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ABSTRACT

Motivation: The identification of DNA copy number changes

provides insights that may advance our understanding of initiation

and progression of cancer. Array-based comparative genomic

hybridization (array-CGH) has emerged as a technique allowing

high-throughput genome-wide scanning for chromosomal aberra-

tions. A number of statistical methods have been proposed for the

analysis of array-CGH data. In this article, we consider a fused

quantile regression model based on three motivations: (1) quantile

regression may provide a more comprehensive picture for the ratio

profile of copy numbers than the standard mean regression

approach; (2) for simplicity, most available methods assume uniform

spacing between neighboring clones, while incorporating the infor-

mation of physical locations of clones may be helpful and (3) most

current methods have a set of tuning parameters that must be

carefully tuned, which introduces complexity to the implementation.

Results:We formulate the detection of regions of gains and losses in

a fused regularized quantile regression framework, incorporating

physical locations of clones. We derive an efficient algorithm that

computes the entire solution path for the resulting optimization

problem, and we propose a simple estimate for the complexity of the

fitted model, which leads to convenient selection of the tuning

parameter. Three published array-CGH datasets are used to

demonstrate our approach.

Availability: R code are available at http://www.stat.lsa.umich.edu/

�jizhu/code/cgh/

Contact: jizhu@umich.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Chromosomal aberrations such as deletions, amplifications
and structural rearrangements are hallmarks of cancer
(Lengauer et al., 1998; Pinkel and Albertson, 2005).

Therefore, identifying genomic regions associated with sys-
tematic aberrations provides insights into the initiation and
progression of cancer, and improves the diagnosis, prognosis

and therapy strategies.
In recent years, array-based comparative genomic hybridiza-

tion (array-CGH) has emerged as a technique offering

genome-wide scanning for chromosomal aberrations. In this

approach, genomic DNA sequences from tumor and normal

reference samples are labeled by different color fluorochrome,

and then hybridized to the array consisting of hundreds to

thousands of cloned DNA fragments with known exact

chromosomal locations. If both samples contain the same

quantity of target sequences, they bind equally to the

complementary sequences, resulting fluorescent signal ratio

equal to 1. In contrast, when the tumor sample contains DNA

with duplication (deletion) or other gain (loss) in a particular

genomic region, more (less) tumor DNA bind to the

complementary sequence, and the ratio is greater (smaller)

than 1. Therefore, the ratio represents the relative DNA

aberration at a particular genomic region.
A number of statistical methods have been developed to

analyze the ratio profile from array-CGH. For instance, a

method based on robust locally weighted regression (lowess)

has been previously used in Beheshti et al. (2003). A quantile

smoothing method using the total variation as the roughness

penalty has been shown to give desirable visualization of the

CGH profile in Eilers and Menezes (2004). Other smoothing

algorithms that denoise the array-CGH data and appear suited

for handling abrupt changes in the profile include adaptive

weights smoothing (Hupe et al., 2004; Polzehl and Spokoiny,

2000), wavelets (Hsu et al., 2005) and lasso (Huang et al., 2005).

Jong et al. (2004) use a genetic local search algorithm to

examine the CGH profile by maximizing a likelihood with a

penalty term containing the number of breakpoints. Olshen

et al. (2004) propose a circular binary segmentation (CBS)

method that detects aberrations by recursively using a like-

lihood ratio test statistics. Other methods include the hidden

Markov model (HMM) which intends to model the possible

dependence of a clone with its near neighbors (Fridlyand et al.,

2004), and a cluster along chromosomes (CLAC) method which

builds hierarchical clustering-style trees along the chromosome

and then selects the ‘interesting’ clusters via certain criterion

(Wang et al., 2005).
One piece of information not considered in most of these

methods is the physical position of the clone along the genome,

and uniform spacing between neighboring clones is often

assumed. However, incorporating this information can only

help if done correctly (Lai et al., 2005). We also note that most

of these methods involve tuning parameters that need to be

carefully selected. A key issue in the implementation is how to

appropriately select these tuning parameters. If an algorithm is*To whom correspondence should be addressed.
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very sensitive to the values of the tuning parameters or if the

complexity of the algorithm does not allow the user to

determine the tuning parameters easily, it may be viewed as a

weakness of the algorithm (Lai et al., 2005).
In this article, we modify the fused quantile regression model

in Eilers and Menezes (2004) by incorporating the physical

distance between adjacent clones. To solve the resulting

optimization problem, we derive an efficient algorithm that

computes the entire solution path for all values of the tuning

parameter. Furthermore, we propose a convenient measure for

the complexity of the fitted model, which facilitates selection of

the tuning parameter.
Let yi 2 R denote the log2-ratio of the normalized signal

between the tumor and the reference samples at clone i, and

xi 2 R be the physical position of the corresponding clone.

If the entire hybridization and measurement process are

well behaved, the signal ratio will reflect the relative copy

numbers, i.e.

yi ¼ �i þ �i; i ¼ 1, . . . ; n; ð1Þ

where �i is the true log2-ratio of DNA copy numbers of

tumor over reference samples at position i, and �i is a random

noise.
Similar (but not identical) to Eilers and Menezes (2004), we

formulate the detection of DNA copy number changes as a

fused quantile regression problem (fused-QR). Let � 2 ð0; 1Þ be
the quantile of interest, and fi be the smooth series that

approximate yi, specifically, the 100�% quantile of the log2-

ratio at clone xi. We then estimate fi via:

min
fi

Xn
i¼ 1

��ðyi � fiÞ þ �
Xn
i¼ 2

fi � fi�1

xi � xi�1

����
����

 !
: ð2Þ

We explain the three parts of criterion (2) as follows:

� The first term ��ð:Þ is the so-called check function that

measure the closeness of fi to yi (Koenker and Bassett,

1978):

��ðyi � fiÞ ¼
� � ðyi � fiÞ if yi � fi > 0
�ð1� �Þ � ðyi � fiÞ otherwise:

�
ð3Þ

A median curve with � ¼ 0:5 can show the trend of the ratio

profile, and the lower and upper quantile curves can give the

spread of the ratios.

� The second term is a so-called penalty that measures the

smoothness of fi. Since copy number changes involve

chromosome segments, the ratios of adjacent clones should

be similar. Hence, we discourage changes in adjacent

clones by penalizing jfi � fi�1j, adjusted by the distance

between clones, i.e. jxi � xi�1j. A similar penalty without

jxi � xi�1j is called the fused penalty in Tibshirani et al.

(2005), and it has also been used in Eilers and Menezes

(2004) and Huang et al. (2005) for smoothing array-CGH

data.

The fused penalty in (2) offers parsimony: making �
sufficiently large will cause some of the fitted jfi � fi�1j to

be exactly 0. When jfi � fi�1j is not equal to 0, it

corresponds to a ‘jump’ in the ratio profile. So the fitted

ratio profile will consist of flat plateaus, flat valleys and

sharp jumps. A sharp jump corresponds to the beginning

or the end of a copy number aberration.

� �>0 is a tuning parameter that controls the balance

between the smoothness of the fitted model and its fidelity

to the data: the larger the �, the smoother the fi, but at the

cost of worse fit to the data, and vice versa. Hence,

selecting an appropriate value of the tuning parameter is

crucial for the performance of the fitted model.

The remainder of the article is organized as follows. In

Section 2, we first present an equivalent version of (2), then

derive an algorithm for computing the entire solution path for

this model, and also propose a convenient method for selecting

the tuning parameter. In Section 3, we apply the proposed

approach to three published array-CGH datasets. We summa-

rize the article in Section 4.

2 METHODS

2.1 Statistical model

We denote �0 ¼ f1, �j ¼ ðfjþ1 � fjÞ=ðxjþ1 � xjÞ, j ¼ 1, . . . ; n� 1, then

fi ¼ �0 þ
Xi�1

j¼ 1

�jðxjþ1 � xjÞ: ð4Þ

Using this new set of parameters f�jg
j¼ n�1
j¼ 0 , (2) can be re-written as:

min
�0;�j

Xn
i¼ 1

��ðyi � fiÞ þ �
Xn�1

j¼ 1

j�jj; ð5Þ

or equivalently,

min
�0;�j

Xn
i¼ 1

��ðyi � fiÞ ð6Þ

subject to
Xn�1

j¼ 1

j�jj � s;

where s is a tuning parameter equivalent to �. Note that (5) and (6) are

in a form of L1 loss plus L1 penalty. For a given value of the tuning

parameter, the optimization can be transformed into a linear

programming problem, hence solved efficiently by most commercial

packages (Eilers and Menezes, 2004). However, instead of solving the

problem for one value of the tuning parameter, here we are interested in

solving for the entire solution path for all values of the tuning

parameter. This will facilitate the selection of the tuning parameter.

In the next section, we show that the solution path �ðsÞ is piecewise

linear in s, which allows us to derive an efficient algorithm to compute

the entire �ðsÞ.
Before delving into technical details, we illustrate the concept

of piecewise linearity of the solution path by a simple example.

We simulate a ratio profile of thirty clones:

yi ¼ �i þ �i; i ¼ 1, . . . ; 30; ð7Þ

where �i are independent Gaussian noise with � ¼ 0:15. We let �i ¼ 1

for i ¼ 11, . . . ; 20, indicating gains at the second 10 clones, and �i ¼ 0

for all other clones. We fit the fused-QR model with �¼ 0.5. Figure 1

shows the solution path of �ðsÞ as a function of s, and the final fitted

median curve with an appropriately chosen s.

2.2 The path algorithm

In this section, we outline the essential components of the path

algorithm and leave all details in the Supplementary Material.
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We re-write (6) as:

min
�0;�j

�
Xn
i¼ 1

�i þ ð1� �Þ
Xn
i¼ 1

	i ð8Þ

subject to
Xn�1

j¼ 1

j�jj � s

� 	i � yi � fi � �i

	i; �i � 0; i ¼ 1, . . . ; n:

The above gives the Lagrangian primal function:

Lp : �
Xn
i¼ 1

�i þ ð1� �Þ
Xn
i¼ 1

	i þ �
Xn�1

j¼ 1

j�jj � s

 !
þ

Xn
i¼ 1


iðyi � fi � �i þ �2i Þþ

Xn
i¼ 1

�ið�yi þ fi � 	i þ 
2i Þþ

Xn
i¼ 1

�ið��i þ "2i Þ þ
Xn
i¼ 1

�ið�	i þ �2i Þ; ð9Þ

where �, 
i, �i, �i, �i are non-negative Lagrangian multipliers. Setting

the derivatives of Lp to zero, we achieve

@

@�
: � � sign ð�jÞ ¼

X
i>j

ð
i � �iÞdj; for �j 6¼ 0; ð10Þ

@

@�0
:

Xn
i¼ 1

ð
i � �iÞ ¼ 0; ð11Þ

@

@�i
: � ¼ 
i þ �i; ð12Þ

@

@	i
: 1� � ¼ �i þ �i; ð13Þ

where dj ¼ xjþ1 � xj, and the Karush–Kuhn–Tucker (KKT)

conditions are


iðyi � fi � �iÞ ¼ 0; ð14Þ

�iðyi � fi þ 	iÞ ¼ 0; ð15Þ

�i�i ¼ 0; ð16Þ

�i	i ¼ 0: ð17Þ

Since the Lagrange multipliers must be non-negative, we conclude

from (12) and (13) that both 0 � 
i � � and 0 � �i � 1� �. We can also

see that when yi � fi > 0 (hence �i > 0), we have 
i ¼ � and �i ¼ 0;

when yi � fi < 0 (	i > 0), we have 
i ¼ 0 and �i ¼ 1� �. These lead to

the following relationships:

yi � fi > 0 ) �i > 0; 	i ¼ 0; 
i ¼ �; �i ¼ 0;
yi � fi < 0 ) �i ¼ 0; 	i > 0; 
i ¼ 0; �i ¼ 1� �;
yi � fi ¼ 0 ) �i ¼ 0; 	i ¼ 0; 
i 2 ½0; ��; �i 2 ½0; 1� ��:

Let �i ¼ 
i � �i. Using these relationships, we can define the

following four sets which are useful for the path algorithm:

� E ¼ fi : yi � fi ¼ 0;�ð1� �Þ � �i � �g (elbow)

� L ¼ fi : yi � fi < 0; �i ¼ �ð1� �Þg (left of the elbow)

� R ¼ fi : yi � fi > 0; �i ¼ �g (right of the elbow)

� V ¼ fj : �j 6¼ 0g (active set)

Since our goal is to compute the solution path �ðsÞ, we are interested

in how the KKT conditions change when the parameter s increases. As s

increases, we define an event to be

(1) a data point hits the elbow, i.e. a residual yi � fi changes from

non-zero to zero, or

(2) a coefficient �j changes from non-zero to zero, i.e. an index leaves

V.

Notice that these two events correspond to the non-smooth points ofP
i ��ðyi � fiÞ and jj�jj1, respectively. Then we can see:

� As s increases, the sets V, L, R and E will not change (or

equivalently, the KKT conditions will not change), unless an event

happens. When the KKT conditions do not change, for uniqueness

of the solution, we have the number of non-zero coefficients equal

to the number of observations on the elbow, i.e. jEj ¼ jVj

according to (10) and (11).

� As s increases, points in E stay at the elbow, unless an event

happens. Therefore, �j satisfy:

yi � ð�0 þ
X

j2V;j<i

�jdjÞ ¼ 0 for i 2 E: ð18Þ

Since jVj ¼ jEj, there is one free unknown in this set of equations,

which allows � to change linearly when s increases, unless an event

happens. Thus, overall the entire solution path �ðsÞ is piecewise linear.

The basic idea of our algorithm is as follows: we start with s¼ 0 and

increase it, keeping track of the location of all data points relative to the

elbow and also of the magnitude of the fitted coefficients along the way.

As s increases, by continuity, points in E must linger on the elbow. Since

all points at the elbow have yi � fi ¼ 0, we can establish a path for �.

The elbow set will stay stable until either some other point comes to the

elbow or one non-zero fitted coefficient becomes zero. The path

terminates when we reach the interpolating solution.

2.3 Selection of the tuning parameter

Our path algorithm facilitates selection of the tuning parameter among

all possible values. In this section, we propose a convenient approach

for this selection. We choose to use the Schwarz information criterion

(SIC) (Schwarz, 1978), which is common in the quantile regression

literature (Koenker et al. 1994):

SICðsÞ ¼ ln
1

n

Xn
i¼ 1

��ðyi � fiÞ

 !
þ
ln n

2n
df; ð19Þ
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Fig. 1. Illustrative example (�¼ 0.5). Upper panel: the solution path

�ðsÞ as a function of s, which is piecewise linear. Lower panel: the

simulation data (dots), the fitted median curve with an appropriately

tuned s (solid), and the truth (dashed).
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where df is a measure of the complexity of the fitted model. Stein (Stein,

1981), Efron (Efron, 1986) and several other researchers argue that df

can be estimated by
Pn

i¼ 1 @fi=@yi. We have been able to prove that in

the fused-QR setting,
Pn

i¼ 1 @fi=@yi is equal to the number of non-zero

�j’s in the fitted model (details of the proof are in the Supplementary

Material). Furthermore, according to (4), a non-zero �j corresponds to

a jump between adjacent clones in the fitted model. Therefore, the

number of fitted jumps gives a convenient estimate for df.

In practice, we can first use the path algorithm to compute the entire

solution path, then select s that minimizes the SIC.

3 APPLICATIONS

In this section, we apply our method to three real datasets.

3.1 Fibroblast cell line data

This is a widely analyzed BAC array dataset provided by

Snijders et al. (2001). The arrays consist of approximately

2400 BAC clones and provide precise measurement with an

SD of �0.05–0.1 log2-ratio. Single experiments were con-

ducted on 15 fibroblast cell lines and the true copy number

alterations were previously characterized by cytogenetics.

One attractive feature of using this dataset is to prove the

validation of our method since the true copy number changes

are known.

We applied our fused-QR algorithm to four chromosomes:

chromosome 3 and 9 on GM03563, and chromosome 10 and 11

on GM05296. Figure 2 shows the fitted median curves for the

four datasets. As we can see, all four chromosomes show partial

chromosomal alterations. These alterations detected by the

fused-QR median curves, compared with the results from

Snijders et al. (2001), agree with the cytogenetic analysis

very well.

3.2 Colorectal cancer data

The development and progression of colorectal cancer is a

multi-step process leading to genomic alterations in tumors.

Nakao et al. (2004) report the results of array-CGH in a set of

125 primary colorectal tumors. In the study, DNA was

extracted from 125 frozen colorectal cancer samples obtained

from the University of Barcelona Hospital Clinic in Barcelona,

Spain. The arrays used in this study consisted of 2463 BAC

clones that covered the human genome at a 1.5 mb resolution.

After applying certain spot exclusion criteria, there were 2120

clones in the final dataset.
Following Eilers and Menezes (2004), we applied our method

to samples X59, X524, X186 and X204 with a focus on

chromosome 1. For a given quantile �, we first computed the

entire fused-QR solution path using our algorithm, then

selected the tuning parameter using the SIC criterion.

Figure 3 shows the ratio profiles for the four samples: the

solid lines are the fitted median curves, and the dashed lines are

upper/lower 15% quantile curves.
The interesting thing is that, when using our path algo-

rithm to select the tuning parameter s and when using the

actual physical locations of the clones, the results do not

completely agree with Eilers and Menezes (2004). In Eilers and
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Fig. 2. Examples of the application of the fused-QR to the fibroblast cell lines (�¼ 0.5): (a) a copy gain at one side of the chromosome; (b) two altered

points at one end; (c) a copy gain in the middle of the chromosome and (d) a copy deletion in the middle of the chromosome.

Analysis of array CGH data

2473



Menezes (2004), uniform spacing between adjacent clones was

assumed, and cross-validation was used to select the tuning

parameter from a pre-specified grid of values. On the other

hand, we utilized the physical locations of the clones in our

model, and selected the tuning parameter from all possible

values for s, as opposed to from a grid.

In particular, Figure 4 compares the results for sample

X524 from three methods: (1) Eilers and Menezes (2004);
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Fig. 3. Chromosome 1 from samples X59, X524, X186 and X204. Horizontal axis: physical position (mb) of the clones. Vertical axis: log2-ratio of

intensities from the tumor versus reference samples. Solid lines represent the fitted median curves, and the dashed lines are fitted upper and lower

15% quantile curves.
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QR using uniform spacing. (d) Results from fused-QR using the clones’ positions. The solid lines are the fitted median curves.
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(2) fused-QR using uniform spacing but the path algorithm for

selecting s and (3) fused-QR using both the actual clone

positions and the path algorithm. As we can see from the median

curves, Eilers and Menezes (2004) missed a region of gain and a

region of loss around the position of 70Mb. Fused-QR using

uniform spacing detected the region of gain but failed to detect

the region of loss at this position, while fused-QR using actual

physical locations captured both the gain and the loss.
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3.3 Breast tumor data

Pollack et al. (2002) used cDNA array-based CGH to profile

DNA copy number alterations in a series of breast cancer cell
lines and primary tumors. Specifically, they performed CGH on

44 breast tumor samples and 10 breast cancer cell lines, using
cDNA microarrays containing 6691 different mapped human

genes. To demonstrate our fused-QR algorithm for identifying

copy number aberrations, we focused on 10 chromosomes of
the breast cancer cell line MDA157, which is known to have a

large number of alterations. The fitted profiles are shown in
Figure 5. When compared with the results from the CBS

method (Olshen et al., 2004) and the CLAC method (Wang
et al., 2005), as summarized in (Tibshirani and Wang 2007), our

results seem promising, in terms of both resisting outlier
measurements (chromosome 3, 5 and 9) and detecting weak

alterations (chromosome 7 and 15).

4 CONCLUSION

We have proposed a fused quantile regression algorithm for

smoothing array-CGH data. It is well known that quantile
regression enjoys several attractive features. For example,

quantile curves tend to present a more complete picture of
the data than a single mean curve: the median curve shows the

overall trend, while the upper and lower quantile curves show
the spread. Quantile regression is also known to be not subject

to the distributional assumption of the noise term in (8), while

several other methods (Beheshti et al., 2003; Hsu et al., 2005;
Olshen et al., 2004) rely on the constant variance assumption.
In our work, we have made three additional contributions:

� We developed an efficient algorithm that computes the
entire solution path for the fused-QR model. This

facilitates selection of the tuning parameter. For example,
Eilers and Menezes (2004) pointed out that the choice of

the tuning parameter is ‘unlikely to be unique’ in real
applications, and it is worth to try different values of the

tuning parameter to ‘see whether strong patterns present

themselves’. Our path algorithm allows biologists to play
with the tuning parameter more easily and see how pattern

changes with the value of the tuning parameter.

� We proposed a very convenient estimate for the complexity
of the fitted model, i.e. the number of jumps in the fitted

curve. This further allows convenient selection of the
tuning parameter.

� We have incorporated the physical location of clones into

the modeling procedure. Clone locations contain impor-

tant information for understanding the aberrations. For
example, if two regions indicating the same direction of

aberrations are far apart, the chance that they refer to the
same aberration should be lower than when they were

closer. As we have seen in Section 3.2, using the physical
location information can result in different fitted models in

identifying copy number changes. However, we note that
further complementary experiments are needed to test

whether these differences are biologically meaningful.

However, we note that similar to most current algorithms, we

did not address the issue of how to set a threshold to call for

detection, i.e. we return only a fitted profile of the copy number
changes, without calling the detected regions as significant or
not. In practice, we may use the false discovery rate (FDR) to

help use decide an appropriate threshold for the detection.
Tibshirani and Wang (2007) proposed two ways to estimate the
FDR for a given threshold, one when normal reference samples

are available, and the other when normal reference samples are
not available. We plan to explore along the same line in our
future studies.
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