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Abstract

A multi-stage variable selection method is introduced for detecting association signals in 

structured brain-wide and genome-wide association studies (brain-GWAS). Compared to 

conventional single-voxel-to-single-SNP approaches, our approach is more efficient and powerful 

in selecting the important signals by integrating anatomic and gene grouping structures in the 

brain and the genome, respectively. It avoids large number of multiple comparisons while 

effectively controls the false discoveries. Validity of the proposed approach is demonstrated 

by both theoretical investigation and numerical simulations. We apply the proposed method to 

a brain-GWAS using ADNI PET imaging and genomic data. We confirm previously reported 

association signals and also find several novel SNPs and genes that either are associated with brain 

glucose metabolism or have their association significantly modified by Alzheimer’s disease status.
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1 INTRODUCTION

Human brain structures are highly heritable [6, 41]. The association patterns between the 

brain and the genome offer important information about development and progression 

mechanisms of chronic cognitive diseases such as Alzheimer’s disease (AD) [34]. Modern 

technologies of neuroimaging scan and next generation sequencing enable us to look at such 

association patterns at the resolutions of single voxel and single-nucleotide polymorphism 

(SNP) scales. However, given the enormous numbers of variables in both imaging data (~ 

millions of voxels) and genotype data (~ millions of SNPs), it is extremely challenging 
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to detect the true association signals immersed in the ultrahigh-dimensional noises. Many 

current brain-wide and genome-wide association studies (brain-GWAS) look at a single­

voxel-to-single-SNP pair at a time [46]. Such single-voxel-to-single-SNP (or pairwise) 

approaches suffer from very limited power in detecting the true signals, mostly due to 

the astronomical number of multiple comparisons needed to control the false positive 

discoveries [46, 19].

Marginal pairwise approaches treat different voxel-to-SNP pairs as independent. A joint 

model with all voxels and all SNPs considered together is often of more scientific interest. 

Compared to marginal pairwise approaches, joint modeling has enormous potential to 

improve the power of detecting association signals. The multivariate linear regression is 

a common way for jointly modeling multiple responses and multiple predictors. However, 

such a model is ill-posed when the dimensions of responses and predictors are both greater 

than the sample size, as the solution is not unique. Another limitation of marginal pairwise 

approaches is that they fail to incorporate the intrinsic biological grouping structures, such 

as anatomical regions of interest (ROI) in the brain and genes in the genome, respectively. 

Figure 1 illustrates an atlas of anatomical ROIs and their positions in the brain.

Li et al. [29] introduced a multivariate sparse group lasso (MSGLasso), a regularization 

method for high-dimensional multivariate-response and multiple-predictor linear regression 

with grouping structures on both responses and predictors. They show that the power 

of detecting the true association signals can be significantly increased by incorporating 

the grouping structures. However, it is computationally infeasible to directly fit the 

MSGLasso with ultrahigh-dimensional neuroimaging and genomic data, where the numbers 

of responses and predictors are of exponential orders of the sample size. As in our brain­

GWAS, each response image consists of Q ≈ 350,000 voxels and each genome consists 

of P ≈ 560,000 SNPs, while we only have n = 373 samples. Furthermore, conditions 

that guarantee selection consistency for the MSGLasso may fail to hold for ultrahigh­

dimensional cases [28].

To address these challenges, we propose a multi-stage variable selection method for 

settings with ultrahigh-dimensional responses and ultrahigh-dimensional predictors, both 

with grouping structures. The proposed method consists of two selection stages. The first 

selection stage aims to remove unimportant response-to-predictor group pairs. The second 

stage then selects important individual-level signals only within the selected group pairs. 

Stability selection [35] is used in both stages to enhance the stability of the selection and 

control false positives.

The contribution of the proposed method to variable selection is two-fold. Firstly, it 

is a joint modeling approach with both ultrahigh-dimensional responses and ultrahigh­

dimensional predictors. It avoids the huge number of downstream hypothesis tests and 

multiple comparisons. Secondly, it is a structured approach taking into consideration the 

grouping structures of both responses and predictors. These unique characteristics enable the 

proposed method to significantly increase the power of identifying true signals, and at the 

same time, reduce the number of false discoveries.
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The proposed method is particularly useful in conducting structured brain-wide and 

genome-wide association studies (brain-GWAS). In this article, we applied it to Fluorine­

uorodeoxiglucose positron emission tomography (FDG-PET) neuroimaging data and DNA 

genotyping data collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database for detecting association signals between voxel-level neuroimaging phnotypes and 

genetic variants. FDG-PET images measure brain glucose metabolism, and can reflect 

changes of brain metabolic pattern as diagnostics of AD progression [37]. We emphasize 

that the proposed method is applicable to a wide range of brain-GWASs with different 

imaging modalities or molecular data types, such as functional magnetic resonance imaging 

(fMRI), methylation, copy number variation and mitochondria DNA profiles, or with 

different grouping structures, such as neuroimages grouped by functional regions, cortices 

and genomic profiles grouped by gene pathways, protein networks, etc. To the best of our 

knowledge, our work is the first one to conduct a structured brain-GWAS at voxel and 

SNP levels using a joint model. Compared to the pairwise approaches [46, 19] and other 

marginal approaches such as gene based analysis [22] that regresses each single voxel on 

a set of SNPs within a gene, our approach is able to identify more genetic signals that 

either are associated with brain glucose metabolism or have their association significantly 

modified by AD status. Computationally, the proposed method is in general more efficient 

compared to the pairwise approaches [46]. The major computational cost saving comes from 

the dimension reduction in the first selection stage and the fact that we only focus on the 

selected ROI-to-gene pairs in the downstream analyses.

2 Model and method

Details of our proposed model and method are provided in this Section as the background 

of conducting a structured brain-GWAS for the ADNI PET imaging and genomic data. The 

main procedure consists of two selection stages in a multivariate linear regression model 

with the ultimate goal being to efficiently and jointly select the important association signals 

between ultrahigh-dimensional neuroimaging responses and genetic DNA predictors.

Let Y be the n × Q matrix of voxel-level neuroimaging-responses, X be the n × P matrix of 

SNP genotypes. We consider the following multivariate linear regression model

Y = Iβ0
T + XBX + Iadβad

T + Imciβmci
T + X × Iad BXad + X × Imci BXmci +

Ageβage
T + Sexβsex

T + E,
(1)

where I is a length-n vector with entries 1, Iad and Imci are length-n indicators for AD and 

mild cognitive impairment (MCI) subjects, respectively, X × Iad and X × Imci are n × P 
matrices of interaction terms between genetic predictors and disease status, Age and Sex are 

length-n covariate vectors of age and sex, respectively. Here β0 is a length-Q grand intercept 

vector; βad = IQβad, βmci = IQβmci, βage = IQβage, βsex = IQβsex are coefficient vectors 

for AD indicator, MCI indicator, age and sex, respectively, where IQ is a length-Q vector 

with entries 1; B, BXad, BXmci are regression coefficient matrices for genetic, genetic-AD 

interaction and genetic-MCI interaction effects, respectively; E is an n×Q matrix of noise 
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terms arising from a Q-dimensional multivariate normal distribution with zero means. The 

superscript T represents transpose of a matrix or vector.

When variables in X and Y are centered, β0 is zero and model (1) reduces to

Y = XB + E (2)

with X = X, Iad, Imci, X × Iad, X × Imci, Age, Sex  being the grand predictor matrix and 

B = BX
T , βad, βmci, BXad

T , BXmci
T , βage, βsex

T
 being the grand coefficient matrix. Here we do 

not require the selection to respect the model hierarchy, i.e., an interaction term can be 

selected into the final model even if the baseline genetic main effect is not selected.

When the imaging responses Y and genetic predictors X are grouped into ROIs and genes, 

respectively, the groups automatically introduce a block grouping structure on BX, with row 

blocks corresponding to gene groups and column blocks corresponding to ROI groups. They 

also induce the same gene grouping structures on X × Iad and X × Imci, and the same block 

grouping structure on BXad and BXmci. We assume that association signals are sparse at both 

group and individual levels. That is (i) each response group only associates with at most a 

few predictor groups, and (ii) each important voxel only associates with a few number of 

SNPs (SNP-disease interactions) compared to the sample size. In the following analyses, we 

assume that variables Iad, Imci, Age and Sex in model (2) each forms a group by itself.

2.1 First stage: selecting important ROI-to-gene blocks

In the first stage, we use the multivariate group lasso [29, 61] to select the important 

ROI-to-gene pairs. It serves as a screening step, which rules out the unimportant ROI­

to-gene pairs by shrinking the corresponding association blocks to zero. To reduce the 

dimensionality of input variables while keeping the ROI and gene grouping structures, we 

use the major principle components (PC) within each ROI or gene group instead of using 

the voxel intensities and SNP genotypes. Note that PCs are linear combinations of the 

original variables, therefore a zero association block between the original variables implies 

a zero block between corresponding PCs. We interpret the selected PC association blocks 

as the evidence of associations between their representative ROIs and genes. The advantage 

of using PCs is two-fold. Firstly, it helps reduce the input dimensionality while keep the 

grouping structure and essential information within each group, therefore improves the 

efficiency of group-level selection. Secondly, since PCs are orthogonal (independent) to each 

other, they avoid the complications arising from collinearity between predictors or from 

overlapping grouping structures (genes could be overlapping with each other).

Let ℛ = 1, …, R  be the index set of ROI groups, and G = 1, …, G  be the index set of 

generic predictor groups – i.e., gene, disease indicator, gene-disease interaction and other 

covariate groups. For ease of notation, we simply term each generic predictor group as a 

“gene group” in the following when no confusion is caused. Denote by ℛ ⊗ G the induced 

block grouping structure on the regression coefficient matrix. For each r ∈ ℛ, denote by PY
r

the major PCs of the responses in the rth group. Let ℙY = PY
1 , …, PY

R  be the new response 

Li et al. Page 4

Can J Stat. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



matrix of PCs. Similarly, for each g ∈ G, denote by PX
g  the major PCs of the predictors 

in the gth group. Let ℙX = PX
1 , …, PX

G  be the new predictor matrix of PCs. We apply the 

multivariate group lasso on the PC matrices to select important ROI-to-gene associations by 

solving the optimization problem:

argmin
Γ

1
2n ℙY − ℙXΓ 2

2 + λ1 ∑
rg ∈ ℛ ⊗ G

ωrg1/2 Γrg 2, (3)

where ‖ · ‖2 denotes the l2 norm. Here Γ is the regression coefficient matrix between the PC 

matrices and Γrg is a submatrix block between rth ROI and gth gene group. The group lasso 

penalty ∑rg ∈ ℛ ⊗ Gωrg1/2 Γrg 2 aims to shrink the unimportant Γrg blocks to zero and ωrg is 

a non-negative weight assigned to Γrg, r = 1, … ,R, g = 1, … ,G. In our brain-wide GWAS, 

we use ωrg = v × s [61, 44], where v is the number of voxels in the rth ROI and s is the 

number of predictors in the gth gene group. We set ωrg = 0 if we do not want to penalize 

the rgth group. The tuning parameter λ1 controls the sparsity of the selected ROI-to-gene 

blocks.

2.2 Second stage: selecting important voxel-to-SNP signals

For each nonzero Γrg selected from the first stage, the corresponding ROI-to-gene pairs 

are passed to the second stage. In the second stage, we further zoom in to look at the 

associations for those pairs at voxle-to-SNP levels. For each selected ROI-to-gene pair, we 

solve the following multivariate lasso problem [29, 24, 18],

argmin
Brg

1
2n Y r − XgBrg 2

2 + λ2 ∑
βjk ∈ Brg

ωjk βjk , (4)

where the response variables Yr are voxel-level intensity scores in the selected rth ROI, 

the predictors Xg are SNP genotypes (or SNP-disease interactions) within the selected 

associated gth gene group and Brg is the corresponding regression coefficient block. Here 

λ2 is a tuning parameter controlling the within-group individual-level sparsity, and ωjk is a 

pre-assigned non-negative weight to βjk. If ωjk = 0, then βjk will not be penalized.

2.3 Stability selection and control for false discoveries

Stability selection [35] is employed in both stages. We fit models (3) and (4), respectively, 

multiple times, say K times, on randomly resampled (bootstrapped or subsampled) 

datasets using pre-fixed tuning parameters. Then an important signal (either group-level 

or individual-level) is eventually selected if its selection frequency among the K times of 

variable selection is greater than certain specified threshold.

The advantages of stability selection are three-fold. Firstly, it can reduce the random 

variation in the data coming from sampling or measurement error. Secondly, it saves the 

computing cost in choosing tuning parameters λ1 and λ2. Instead of using cross-validation 

to select optimal tuning parameters, the stability selection suggests to use a fixed set of 

tuning parameter values on re-randomized datasets. As long as the proposed fixed tuning 
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parameter values are in a reasonable range, i.e., they are neither too large that shrink almost 

everything to zeros nor too small that barely shrink anything, the variable selection results 

are quite stable. Figure 3 in the online Appendix illustrates that the top signals identified 

in the analysis of ADNI PET imaging and genetic data are robustly selected when using 

bootstrapped samples and different values of the tuning parameters. The stability selection 

can be easily implemented and run on multi-core computing clusters and therefore is much 

more computationally efficient. Thirdly, stability selection provides a quantitative way to 

govern the number of false discoveries, for which we will discuss in detail in Section 4.

2.4 Selection properties

We show that the proposed structured brain-GWAS method achieves certain oracle bounds 

for selection, which are the selection bounds one could obtain as if the true model were 

given [4].

First, we introduce some notation. Let J1(B) = jk: βjk ≠ 0  be the index set of nonzero 

elements in B, and let J2(B) = rg ∈ ℛ ⊗ G, Brg 2 ≠ 0  be the index set of nonzero groups. 

Define M1(B) = ∑jkI βjk ≠ 0 = J1(B)  and M2(B) = ∑rg ∈ ℛ ⊗ GI Brg 2 ≠ 0 = J2(B) . 

Denote by qr the number of voxels in the rth ROI group and denote by pg the number 

of predictors in the gth gene group. We assume that the predictors have a common marginal 

variance σ2.

Next, we provide assumptions for the results given in Theorem 1.

i. Group-level generalized sparse condition (gGSC): For any η1 ≥ 0, there exists a 

non-empty set A ⊂ ℛ ⊗ G, such that ∑rg ∈ A Brg 2 ≤ η1.

ii. Sparse Riesz condition (SRC): There exist spectrum bounds 0 < c∗ < c∗ < ∞, 

such that for any A1 ⊂ 1, …, G  with rank q* = A1  and any nonzero vector 

ν ∈ ℛ∑g ∈ A1 pg, let XA1 = Xg, g ∈ A1  be the submatrix of X with its group 

indices in A1, the following inequalities hold

c* ≤
XA1ν 2

2

n ν 2
2 ≤ c* (5)

iii. Individual-level restricted eigenvalue condition (iREC): For any Brg ∈ J2(B), 

suppose that Brg ∈ ℛpg × qr. Let J ⊆ jk:1 ≤ j ≤ pg, 1 ≤ k ≤ qr  be any index set 

that satisfies |J | ≤ s for some 0 < s ≤ pg × qr. Then for any nontrivial matrix 

Δ ∈ ℛpg × qr that satisfies ΔJc 1 ≤ 3 ΔJ 1, we have the following:

κ = min
J, Δ ≠ 0, g ∈ G

XgΔ 2
n1/2 ΔJ 2

> 0.
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Here ΔJ is the projection of Δ on an index set J, that is the matrix with the same 

elements of Δ on coordinates J and zeros on the complementary coordinates Jc.

iv. Let d* = maxrg ∈ ℛ ⊗ Gωrg, d* = minrg ∈ ℛ ⊗ Gωrg for ωrgs in (3). Define d = 

d∗/d∗. Define η2 = maxA ⊂ ℛ ⊗ G ∑rg ∈ AXgBrg 2,

r1 =
nc* d*η1
λ1d*M2

1/2
, r2 =

nc*η2
2

λ1
2d*M2

1/2
, c = c*/c* and

C2 = 2 + 4r1
2 + 4 dcr2 + 4dc .

 Let σ ∗ = σ maxg ∈ Gpg. Assume that λ1 

in model (3) satisfies

λ1 ≥ max λ0, λn, G ,

where λn, G = 2σ* 8 1 + c0 d*d2q*cnc*log Nd ∨ an  with Nd = ∑rg ∈ ∈ ℛ ⊗ Gωrgc0 ≥ 0 and an 

≥ 0 satisfying d*G/ Nd ∨ an
1 + c0 ≈ 0, and λ0 = inf λ:C2M2(B) + 1 ≤ q ∗  with inf ∅ = ∞. 

Here a ∨ b = max{a, b}.

Theorem 1.—Theorem 1. LetB ∗be the true coefficient matrix. Assume that each of theX
variables has mean 0 and marginal variance σ2 = 1. Let ψmax be the largest eigenvalue of 

XTX/n. Denote M1* B* = maxrg ∈ ℛ ⊗ GM1 Brg* . Assume gGSC, SRC and iREC hold. Then 

with probability converging to 1 as n → ∞, we have the following oracle selection bounds 
for group- and individual-level signals:

M2(B) ≤ C2M2 B ∗ , (6)

M1(B) ≤ 64ψmaxC2M2 B∗ M1* B∗ /κ2 . (7)

When gGSC, SRC and (iv) hold, Wei and Huang [55] showed that the group-level 

selection bound holds for the univariate-response group lasso. The proof of (6) follows 

the first assertion in Theorem 2.1 in [55], execpt that we need to show that SRC 

holds for ℙX, as in our method the group lasso is applied to ℙX instead of X
in the first stage. In fact, since each PC is a linear combination of the orignal X
variables, we can write ℙX, A1 = XA1W, where W is a P × R weight matrix, R 

≤ P, consisting of the eigenvectors of the covariance matrix of X. Then we have 

ℙX, A1ν 2
2/ n ν 2

2 = XA1Wν 2
2/ n ν 2

2 = XA1Wν 2
2/ nνTWTWν = XA1ν′ 2

2/{n ν′ 2
2}, 

where ν′ = Wν. Therefore the SCR holds for ℙX if it holds for X. The individual-level 

oracle selection bound (7) directly follows from (6) and the multivariate lasso oracle 

selection bound introduced in Theorem 2 in Li et al. [29].
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3 A simulation study

We investigate the empirical selection performance for the proposed two-stage method 

through simulations. Assume that both Y and X have 50 groups with each group containing 

200 variables.

The coefficient matrix B assumes a block diagonal structure, i.e., the 1st Y group is 

associated with only the 1st X group, the 2nd Y group is associated with only the 2nd 

X group, etc. Coefficients within off-diagonal blocks are set to be zeros. Half of the 

coefficients within diagonal blocks are randomly generated from Unif([−5,−3]∪[3,5]) and 

the other half are set as zeros (therefore, the sparsity within important coefficient blocks is 

0.5). Once B is generated, it is fixed in all experiments.

We assume X groups are uncorrelated. Within-group X variables are generated from a 

multivairate normal distribution with zero means and a first-order auto-correlation structure 

with a correlation coefficient 0.5, denoted by AR1(0.5), and unit marginal variances.

We generate the noise variables E from a multivairate normal distribution with the following 

three correlation structures and unit marginal variances.

i. Independent Y groups: Variables within each Y group take an AR1(0.5) 

correlation structure.

ii. Weakly correlated Y groups: Variables within each Y group take an AR1(0.5) 

correlation structure. Variables from different Y groups are correlated with a 

compound symmetry (CS) correlation structure with a coefficient 0.1, denoted 

by CS(0.1). Therefore, the overall Y correlation structure is CS(0.1)⊗AR1(0.5), 

where ⊗ is the Kronecker product.

iii. Moderately correlated Y groups: Variables within each Y group take an AR1(0.5) 

correlation structure. Variables from different Y groups take a CS(0.5) correlation 

structure. The overall Y correlation structure is CS(0.5)⊗AR1(0.5).

The response matrix is then generated according to Y = XB + E. For each scenario, we 

generate datasets with three different sample sizes n = 200, 500 and 1000.

For each simulated dataset, the proposed method is applied in each stage followed by 

stability selections. In the first stage, we use major PCs in each response/predictor group 

that explain more than 80% of the total within-group variation. Each stability selection 

is carried out on 100 bootstrapped datasets. Optimal tuning parameters are selected by 

five-fold cross-validation for each stage of selection. Tuning parameters are then fixed 

in the stability selection. Selection frequency threshold is set to be 80% for both stages. 

One hundred independent experiments are repeated for each setting. We report means and 

empirical standard deviations for Sensitivity (SE) and Specificity (SP) in Table 1. The first 

stage group-level SE and SP are defined by:

SE(1) =
∣ {rg : 1 ≤ r ≤ R , 1 ≤ g ≤ G , Γrg 2 ≠ 0 and Brg* 2 ≠ 0} ∣

|{rg : 1 ≤ r ≤ R , 1 ≤ g ≤ G , Brg* 2 ≠ 0}| and
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SP(1) =
|{rg : 1 ≤ r ≤ R , 1 ≤ g ≤ G , Γrg 2 = 0 and Brg* 2 = 0}|

|{rg : 1 ≤ r ≤ R , 1 ≤ g ≤ G , Brg* 2 = 0}| ,

where the superscript ∗ representing the true values. And the second stage individual-level 

SE and SP are defined by:

SE(2) =
|{jk : 1 ≤ j ≤ P , 1 ≤ k ≤ Q , βjk ≠ 0 and βjk* ≠ 0}|

|{jk : 1 ≤ j ≤ P , 1 ≤ k ≤ Q , βjk* ≠ 0}| and

SP(2) =
|{jk : 1 ≤ j ≤ P , 1 ≤ k ≤ Q , βjk = 0 and βjk* = 0}|

|{jk : 1 ≤ j ≤ P , 1 ≤ k ≤ Q , βjk* = 0}| .

For comparison, we also conduct pairwise marginal linear regressions followed by 

Bonferroni correction for multiple comparisons. The β jks with p-values less than the 

Bonferroni corrected threshold (5e-12) are selected as important signals. The results for 

the pairwise approach are given in the last two columns in Table 1.

The simulation results show that our two-stage method combined with stability selection 

renders very good selection results for group structured ultrahigh-dimensional multivariate 

responses and multiple predictors data. It is far more powerful than the pairwise approach. 

Especially for the first-stage group-level selection, our approach gives almost perfect 

selection performance even when the sample size is very small. For the second-stage 

individual-level selection, the selection performance improves significantly as the sample 

size increases. The selection performance is similar in all three different responses’ 

correlation structures.

4 Analysis of ADNI FDG-PET and SNP data

The ADNI data used in our structured brain-GWAS analysis contains three parts: imaging 

data, genetic data and clinical data, all from the ADNI database. Samples with both imaging 

and genotype data are included in the analysis, resulting in a dataset with 373 samples 

including 86 AD patients, 188 MCI patients and 99 normal controls (NC). The clinical data 

contain the disease status (AD, MCI or NC), demographic information (e.g. age and sex) and 

ϵ4 allele information for the apolipoprotein E (APOE) gene. We fit model (1) to the ADNI 

PET imaging and genomic data using the proposed method.

4.1 PET images and ROI’s

Images used in our analysis are FDG-PET images, which have been widely used in 

neuroimaging studies for over 20 years. FDG-PET images measure cerebral glucose 

metabolic activities. From year 2003 to 2011, a total of 403 FDG-PET scans have been 

acquired at approximately 50 different participating sites in ADNI-1 and ADNI-GO studies, 

including 95 AD subjects, 206 MCI subjects and 102 NC subjects. Due to missing genetic 
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information, only 373 individuals are included in our study. Each image contains 349,182 

voxels embedded in a 160×160×96 3D array. Those images were preprocessed to produce a 

uniform isotropic resolution.

To incorporate the brain anatomic structures, the PET images were segmented by Brodmann 

atlas [8]. As a result, voxels in each image were grouped into 106 Brodmann ROIs. Voxels 

not indexed by the Brodmann atlas are not considered in the analysis. The regions on 

the left hemisphere are symmetric mirror reflection of the ones on the right hemisphere. 

In the following, we use “(L)” to denote the regions on the left hemisphere and “(R)” 

to denote the regions on the right hemisphere. For example, “Temporal cortex BA20(L)” 

refers to the temporal cortex region named “BA20” on the left hemisphere and “Temporal 

cortex_BA20(R)” refers to the corresponding symmetric region on the right hemisphere.

4.2 Genotypes

ADNI SNP data were genotyped using Illumina 610 Quad array with more than 620,000 

tag SNPs. Genotyping was performed by Polymorphic DNA Technologies. We grouped 

SNP genotypes into genes using the UCSC known genes list of NCBI36 assembly (http://

genome.ucsc.edu), with each gene containing the SNPs within its physical range plus a 

flanking region of 100 KB up- and down-streams. This resulted in a total of 29,458 genes in 

the 22 autosomes. For isoform genes, we took the joint regions of all the isoforms to be the 

same gene.

The raw genotypes were screened by a series of quality control procedures. SNPs with 

missing rates greater than 1%, heterozygous haploid and markers with Hardy-Weinberg 

equilibrium p-values less than 10−6 were removed, which left in a total of 564,636 SNPs 

in the analysis. The missing genotypes with missing rate under 1% were imputed by the 

average genotype scores of the non-missing genotypes.

4.3 Data analysis

In the first-stage selection, we use the first five PCs in each brain ROI and the first twenty 

PCs or the first several PCs that explain at least 80% variation, whichever smaller, in each 

gene. Most of the ROIs have more than 70% of their variations explained by their first five 

PCs. Most of the genes have at least 80% of variations explained no more than 20 PCs. For 

example, only seven out of 800 genes on chromosome 20 have less than 60% of variations 

explained by their first 20 PCs. Figure 1 in the online Appendix shows the percentage of 

total variation explained by the first five PCs in each ROI and the percentage of variation 

explained by up to the first 20 PCs in each gene on chromosome 20. The ϵ4 allele of 

the apolipoprotein E gene (APOE-ϵ4) is the most common genetic risk factor for AD [13, 

48]. However, ADNI genetic dataset does not contain the genotypes for the SNPs in the 

APOE-ϵ4 gene. We extract the APOE-ϵ4 allele information score from ADNI clinical data 

and put it together with the first 20 PCs on chromosome 19.

We use the R package MSGLasso [30] to run the multivariate group lasso on the PC 

matrices. Stability selection [35] is then performed on 100 bootstrapped datasets. ROI-to­

gene pairs with at least 75% stability selection frequency are selected as important ROIs and 
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genes in the first selection stage. For the APOE gene, we use APOE-ϵ4 allele score to fit 

model (4), wherever APOE is selected.

Meinshausen and Bühlmann [35] showed that the expected number V of falsely selected 

variables is bounded from above by

E(V ) ≤ 1
2πtℎr − 1

q2

P , (8)

where πthr is the thresholding frequency used for the selection, which in our case is 75% 

for the first stage and 80% for the second stage, and q is the average number of selected 

variables. In our study, the typical numbers of selected variables are from tens to hundreds 

out of tens of thousands of variables in total, which yield q2/P ≪ 1. Therefore the error 

number per chromosome is controlled by ≪1/(2 × 0.75 – 1) = 2. That is, for each ROI, in the 

first stage, there will be just a few falsely discovered genes across all chromosomes.

In the second stage, we also use MSGLasso [30] to fit a multivariate lasso regression 

on each of the selected ROI-to-gene pairs. Stability selection is then carried out on 

100 bootstrapped datasets for each ROI-to-gene pair. Voxel-to-SNP pairs with selection 

frequency greater than 80% are selected to be important individual-level signals. Then we 

apply a multiple linear regression for each selected voxel with its selected important SNP 

predictors for post-selection estimation and inference. In our ADNI data analysis, the typical 

number of important SNPs selected for a voxel ranges from a few to several dozens, which is 

much smaller than the sample size.

In both stages, we do not penalize on Iad, Imci, Age and Sex by setting the corresponding ωgr 

= 0 or ωjk = 0.

4.4 Results

Table 2 provides a list of top signals that meet both criteria of p-values less than 10−6 

and selection frequencies greater than 80%. The selected brain regions and strength of the 

SNP effects are also illustrated in Figure 2. Since there is no SNP-MCI interaction effect 

satisfying both criteria, we provide a list of top MCI interactions in Table 1 in the online 

Appendix. Table 2 in the online Appendix lists the top selected ROIs and voxels therein for 

the APOE-ϵ4 effects.

Some brain regions are identified to have either significant gene effects or gene-AD 

interaction effects. For example, regions, such as BA40(L), BA39(R), BA39(L), BA7(R) 

and BA7(L) in the superior parietal cortices are found significantly associated with certain 

genes or with their associations significantly modified by the AD status. On the contrary, 

no genome-wide significant SNP was found in the previous pair-wise brain-GWASs [46]. 

We have confirmed some brain regions associated with genetics appeared in the existing 

literature. For example, Mills et al. [36] reported associations between lipid metabolism in 

superior parietal cortices and alternatively spliced isoforms in RNA transcriptome. Other 

identified regions that are associated with genetics or with their genetic effects significantly 

modified by AD status include BA18(R), BA18(L), BA19(R), BA19(L) in occipital cortices 

Li et al. Page 11

Can J Stat. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[7] and BA20(R), BA20(L), BA21(R), BA21(L), BA22(R) and BA22(L) in temporal cortices 

[47, 42, 7].

Some genetic findings in previous studies are confirmed by our brain-GWAS. For example, 

Wang et al. [54] found that inhibiting IL8RB (CXCR2) can turn down anyloid-β production 

and protect neural cells. Nakamura et al. [38] found a similar effect of COLEC12 (SRCL) 

gene in AD samples. Other direct supports on AD interactions include Burns et al. [10] on 

SAKCA (KCNMA1), Xie et al. [58] on PRIMA, Nakamura et al. [38] on COLEC12 and 

Broer et al. [9] on HSPA13.

Some gene-to-AD interactions have also been found in the literature to be associated with 

other cognitive-related diseases such as autism and hearing impairment. Such genes include 

AK096399 [11], GJB2 [32], SNX29 [50], MED1 [20, 56] and COL9A3 [45, 1].

We also confirm some gene effects on brain metabolizing. For example, CDC42EP3 encodes 

certain family of guanosine triphosphate metabolizing proteins and the gene is weakly 

expressed in brain. PACS2 plays a role in membrane traffic with tumour-necrosis-factor­

related apoptosisinducing-ligand (TRAIL) induced apophasis [2], which in turn can cause 

human brain cell death [39].

Our findings also provide evidence about indirect genetic effects on certain chemical 

compound or protein translocation, which are reflected in the PET scans and may be 

associated with AD. For example, Dai et al. [15] and Sakamoto and Holman [43] 

demonstrate that TBC1D4 plays a role in regulation of GluT4 traffic, which, on the other 

hand is associated with AD [49, 60]. Nolte et al. [40] and Lu et al. [33] give a chain of 

relationships of HOXD4 gene to Pax6 protein to AD.

There are also several novel signals which have not been reported in previous literature, such 

as associations between BC007399 and BA39(R) in the superior parietal cortex, between 

GALNT4 and BA19(L) in the occipital cortex and between RIN2 and CERHEM(L).

5 Discussion

The overall computational cost of our two-stage approach is lower than the pairwise 

approaches [46, 19], as our approach removes the unimportant ROI-to-gene signal blocks 

first and only focuses on the selected ROI-to-gene blocks in the downstream analysis stages. 

To further save the computational time, we parallelized the computational jobs on multi-core 

computing clusters. Our approach has more power also due to the integration of the brain 

and genome grouping structures. In Stein et al. [46], no significant voxel-to-SNP signals 

were found due to the huge number of multiple comparisons.

We recognize that post-selection inference is biased. Simultaneous selection, estimation and 

inference have been studied recently [53, 3]. Kuchibhotla et al. [26] also provide an upper 

bound for post-selection inference p-values when taking into account the selection bias. 

These will be investigated for our proposed method in future studies.
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Figure 1: 
Illustration of mapping Brodmann atlas of ROIs onto segmented PET images. ROIs are 

highlighted with colors. (a) Sagittal slice at midline. (b) Coronal slice at midline. (c) Axial 

slice at midline.
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Figure 2: 
The most significant SNPs’ effects, their −log10(p–values) on voxels across the associated 

region, and their selective frequency pattern on the region.
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Table 1:

Selection results

Proposed Pairwise

Correlation 
structure & 

Setting

First stage Second stage

Direct Selection Stability 
Selection

Direct Selection Stability Selection

n SE(1) SP(1) SE(1) SP(1) SE(2) SP(2) SE(2) SP(2) SE SP

I

200 0.98 
(2e-3)

0.98 
(2e-3)

1 (0) 0.98 
(1e-3)

0.75 
(2e-3)

0.77 
(8e-4)

0.82 
(3e-3)

0.84 
(2e-3)

7e-4 
(1e-6)

0.999 (1e-4)

500 1(0) 1(0) 1(0) 1(0) 0.95 
(1e-3)

0.87 
(3e-4)

0.98 
(3e-4)

0.97 
(5e-4)

0.024 
(4e-4)

0.999(1e-5)

1000 1 (0) 1 (0) 1 (0) 1 (0) 0.98 
(1e-3)

0.93 
(2e-4)

1.00 
(7e-5)

0.99 
(4e-4)

0.14 
(1e-3)

0.999 (3e-5)

II

200 0.98 
(2e-3)

0.97 
(2e-3)

1 (0) 0.98 
(1e-3)

0.74 
(2e-3)

0.77 
(8e-4)

0.81 
(3e-3)

0.83 
(2e-3)

7e-4 
(1e-4)

0.999 (1e-6)

500 1 (0) 1 (0) 1 (0) 1 (0) 0.95 
(2e-3)

0.86 
(4e-4)

0.99 
(5e-4)

0.97 
(6e-4)

0.024 
(4e-4)

0.999 (1e-5)

1000 1 (0) 1 (0) 1 (0) 1 (0) 0.98 
(1e-3)

0.93 
(1e-4)

0.99 
(1e-4)

0.99 
(3e-4)

0.14 
(1e-3)

0.999 (2e-5)

III

200 0.98 
(2e-3)

0.96 
(2e-3)

1 (0) 0.98 
(1e-3)

0.74 
(2e-3)

0.77 
(8e-4)

0.81 
(3e-3)

0.83 
(2e-3)

7e-4 
(1e-4)

0.999 (1e-6)

500 1 (0) 1 (0) 1 (0) 1 (0) 0.94 
(2e-3)

0.87 
(3e-4)

0.99 
(4e-4)

0.97 
(5e-4)

0.024 
(4e-4)

0.999 (1e-5)

1000 1 (0) 1 (0) 1 (0) 1 (0) 0.98 
(1e-3)

0.93 
(1e-4)

0.99 
(1e-4)

0.99 
(4e-4)

0.14 
(4e-4)

0.999 (3e-5)

•
Numbers in parenthesis are empirical standard deviations.
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