution on the interval [θ (j )
xi,j −1, θ

(j )
xi,j

). The following lemma gives
the closed-form expressions for the first and second moments of the truncated Gaussian
distribution.

Lemma 1. Suppose that a random variable Y follows the Gaussian distribution with mean
μ0 and variance σ 2

0 . For any constants t1 < t2, let ξ1 = (t1 − μ0)/σ0 and ξ2 = (t2 − μ0)/σ0.
Then the first and second moments of Y truncated to the interval (t1, t2) are given by

E(Y | t1 < Y < t2) = μ0 + φ(ξ1)−φ(ξ2)
�(ξ2)−�(ξ1)σ0, (10)
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188 J. GUO ET AL.

E(Y 2 | t1 < Y < t2) = μ2
0 + σ 2

0 + 2 φ(ξ1)−φ(ξ2)
�(ξ2)−�(ξ1)μ0σ0 + ξ1φ(ξ1)−ξ2φ(ξ2)

�(ξ2)−�(ξ1) σ 2
0 ,

(11)

where φ(·) is the probability density function of the standard normal.

For more properties of the truncated Gaussian distribution, see Johnson, Kotz, and
Balakrishnan (1994).

Letting δi,j,k = (θ (j )
k − μ̃i,j )/σ̃i,j and applying Lemma 1 to the conditional expectations

in (8) and (9), we obtain

E(zi,j |zi,−j , xi,j ; �̂, �̂) = μ̃i,j + ai,j σ̃i,j , (12)

E
(
z2
i,j |zi,−j , xi,j ; �̂, �̂

) = μ̃2
i,j + σ̃ 2

i,j + 2ai,j μ̃i,j σ̃i,j + bi,j σ̃
2
i,j , (13)

where

ai,j = φ(δi,j,xi,j −1) − φ(δi,j,xi,j
)

�(δi,j,xi,j
) − �(δi,j,xi,j −1)

, bi,j = δi,j,xi,j −1φ(δi,j,xi,j −1) − δi,j,xi,j
φ(δi,j,xi,j

)

�(δi,j,xi,j
) − �(δi,j,xi,j −1)

.

Next, we plug Equations (12) and (13) into (8) and (9), respectively. Since μ̃i,j , ai,j , and
bi,j depend on the latent variables zi,−j ’s, the outer expectations in (8) and (9) depend on
E(μ̃i,j | xi ; �̂, �̂), E(ai,j | xi ; �̂, �̂), E(bi,j | xi ; �̂, �̂), and E(ai,j μ̃i,j | xi ; �̂, �̂). Note
that μ̃i,j is a linear function of zi,−j and σ̃i,j is a constant irrelevant to the latent data. For
each i = 1, . . . , n and j = 1, . . . , p, the conditional expectation of μ̃i,j is

E(μ̃i,j | xi ; θ̂ , �̂) = �̂j,−j �̂
−1
−j,−j E

(
zT
i,−j |xi ; θ̂ , �̂

)
. (14)

However, ai,j and bi,j are nonlinear functions of μ̃i,j , and thus of zi,−j . Using the first-order
delta method, we approximate their conditional expectations by

E(ai,j | xi ; θ̂ , �̂) ≈ φ(̃δi,j,xi,j −1) − φ(̃δi,j,xi,j
)

�(̃δi,j,xi,j
) − �(̃δi,j,xi,j −1)

, (15)

E(bi,j | xi ; θ̂ , �̂) ≈ δ̃i,j,xi,j −1φ(̃δi,j,xi,j −1) − δ̃i,j,xi,j
φ(̃δi,j,xi,j

)

�(̃δi,j,xi,j
) − �(̃δi,j,xi,j −1)

, (16)

where δ̃i,j,xi,j
= [θ (j )

k − E(μ̃i,j | xi ; θ̂ , �̂)]/σ̃i,j . Finally, we approximate E(ai,j μ̃i,j |
xi ; �̂, �̂) ≈ E(ai,j | xi ; �̂, �̂)E(μ̃i,j | xi ; �̂, �̂). Therefore, (8) and (9) can be approxi-
mated by

E(zi,j | xi ; �̂, �̂) ≈ �̂j,−j �̂
−1
−j,−j E

(
zT
i,−j | xi ; �̂, �̂

)+ φ(̃δi,j,xi,j −1) − φ (̃δi,j,xi,j
)

�(̃δi,j,xi,j
) − �(̃δi,j,xi,j −1)

σ̃i,j

(17)

E
(
z2
i,j | xi ; �̂, �̂

) ≈ �̂j,−j �̂
−1
−j,−j E

(
zT
i,−j zi,−j | xi ; �̂, �̂

)
�̂

−1
−j,−j �̂

T
j,−j + σ̃ 2

i,j

+ 2
φ(̃δi,j,xi,j −1) − φ(̃δi,j,xi,j

)

�(̃δi,j,xi,j
) − �(̃δi,j,xi,j −1)

[
�̂j,−j �̂

−1
−j,−j E

(
zT
i,−j | xi ; �̂, �̂

)]̃
σi,j

+
δ

(j )
i,j,xi,j −1φ(̃δi,j,xi,j −1) − δ̃i,j,xi,j

φ(̃δi,j,xi,j
)

�(̃δi,j,xi,j
) − �(̃δi,j,xi,j −1)

σ̃ 2
i,j . (18)
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GRAPHICAL MODELS FOR ORDINAL DATA 189

Equations (17) and (18) establish the recursive relationships among the elements in
E(zi | xi ; �̂, �̂) and E(zi

Tzi | xi ; �̂, �̂), respectively, giving a natural iterative procedure
for estimating these quantities. Algorithm 1 summarizes the main steps of the proposed
combined estimation procedure outlined in Sections 2.2 and 2.3.

In Algorithm 1, Lines 1–2 initialize the conditional expectation E(zi,j | xi) and the
parameter estimate �̂. Lines 3–16 establish the outer loop which iteratively computes the
E-step and the M-step. In the E-step, Lines 5–14 consist of the inner loop which recursively
estimates the first and second moments of zi,j conditional on xi . The complexity of the
inner loop is O(np2), which is the same as that of the graphical lasso algorithm in the
M-step. Therefore, the overall complexity of Algorithm 1 is O(Mnp2), where M is the
number of EM steps required for convergence. In our numerical studies, we found M is
often smaller than 50. For a more concrete idea about the computational cost, we note that
on a linux server with four 1G Dual-Core AMD Opteron Processors and 4GB RAM, it
takes about 2 min for the proposed algorithm to complete the fitting on a simulated dataset
in Section 3 with n = 200 observations and p = 50 variables.

Algorithm 1 The EM Algorithm for estimating �

1: Initialize E(zi,j | xi ; �̂, �̂) ≈ E(zi,j | xi,j ; �̂), E(z2
i,j | xi ; �̂, �̂) ≈ E(z2

i,j | xi,j ; �̂)

and E(zi,j zi,j ′ | xi ; �̂, �̂) ≈ E(zi,j | xi,j ; �̂)E(zi,j ′ | xi,j ′ ; �̂) for i = 1, . . . , n and
j, j ′ = 1, . . . , p;

2: Initialize sj,j ′ for 1 ≤ j, j ′ ≤ p using the Line 1 above, and then estimate �̂ by maxi-
mizing criterion (7);
{Start outer loop}

3: repeat
4: E-step: estimate S in (6);

{Start inner loop}
5: repeat
6: for i = 1 to n do
7: if j = j ′ then
8: Update E(z2

i,j | xi ; �̂, �̂) using RHS of Equation (18) for j = 1, . . . , p;
9: else

10: Update E(zi,j | xi ; �̂, �̂) using RHS of Equation (17) for j = 1, . . . , p and
then set E(zi,j zi,j ′ | xi ; �̂, �̂) = E(zi,j | xi ; �̂, �̂)E(zi,j ′ | xi ; �̂, �̂) for 1 ≤
j �= j ′ ≤ p;

11: end if
12: end for
13: Update sj,j ′ = 1/n

∑n
i=1 E(zi,j zi,j ′ | xi ; �̂, �̂) for 1 ≤ j, j ′ ≤ p;

14: until The inner loop converges;
15: M-step: update �̂ by maximizing criterion (7);
16: until The outer loop converges.
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2.4 MODEL SELECTION

In the probit graphical model, the tuning parameter λ controls the sparsity of the resulting
estimator and it can be selected using cross-validation. Specifically, we randomly split the
observed data X into D subsets of similar sizes and denote the index set of the observations
in the dth subset by Td (d = 1, . . . , D). For any prespecified λ, we denote by �̂

[−d]
λ the

maximizer of the criterion (4) estimated by Algorithm 1 using all observations except those

in Td . We also denote by �̂
[−d]

and S[d] = (s[d]
j,j ′)p×p the analogs of �̂ and S in Section

2.2, but computed from the data in T c
d and Td , respectively. In particular, an element

of S[d] is defined as s
[d]
j,j ′ = |Td |−1∑

i∈Td
E(zi,j zi,j ′ | xi ; �̂

[−d]
, �̂

[−d]
λ ), for 1 ≤ j, j ′ ≤ p,

where |Td | is the cardinality of Td . Given �̂
[−d]

and �̂
[−d]
λ , S[d] can be estimated by the

algorithm introduced in Section 2.3, that is, the inner loop of Algorithm 1. Thus, the optimal
tuning parameter can be selected by maximizing the following criterion:

max
λ

D∑
d=1

log det
(
�̂

[−d]
λ

)− trace
(
S[d]�̂

[−d]
λ

)− p log(2π ). (19)

We note that we have also considered the AIC and BIC type criteria for choosing
the tuning parameter λ. We found that AIC performs the worst among the three due to
estimating many zero parameters as nonzeros (Lian 2011); BIC and cross-validation tend
to have similar performances in estimating zero parameters as zeros, but BIC also tends
to estimate the nonzero parameters as zeros. Therefore, we choose to use cross-validation.
Due to space limitation, the results are not included.

3. NUMERICAL EXAMPLES

In this section, we use two sets of simulated experiments to illustrate the performance
of the probit graphical model. The first set aims at comparing the computational cost of the
three methods that estimate the Q-function in the E-step, namely the direct computation,
the MCMC sampling and the approximation algorithm. The second set compares the
performance of the probit graphical model using the approximation algorithm to that of the
Gaussian graphical model.

3.1 COMPUTATIONAL COST AND PERFORMANCE

Note that the computational costs of the direct estimation and the MCMC sampling are
extremely high when p is even of moderate size. Therefore, in this experiment, we simulate
a low-dimensional dataset with p = 5 variables and n = 10 observations. Specifically, we
define the underlying inverse covariance matrix � as a tri-diagonal matrix with 1’s on the
main diagonal and 0.5 on the first subdiagonal. The corresponding covariance matrix is
then scaled so that all the variances are equal to 1. Then, for i = 1, . . . , n, we generate
the latent data zi = (zi,1, . . . , zi,p) from N (0,�) and discretize them as follows: for each
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GRAPHICAL MODELS FOR ORDINAL DATA 191

Table 1. The numbers are the mean CPU times for different tuning parameter values and 20 replications, with
median absolute deviations in parentheses (in sec)

Method CPU time in sec

Direct 3310.21 (199.95)
Gibbs sampler 46.17 (1.51)
TMG 303.94 (11.05)
Proposed approximation 0.04 (0.03)

NOTE: Direct: direct computation. Gibbs sampler: the regular Gibbs sampler; TMG: the Gibbs sampler proposed
by Pakman and Paninski (2012) via the R package “tmg”; Proposed approximation: the approximation approach
proposed in our article.

j = 1, . . . , p, set

θ
(j )
k =

⎧⎪⎪⎨⎪⎪⎩
−∞, if k = 0;
�−1(0.2) if k = 1;
�−1(0.4) if k = 2;
+∞, if k = 3;

(20)

and xi,j = ∑2
k=0 I(zi,j ≥ θ

(j )
k ) (i = 1, . . . , n; j = 1, . . . , p), that is, the value of xi,j is k if

it locates in interval [θ (j )
k−1, θ

(j )
k ).

The probit graphical model is applied using four estimation methods in the E-step,
namely the direct computation, a standard Gibbs sampling, the Gibbs sampler proposed by
Pakman and Paninski (2012) and the approximation algorithm proposed in this article. The
procedure is repeated for 20 times, and the computational costs are shown in Table 1. We
can see that the median CPU time of the approximation algorithm is only about 1/1000 of
that of the Gibbs sampling and about 1/80,000 of that of the direct computation. To further
compare the estimation accuracy of these methods, we use the Frobenius and entropy loss
metrics that are defined next:

FL =
∑

1≤j<j ′≤p(ωj,j ′ − ω̂j,j ′ )2∑
1≤j<j ′≤p ω2

j,j ′
, (21)

EL = trace(�−1�̂) − log[det(�−1�̂)] − p, (22)

where �̂ denotes the estimated network.
The performance of the three estimation methods is depicted in Figure 1. It can be seen

that the direct computation and Gibbs sampling methods are fairly similar in performance
(the result using the R package “tmg” is almost identical to that of the standard Gibbs sam-
pling and not shown); this is expected since they can all be considered “exact” approaches.
In terms of the Frobenius and entropy losses, the approximation algorithm lags slightly
behind its competitors when the tuning parameter λ is relatively small, whereas for larger
λ it outperforms them. This is because in this simulation study, the true � is very sparse
and the mean field approximation also happens to implicitly enforce a conditional indepen-
dence structure on the S matrix. These findings suggest that the proposed approximation
algorithm achieves its orders of magnitude computational savings over the competitors with
minimal degradation in performance.
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Figure 1. Comparison of Frobenius loss and entropy loss over different values of the tuning parameter. The
direct computation, the MCMC sampling and the approximation algorithm are, respectively, represented by blue
dotted, red dashed, and black solid lines.

3.2 EXPERIMENTS WITH DIFFERENT TYPES OF GRAPHS

In this section, we evaluate the performance of the proposed method by simulation
studies. These examples simulate four types of network structures: a scale-free graph, a hub
graph, a nearest-neighbor graph and a block graph. Each network consists of p = 50 nodes.
The details of these networks are described as follows:

Example 1: Scale-free graph. A scale-free graph has a power-law degree distribution and can
be simulated by the Barabasi-Albert algorithm (Barabasi and Albert 1999). A realization
of a scale-free network is depicted in Figure 2(a).

Example 2: Hub graph. A hub graph consists of a few high-degree nodes (hubs) and a large
amount of low-degree nodes. In this example, we follow the simulation setting in Peng
et al. (2009) and generate a hub graph by inserting a few hub nodes into a very sparse
graph. Specifically, the graph consists of three hubs with degrees around eight, and the
other 47 nodes with degrees at most three. An example of the hub graph is shown in
Figure 2(b).

Example 3: Nearest-neighbor graph. To generate nearest neighbor graphs, we slightly
modify the data generating mechanism described in Li and Gui (2006). Specifically, we
generate p points randomly on a unit square, calculate all p(p − 1)/2 pairwise distances,
and find the m nearest neighbors of each point in terms of these distances. The nearest
neighbor network is obtained by linking any two points that are m-nearest neighbors of
each other. The integer m controls the degree of sparsity of the network and the value
m = 5 was chosen in the simulation study. Figure 2(c) exhibits one realization of the
nearest-neighbor network.

Example 4: Block graph. In this setting, we generate a graph using a random adjacency
matrix generated from the stochastic block model. Specifically, for nodes 1–20 the
probability of being linked is 0.2, for nodes 21–30 the probability of being linked is 0.5,
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GRAPHICAL MODELS FOR ORDINAL DATA 193

Figure 2. Illustration of the networks used in four simulated examples: Scale-free graph, hub graph, nearest-
neighbor graph, and block graph.

whereas for all other pairs of nodes the probability of having a link is 0.02. Figure 2(d)
illustrates such a random graph.

The ordinal data are generated as follows. First, we generate the inverse covariance
matrix � of the latent multivariate Gaussian distribution. Specifically, each off-diagonal
element ωj,j ′ is drawn uniformly from [−1,−0.5] ∪ [0.5, 1] if nodes j and j ′ are linked
by an edge, otherwise ωj,j ′ = 0. Further, the diagonal elements were all set to be 2 to
ensure positive definiteness, and the corresponding covariance matrix is scaled so that all
the variances are equal to 1. Second, we generate the latent data zi = (zi,1, . . . , zi,p) as an
iid sample from N (0,�). Finally, the continuous latent data zi’s are discretized into ordinal
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194 J. GUO ET AL.

scale with three levels by thresholding. Specifically, for each j = 1, . . . , p, we set

θ
(j )
k =

⎧⎪⎪⎨⎪⎪⎩
−∞, if k = 0;
�−1(0.1) if k = 1;
�−1(0.2) if k = 2;
+∞, if k = 3;

(23)

and set xi,j = ∑2
k=0 I(zi,j ≥ θ

(j )
k ) (i = 1, . . . , n; j = 1, . . . , p). For each example, we con-

sidered different sample sizes, with n = 50, 100, 200, and 500.
We compare the proposed probit graphical model with two other methods. One consists

of direct application of the graphical lasso to the ordinal data X , ignoring their discrete
nature. The second uses the graphical lasso on the latent continuous data Z. We refer
to the first one as the naive method and the second one as an oracle method because
it represents an ideal situation where Z is exactly recovered. Of course, the latter never
occurs with real data, but serves as a benchmark for comparison purposes. The receiver
operating characteristic curve (ROC) was used to evaluate the accuracy of network structure
estimation. The ROC curve plots the sensitivity (the proportion of correctly detected links)
against the false positive rate (the proportion of misidentified zeros) over a range of values
of the tuning parameter λ. The sensitivity and the false positive rate are defined as follows:

Sensitivity =
∑

1≤j<j ′≤p I(ωj,j ′ �= 0, ω̂j,j ′ �= 0)∑
1≤j<j ′≤p I(ωj,j ′ �= 0)

, (24)

False positive rate =
∑

1≤j<j ′≤p I(ωj,j ′ = 0, ω̂j,j ′ �= 0)∑
1≤j<j ′≤p I(ωj,j ′ = 0)

, (25)

where I(·) is an indicator function whose value is 1 if the statement in the parenthesis is
true, and is 0 if it is false. In addition, the Frobenius loss and the entropy loss defined in
(21) were used to evaluate the performance of parameter estimation.

Figure 3 shows the ROC curves for all simulated examples. The curves are averaged
over 50 replications. The oracle method provides a benchmark curve for each setting (blue
dotted line in each panel). We can see that when the sample size is relatively small (n =
50, 100, or 200), the probit model (dark solid line) dominates the naive method (red dashed
line). When the sample size gets larger, the two methods exhibit similar performance.

Table 2 summarizes the parameter estimation measured by the Frobenius loss and the
entropy loss. The results were again averaged over 50 repetitions and the tuning parameter
λ was selected using the cross-validation introduced in Section 2.4. The oracle method
evidently performs the best, as it should. Comparing the two methods based on the observed
data X , we can see that the Frobenius losses from the probit model are consistently lower
than those from the naive method. The advantage is more significant when the sample size
is moderate (n = 100 or 200). In terms of the entropy loss, we can see that the probit model
outperforms the naive method for relatively large sample sizes, such as n = 200 and 500.
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GRAPHICAL MODELS FOR ORDINAL DATA 195

Figure 3. The ROC curves estimated by the probit graphical model (solid dark line), the oracle method (dotted
blue line), and the naive method (dashed red line). The oracle method and the naive method simply apply the
graphical lasso algorithm to the latent continuous data Z and the observed discrete data X , respectively.
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196 J. GUO ET AL.

Table 2. The Frobenius loss and the entropy loss estimated by the probit graphical model, the oracle method and
the naive method

Frobenius loss Entropy loss

Example n Gaussian Oracle Probit Gaussian Oracle Probit

Scale-free 50 2.3 (0.12) 0.7 (0.05) 2.2 (0.13) 12.0 (0.73) 3.1 (0.29) 23.1 (1.83)
100 2.2 (0.13) 0.4 (0.08) 1.7 (0.09) 9.4 (0.68) 1.9 (0.29) 10.1 (0.45)
200 1.7 (0.12) 0.3 (0.02) 1.2 (0.04) 6.4 (0.33) 1.1 (0.10) 5.4 (0.26)
500 0.9 (0.05) 0.1 (0.01) 0.7 (0.04) 3.3 (0.19) 0.5 (0.05) 2.7 (0.19)

Hub 50 1.2 (0.06) 0.3 (0.02) 1.1 (0.04) 21.2 (1.32) 5.8 (0.70) 29.4 (1.76)
100 1.1 (0.10) 0.1 (0.01) 0.8 (0.03) 15.9 (1.03) 3.2 (0.27) 15.1 (0.64)
200 0.8 (0.05) 0.1 (0.01) 0.6 (0.01) 11.9 (0.39) 1.8 (0.23) 10.4 (0.33)
500 0.6 (0.02) 0.0 (0.00) 0.5 (0.01) 9.1 (0.16) 0.7 (0.06) 7.5 (0.16)

Nearest-neighbor 50 1.4 (0.04) 0.6 (0.02) 1.3 (0.06) 16.5 (0.80) 5.6 (0.30) 25.6 (2.04)
100 1.3 (0.08) 0.4 (0.02) 1.0 (0.02) 12.1 (0.52) 3.5 (0.36) 12.4 (0.76)
200 1.0 (0.04) 0.2 (0.01) 0.7 (0.03) 8.6 (0.32) 2.0 (0.11) 7.5 (0.17)
500 0.6 (0.03) 0.1 (0.01) 0.5 (0.02) 5.5 (0.12) 0.8 (0.02) 4.5 (0.19)

Random-block 50 1.8 (0.05) 0.7 (0.05) 1.7 (0.04) 14.8 (1.04) 4.7 (0.46) 23.5 (1.76)
100 1.6 (0.16) 0.4 (0.02) 1.3 (0.03) 10.7 (1.10) 2.9 (0.27) 11.3 (0.46)
200 1.3 (0.05) 0.2 (0.03) 0.9 (0.05) 7.2 (0.19) 1.6 (0.11) 6.3 (0.32)
500 0.7 (0.03) 0.1 (0.01) 0.6 (0.03) 4.1 (0.15) 0.7 (0.06) 3.5 (0.13)

NOTE: The oracle method and the naive method simply apply the graphical lasso algorithm to the latent continuous
data Z and the observed discrete data X , respectively. The results are averaged over 50 repetitions and the
corresponding standard deviations are recorded in the parentheses.

4. DATA EXAMPLES

4.1 APPLICATION TO MOVIE RATING RECORDS

In this section, we apply the probit graphical model to Movielens, a dataset containing
rating scores for 1682 movies by 943 users. The rating scores have five levels, where 1
corresponds to strong dissatisfaction and 5 to strong satisfaction. More than 90% of the
entries are missing in the full data matrix; for this reason, we consider a subset of the data
containing 193 users and 32 movies, with 15% missing values. The missing values were
imputed by the median of the observed movie ratings.

The estimated network for these 32 movies is shown in Figure 4. We can see that the
estimated network consists of a large connected community as well as a few isolated nodes.
The large community mainly consists of mass marketed commercial movies, dominated
by science fiction, and action films. These movies are characterized by high production
budgets, state of the art visual effects, and famous directors and actors. Examples in this data
subset include the Star Wars franchise (“Star Wars” (1977), “The Empire Strikes Back”
(1980), and “Return of the Jedi” (1983), directed/produced by Lucas), the Terminator
series (1984, 1991) directed by Cameron, the Indiana Jones franchise (“Raiders of Lost
Ark” (1981), “The Last Crusade” (1989), directed by Spielberg), the Alien series, etc. As
expected, movies within the same series are most strongly associated. Further, “Raiders of
the Lost Ark” (1981) and “Back to the Future” (1985) form two hub nodes each having 16
connections to other movies and their common feature is that they were directed/produced
by Spielberg.
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GRAPHICAL MODELS FOR ORDINAL DATA 197

Figure 4. The network estimated by the probit graphical model. The nodes represent the movies labeled by their
titles. The area of a node is proportional to its degree and the width of a link is proportional to the magnitude of
the corresponding partial correlations.

On the other hand, isolated nodes tend to represent “artsier” movies, such as crime
films and comedies whose popularity relies more on the plot and the cast than on big
budgets and special effects, many with cult status among their followers. Examples include
“Pulp Fiction” (1994) (one of the most popular Tarantino movies), “Fargo” (1996) (a
quintessential Coen brothers movie), “When Harry Met Sally” (1989), and “Princess Bride”
(1987). These films have no significant connections in the network, either with each other
or with the commercial movies in the large community. This is likely due to two reasons:
(1) we restricted the dataset to movies rated by a substantial fraction of the users, so while
there probably are connections from “Fargo” to other Coen brothers movies, the other ones
did not appear in this set; and (2) there is a greater heterogeneity of genres in this set than
among the large group of science-fiction and action films. In other words, liking “When
Harry Met Sally” (a romantic comedy) does not make one more likely to enjoy “Silence of
the Lambs” (a thriller/horror movie), whereas liking “Terminator” suggests you are more
likely to enjoy “Alien.” A more complete analysis of this dataset is an interesting topic for
future work and requires a more sophisticated way of dealing with missing data, which is
not the focus of the current article.
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Figure 5. Histogram of the number of options in 218 survey questions.

4.2 NATIONAL EDUCATION LONGITUDINAL SURVEY STUDY

The data for the second example come from the National Educational Longitudinal
Study of 1988 (NELS:88), whose objective was to assess student attitudes toward a number
of questions about their school, education, and activities. The data used were obtained from
the study’s website http://nces.ed.gov/surveys/nels88/ and correspond to a sample of 12,144
students of eighth-graders. We selected 218 questions with ordinal and/or binary responses
that focused on diverse issues, including school work and home experiences, educational
and occupational aspirations, access to educational resources and other support, as well
as student background and school characteristics. Ordinal responses were chosen from the
following options: “OFTEN”, “SOMETIMES,” “RARELY,” and “NEVER,” while binary
ones corresponded to a ”YES/NO” answer. Figure 5 depicts the histogram of the frequency
of options in 218 survey questions.

The estimated network of the selected 218 survey questions is shown in Figure 6. It
is apparent that the estimated network exhibits a strong clustering structure. For example,
the set of the following nodes “F1S33A,” “F1S33B,” “F1S33C,” “F1S33D,” and “F1S33E”
forms a cluster, separated from the remaining nodes. These five questions are a part of a
sequence of similar questions, focusing on vocational coursework. Specifically, the ques-
tion inquires whether “In your most recent or current VOCATIONAL course, how much
emphasis did/does your teacher place on the following objectives?” and the specific ob-
jectives are listed in Table 3. It can be seen that questions “F1S33A”–“F1S33E” reflect
different aspects of knowledge and analytical ability that a student should acquire from
a vocational course, and therefore it is reasonable that they form a tight cluster. Similar

Table 3. Objectives in survey questions “In your most recent or current vocational course, how much emphasis
did/does your teacher place on the following objectives?”

F1S33A Teaching you skills you can use immediately
F1S33B Teaching you facts, rules, and steps
F1S33C Helping you understand how scientific ideas and mathematics are used in work
F1S33D Thinking about what a problem means and the ways it might be solved
F1S33E Helping you to understand mathematical and scientific ideas by helping you to manipulate

physical objects (tools, machines, lab equipment)
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Figure 6. Layout of the network estimated by the proposed probit graphical model. The nodes represent the
survey questions labeled by their code. The area of a node is proportional to its degree and the width of a
link is proportional to the magnitude of the corresponding partial correlations. The red lines represent positive
associations, while the light green lines negative ones.

clustering patterns can be observed in other parts of the graph, for example, serial “F1S7,”
serial “F1S8,” serial “F1S12,” serial “F1S25,” etc.

Next, we focus on broad patterns revealed by the model, as depicted in Figure 6.
The upper right corner captures relationships between serial questions broadly related to
coursework (F1S22-F1S25) in various disciplines (mathematics, science, English, computer
education), whereas in the lower left corner there are questions related to overall attitude and
study patterns regarding mathematics and science classes (F1S26-F1S32). It is interesting
to observe that the model does not discover any relationships between these two question
clusters. In the center of the plot we find questions related to various life aspects and being
successful/accomplishing them (F1S46) which is negatively associated with a cluster of
questions related to working hard in school for good grades (F1S11). In the center, we also
find a cluster of serial questions related to different ways of interacting with friends (F1S44)
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Figure 7. Layout of the estimated network by the graphical lasso algorithm. The nodes represent the survey
questions labeled by their code. The area of a node is proportional to its degree and the width of a link is proportional
to the magnitude of the corresponding partial correlations. The red lines represent positive associations, while the
light green lines negative ones.

which is negatively correlated to questions related to students awards (F1S8). In the upper
left corner we see the serial cluster on grades performance (F1S39) which is also negatively
correlated with some of the questions related to amount of coursework in various subjects
(F1S22 and F1S24). Finally, in the bottom right corner we encounter questions related to
school attendance and attitude toward it (F1S10, F1S12).

Overall, the model reveals interesting and informative patterns, much more so than its
Gaussian counterpart shown in Figure 7.

Next, we examined pairs of questions exhibiting the largest positive partial corre-
lations (based on the theory of Gaussian graphical models, the partial correlation of
variables j and j ′ is defined as ρj,j ′ = −ωj,j ′/

√
ωj,jωj ′,j ′ ). The results are shown in

Table 4. Among the top five ones, four pairs correspond to serial questions. The only ex-
ception is pair “F1S44D–F1S43,” although it inquires about extra reading, outside school.
Analogously, Table 5 lists the pair of questions exhibiting the strongest negative partial
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GRAPHICAL MODELS FOR ORDINAL DATA 201

Table 4. List of pairs of questions with strongest positive partial correlations

Connection Partial correlation Description

F1S44D–F1S43 0.617981 F1S44D: How often do you spend time on reading for pleasure?
F1S43: How much additional reading do you do each week on your

own outside of school—not in connection with schoolwork?
F1S45A–F1S45B 0.443995 F1S45A: During the school year, how many hours a day do you on

weekdays?
F1S45B: During the school year, how many hours a day do you on

weekends?
F1S36E1–F1S36E2 0.416786 F1S36E1: How much time do you spend on History homework in

school each week?
F1S36E2: How much time do you spend on History homework out of

school each week?
F1S44E–F1S44F 0.398257 F1S44E: How often do you spend time on going to the park, gym,

beach, or pool outside of school?
F1S44F: How often do you spend time on playing ball or other sports

with friends outside of school?
F1S12D–F1S12E 0.388861 F1S12D: How often do you feel it is “OK” for you to cheat on tests?

F1S12E: How often do you feel it is “OK” for you to copy someone
else’s homework?

correlations. Note that question pairs “F1S8F–F1S8A,” “F1S15B–F1S15A,” “F1S16B–
F1S16D” are composed of two opposite questions. It is interesting to observe that the
model identifies the pair ‘F1S10B–F1S12B,” which can be interpreted that although stu-
dents may skip class often they do not feel good about their action. A similar negative
partial correlation is present in pair “F1S10A–F1S12A” that addresses a “coming to school
late” issue.

Table 5. The list of pairs of questions with strongest negative partial correlations

Connection Partial correlation Description

F1S8F–F1S8A −0.376025 F1S8F: Did you win any special recognition for good grades or honor
roll?

F1S8A: Haven’t you won any awards or received recognition?
F1S10B–F1S12B −0.281428 F1S10B: How many times did you cut or skip classes?

F1S12B: How often do you feel it is “OK” for you to cut a couple of
classes?

F1S15B–F1S15A −0.259550 F1S15B: During your last absence from school, did anyone from the
school call your home?

F1S15A: The school did not do anything on your last absence from
school.

F1S10A–F1S12A −0.216677 F1S10A: How many times were you late for school in the first half of
the current school year?

F1S12A: How often do you feel it is “OK” for you to be late for school?
F1S16B–F1S16D −0.214770 F1S16B: When you came back to school after your last absence, other

students helped you catch up on the work you missed.
F1S16D: When you came back to school after your last absence, you

didn’t need to catch up on work.
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202 J. GUO ET AL.

Overall, the proposed model identifies strong clustering patterns in the questions being
asked in this survey, which primarily correspond to series of related in intent and purpose
questions, thus indirectly validating its usefulness.

5. SUMMARY AND DISCUSSION

Ordinal data occur often in practice and are usually treated as continuous for most analy-
ses, including estimating dependencies between the variables under consideration by fitting
a graphical model. Our proposed model, explicitly takes into account the ordinal nature of
the data in the graphical modeling step. While direct computation for the proposed model is
expensive, the approximations employed allow us to efficiently fit high-dimensional mod-
els. On those datasets that the model can be fitted directly, our numerical results show that
the approximations we make result in a minimal loss of accuracy. We leave the theoretical
properties of both the exact estimator and its approximate version as a topic for future work.

The method proposed in this article can also be extended to fit the multivariate or-
dinal regression model, where multiple ordinal responses are fitted on a number of
covariates. Specifically, suppose Wj1, . . . ,Wjmj

are the covariates associated with the
jth response. Following the notation in Section 2.1, let Xj denote the jth response,
which is an ordinal variable, and Zj the corresponding latent continuous variable. We
may assume Zj = αj0 + αj1Wj1 + · · · + αjmj

Wjmj
+ εj , where αj0 is the intercept, and

αj1, . . . , αjmj
are regression coefficients. In addition, we assume that ε1, . . . , εp jointly fol-

low a Gaussian distribution with mean zero and covariance matrix � = �−1. To estimate
the regression coefficients, we may modify the M-step in Section 2.2 to estimate � and
αj�’s simultaneously. Rothman, Levina, and Zhu (2010) discussed a similar problem as the
modified M-step, and the algorithm there can be directly applied.
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