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In this article we consider quantile regression in reproducing kernel Hilbert spaces, which we call kernel quantile regression (KQR). We
make three contributions: (1) we propose an efficient algorithm that computes the entire solution path of the KQR, with essentially the same
computational cost as fitting one KQR model; (2) we derive a simple formula for the effective dimension of the KQR model, which allows
convenient selection of the regularization parameter; and (3) we develop an asymptotic theory for the KQR model.
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1. INTRODUCTION

Classical regression methods have focused mainly on esti-
mating conditional mean functions; however, estimation of con-
ditional quantile functions is also often of substantial practical
interest. For example, it is well known that the median estimate
is more robust to outliers than the traditional mean estimate. In
recent years, quantile regression has emerged as a comprehen-
sive approach to the statistical analysis of response models, and
it has been widely used in many real applications, including ref-
erence charts in medicine (Cole and Green 1992; Heagerty and
Pepe 1999), survival analysis (Yang 1999; Koenker and Geling
2001), and economics (Hendricks and Koenker 1992; Koenker
and Hallock 2001). For comprehensive reviews of quantile re-
gression, see the articles by Koenker and Hallock (2001) and
Yu, Lu, and Stander (2003), as well as the exceptionally well-
written book by Koenker (2005).

Suppose that we have a set of training data, (x1, y1), . . . ,

(xn, yn), with input xi ∈ R
p and output yi ∈ R, and we would

like to recover the 100τ% quantile of the conditional distribu-
tion of y given x. In the case where p = 1, Koenker, Ng, and
Portnoy (1994) suggested

min
f∈F

n∑

i=1

ρτ (yi − f (xi)) + λ

2

(∫ 1

0
(f ′′(x))q

)1/q

, (1)

where q is a positive integer and ρτ (r) is the so-called “check
function” of Koenker and Bassett (1978) (Fig. 1),

ρτ (r) =
{

τ r if r > 0
−(1 − τ)r otherwise.

(2)

Here τ ∈ (0,1) indicates the quantile of interest, and λ > 0
controls the balance between the smoothness of the fit and its
fidelity to the data. For q = 1, with an appropriately chosen
model space, Koenker et al. (1994) showed that the solution
is a linear spline with knots at the data points, which leads es-
sentially to an L1 loss + L1 penalty problem.
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For q = 2 (Bloomfield and Steiger 1983; Nychka, Gray, Haa-
land, Martin, and O’Connell 1995), (1) reduces to

min
f∈F

n∑

i=1

ρτ (yi − f (xi)) + λ

2

∫ 1

0
f ′′(x)2 dx. (3)

We can view (3) as an analogy to the more extensively stud-
ied classical least squares smoothing spline model pioneered by
Wahba (1990) and her collaborators (Gu 2002). The solution
to (3) over the second-order Sobolev space is a natural cubic
spline with knots at the data points.

In this article we consider the more general setup of (3),

min
f∈HK

n∑

i=1

ρτ (yi − f (xi)) + λ

2
‖f ‖2

HK
, (4)

where xi ∈ R
p and HK is a structured reproducing kernel

Hilbert space (RKHS) generated by a positive definite kernel
K(x,x′). This includes the entire family of smoothing splines
and additive and interaction spline models (Wahba 1990). Some
other popular choices of K(·, ·) in practice are

dth-degree polynomial: K(x,x′) = (1 + 〈x,x′〉)d

and

radial basis: K(x,x′) = exp(−‖x − x′‖2/2σ 2),

where d and σ are prespecified parameters.
Using the representer theorem (Kimeldorf and Wahba 1971),

the solution to (4) has a finite form,

f̂ (x) = β0 + 1

λ

n∑

i=1

θiK(x,xi). (5)

Note that we write f̂ (x) in a way that involves λ explicitly; later,
we show that θi ∈ [−(1 − τ), τ ]. Given the format of the solu-
tion (5), we can in turn rewrite (4) in finite form as

min
β0,θ

n∑

i=1

ρτ

(
yi − β0 − 1

λ

n∑

i′=1

θi′K(xi,xi′)

)

+ 1

2λ

n∑

i=1

n∑

i′=1

θiθi′K(xi,xi′), (6)

which we call kernel quantile regression (KQR).
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Figure 1. The Check Function, With τ = .75.

The KQR model (6) can be transformed into a quadratic pro-
gramming problem; thus most commercially available pack-
ages can be used to solve the KQR. Many specific algorithms
for the KQR have been developed, including the interior point
algorithm (Bosch, Ye, and Woodworth 1995) and the pseudo-
data algorithm (Nychka et al. 1995). All of these algorithms
solve the KQR for a prefixed regularization parameter λ. As in
any smoothing problem, then choice of regularization parame-
ter λ is critical. In practice, people usually prespecify a finite
set of values for λ that covers a wide range, then either use a
separate validation dataset or certain model selection criterion
to choose a value for λ that gives the best performance in the
prespecified set. Two commonly used criteria for KQR are the
Schwarz information criterion (SIC) (Schwarz 1978; Koenker
et al. 1994) and the generalized approximate cross-validation
criterion (GACV) (Yuan 2006),

SIC(λ) = ln

(
1

n

n∑

i=1

ρτ (yi − f̂ (xi))

)
+ ln n

2n
df (7)

and

GACV(λ) =
∑n

i=1 ρτ (yi − f̂ (xi))

n − df
, (8)

where df is a measure of the effective dimensionality of the fit-
ted model. Koenker et al. (1994) heuristically argued that in the
case of one-dimensional quantile smoothing spline, the number
of interpolated yi’s is a plausible measure for the effective di-
mension of the fitted model. In the case of GACV and its earlier
cousin ACV, Yuan (2006) and Nychka et al. (1995) argued that
the divergence,

div(f̂ ) =
n∑

i=1

∂ f̂ (xi)

∂yi
, (9)

can be used for df. They used a smooth approximation of the
check function to compute div(f̂ ).

This article makes three main contributions:

• We show that the solution θ(λ) is piecewise linear as a
function of λ and derive an efficient algorithm that com-
putes the exact entire solution path, {θ(λ),0 ≤ λ ≤ ∞},
ranging from the least regularized model to the most regu-
larized model.

• We prove that in the case of KQR, the divergence (9) is
exactly equal to the number of interpolated yi’s, which jus-
tifies its use in selecting the regularization parameter λ.

• We develop an asymptotic theory for the KQR. In partic-
ular, using metric entropy and large deviation theories, we
obtain the convergence rate of the difference between the
KQR solution and the true quantile function in terms of
their mean check deviations.

We acknowledge that the first result was inspired by one of
the authors’ earlier work in the support vector machine setting
(Hastie, Rosset, Tibshirani, and Zhu 2004).

Before delving into the technical details, we illustrate the
concept of piecewise linearity of the solution path with a sim-
ple example. We generate six training observations using the
famous sinc(·) function,

y = sin(πx)

πx
+ ε,

where x is distributed as uniform(−2,2) and ε is distributed as
normal(0, .22). We use the KQR with a one-dimensional spline
kernel (Wahba 1990),

K(x, x′) = 1 + k1(x)k1(x
′) + k2(x)k2(x

′) − k4(|x − x′|),
where k1(·) = · − 1/2, k2 = (k2

1 − 1/12)/2, k4 = (k4
1 − k2

1/2 +
7/240)/24. Figure 2 shows a subset of the piecewise linear so-
lution path θ(λ) as a function of λ, and also how the number of
interpolated yi’s changes with λ.

The rest of the article is organized as follows. In Section 2
we derive the algorithm that computes the entire solution path
of the KQR. In Section 3 we prove that the divergence (9) is
equal to the number of interpolated yi’s for the KQR, and in
Section 4 we develop an asymptotic theory for the KQR. In
Section 5 we present numerical results on both simulation and
real-world data. We end with some conclusions in Section 6.

2. ALGORITHM

2.1 Problem Setup

Criterion (6) can be rewritten in an equivalent way as

min
β0,θ

τ

n∑

i=1

ξi + (1 − τ)

n∑

i=1

ζi + 1

2λ
θ�Kθ, (10)

subject to

−ζi ≤ yi − f (xi) ≤ ξi (11)

and

ζi, ξi ≥ 0, i = 1, . . . ,n, (12)

where

f (xi) = β0 + 1

λ

n∑

i′=1

θi′K(xi,xi′), i = 1, . . . ,n,
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(a) (b)

Figure 2. Illustrative Example. (a) A subset of the solution path θ (λ) as a function of λ. (b) How the number of interpolated yi ’s changes with λ.

and

K =



K(x1,x1) · · · K(x1,xn)

...
. . .

...

K(xn,x1) · · · K(xn,xn)





n×n

.

For the rest of the article, we assume that the data points
(x1, y1), . . . , (xn, yn) are in general positions and that the kernel
matrix K is positive definite. Then the foregoing setting gives
the Lagrangian primal function,

Lp: τ

n∑

i=1

ξi + (1 − τ)

n∑

i=1

ζi + 1

2λ
θ�Kθ

+
n∑

i=1

αi(yi − f (xi) − ξi) −
n∑

i=1

γi(yi − f (xi) + ζi)

−
n∑

i=1

κiξi −
n∑

i=1

ρiζi, (13)

where αi, γi, κi, and ρi are nonnegative Lagrange multipliers.
Setting the derivatives of Lp to 0, we arrive at

∂

∂θ
: θi = αi − γi, (14)

∂

∂β0
:

n∑

i=1

αi =
n∑

i=1

γi, (15)

∂

∂ξi
: αi = τ − κi, (16)

and

∂

∂ζi
: γi = 1 − τ − ρi, (17)

and the Karush–Kuhn–Tucker conditions are

αi(yi − f (xi) − ξi) = 0, (18)

γi(yi − f (xi) + ζi) = 0, (19)

κiξi = 0, (20)

and

ρiζi = 0. (21)

Because the Lagrange multipliers must be nonnegative, we can
conclude from (16) and (17) that both 0 ≤ αi ≤ τ and 0 ≤ γi ≤
1 − τ . We also see from (18) and (19) that if αi is positive,
then γi must be 0, and vice versa. These lead to the following
relationships:

yi − f (xi) > 0 ⇒ αi = τ, ξi > 0, γi = 0, ζi = 0;
yi − f (xi) < 0 ⇒ αi = 0, ξi = 0, γi = 1 − τ, ζi > 0;

and

yi − f (xi) = 0 ⇒ αi ∈ [0, τ ], ξi = 0, γi ∈ [0,1 − τ ], ζi = 0.

Note from (14) that for every λ, θi is equal to (αi −γi). Hence,
using these relationships, we can define the following three sets,
which we use later when calculating the regularization path of
the KQR:

• E = {i : yi − f (xi) = 0,−(1 − τ) ≤ θi ≤ τ } (elbow)
• L= {i : yi − f (xi) < 0, θi = −(1 − τ)} (left of the elbow)
• R= {i : yi − f (xi) > 0, θi = τ } (right of the elbow).

For points in L and R, the values of θi are known; therefore,
the algorithm focuses on points resting at the elbow E .

The basic idea of our algorithm is as follows. We start with
λ = ∞ and decrease it toward 0, keeping track of the locations
of all data points relative to the elbow along the way. As λ de-
creases, points move from the left of the elbow to the right of
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the elbow (or vice versa). Their corresponding θi’s change from
−(1 − τ) when they are on the left of the elbow to τ when
they are on the right of the elbow. By continuity, points must
linger on the elbow while their θi’s change from −(1 − τ) to τ .
Because all points at the elbow have yi − f (xi) = 0, we can es-
tablish a path for their θi’s, and this set will remain stable until
either some other point comes to the elbow or one point at the
elbow has departed from the elbow.

2.2 Initialization

Initially, when λ = ∞, we can see from (5) that f̂ (x) = β0.
We can determine the value of β0 through a simple one-
dimensional optimization. For simplicity of exposition, we fo-
cus on the case where all the values of yi are distinct and or-
dered as y1 < y2 < · · · < yn. We distinguish between two cases:
the initial β0 is unique, and the initial β0 is nonunique.

Case 1: The Initial β0 Is Unique. This occurs when nτ is
a noninteger, for example, when τ = .5 and the number of data
points n is odd. In this case, it is easy to show that β0 must
be equal to one of the observed yi’s and β0 = y�nτ�+1, say yi∗ .
Therefore, all data points are initially divided into three sets:

• E = {i∗ : point (xi∗ , yi∗)}
• L= {i : yi < yi∗}
• R = {i : yi > yi∗}.
From (15), we have that

θi∗ = nL(1 − τ) − nRτ,

where nL = |L| and nR = |R|. When λ decreases, due to the
constraint (15), (xi∗ , yi∗) will stay at the elbow before another
data point enters the elbow. Therefore, for sufficiently large val-
ues of λ, we have

f̂ (x) = β0 + 1

λ

[
−(1 − τ)

∑

i∈L
K(x,xi)

+ τ
∑

i∈R
K(x,xi) + θi∗K(x,xi∗)

]

= β0 + 1

λ
g(x),

where g(x) = −(1 − τ)
∑

i∈L K(x,xi) + τ
∑

i∈R K(x,xi) +
θi∗K(x,xi∗). Again, because (xi∗ , yi∗) stays at the elbow, the in-
tercept β0 is determined through β0 = yi∗ − 1

λ
g(xi∗).

When a data point enters the elbow, it satisfies

yi = β0 + 1

λ
g(xi).

Hence the entry value of λ (i.e., the largest value of λ < ∞ that
starts to change θ ) is given by

λ1 = max
i �=i∗

g(xi) − g(xi∗)

yi − yi∗
.

Case 2: The Initial β0 Is Nonunique. This occurs when nτ

is an integer, for example, when τ = .5 and the number of data
points n is even. In this case it is easy to show that β0 can take
any value between two adjacent yi’s and β0 ∈ [ynτ , ynτ+1], say
[yi∗ , yj∗ ].

Although β0 is not unique, all of the θi’s are fully determined,
that is:

• θi = −(1 − τ), yi ≤ yi∗
• θi = τ, yi ≥ yj∗ .

Hence again, we can divide all data points into three sets:

• E = ∅
• L= {i : yi ≤ yi∗}
• R = {i : yi ≥ yj∗}.

For sufficiently large values of λ, we have

f̂ (x) = β0 + 1

λ

[
−(1 − τ)

∑

i∈L
K(x,xi) + τ

∑

i∈R
K(x,xi)

]

= β0 + 1

λ
g(x),

where g(x) = −(1 − τ)
∑

i∈L K(x,xi) + τ
∑

i∈R K(x,xi).
When λ decreases, by continuity and the balance between

the θi’s, L and R will stay the same; therefore,

yi − β0 − 1

λ
g(xi) ≤ 0, i ∈ L,

and

yi − β0 − 1

λ
g(xi) ≥ 0, i ∈ R.

These inequalities imply that the solution for β0 is not unique
and that β0 can be any value in the interval

[
max
i∈L

(
yi − 1

λ
g(xi)

)
, min

i∈R

(
yi − 1

λ
g(xi)

)]
.

When λ decreases, the length of this interval changes, and when
two data points (from different sets) hit the elbow simultane-
ously, the length of the interval shrinks to 0.

2.3 The Regularization Path

The algorithm focuses on the set of points E . These points
have f̂ (xi) = yi with θi ∈ [−(1 − τ), τ ]. As we follow the path,
we examine this set until it changes, at which point we say that
an event has occurred. Thus events can be categorized as fol-
lows:

1. A point from L has just entered E , with θi initially
−(1 − τ).

2. A point from R has just entered E , with θi initially τ .
3. Point(s) from E has just left the elbow to join either

L or R.

Until another event occurs, all sets will remain the same. As
a point passes through E , its respective θi must change from
−(1−τ) → τ or τ → −(1−τ). Relying on the fact that f̂ (xi) =
yi for all points in E , we can calculate θi for these points.

From event 3, we may reach the situation where E becomes
empty. When this occurs, as with initialization, the solution for
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β0 is not unique. However, we can again resort to case 2 of
initialization until the length of the interval for β0 reaches 0.

We use the subscript � to index the foregoing sets immedi-
ately after the �th event has occurred, and let θ�

i , β�
0 , and λ� be

the parameter values immediately after the �th event; we also
let f � be the function at this point. For convenience, we define
β0,λ = λ · β0 and hence β�

0,λ = λ� · β�
0 . Then, because

f̂ (x) = 1

λ

(
β0,λ +

n∑

i=1

θiK(x,xi)

)

for λ�+1 < λ < λ�, we can write

f̂ (x) =
[

f (x) − λ�

λ
f �(x)

]
+ λ�

λ
f �(x)

= 1

λ

[
(β0,λ − β�

0,λ) +
∑

i∈E�

(θi − θ�
i )K(x,xi) + λ�f �(x)

]
,

where the reduction occurs in the second line because the θi’s
are fixed for all points in R� and L� and all points remain in
their respective sets. Suppose that |E�| = n�

E ; then, for the n�
E

points staying at the elbow, we have that

yk = 1

λ

[
(β0,λ − β�

0,λ) +
∑

i∈E�

(θi − θ�
i )K(xk,xi) + λ�f �(x)

]
,

∀k ∈ E�.

To simplify, let νi = θi − θ�
i and ν0 = β0,λ − β�

0,λ. Then

ν0 +
∑

i∈E�

νiK(xk,xi) = (λ − λ�)yk, ∀k ∈ E�.

In addition, by condition (15), we have that
∑

i∈E�

νi = 0.

This gives us n�
E + 1 linear equations that we can use to solve

for each of the n�
E + 1 unknown variables νi and ν0.

Now define K� to be a n�
E × n�

E matrix with the entries equal
to K(xi,xk), where i, k ∈ E�, and let ν denote the vector with
the components equal to νi, i ∈ E�. Finally, let y�

E be a vector
with the components equal to yk, k ∈ E�. Using these notations,
we have the following two equations:

ν01 + K�ν = (λ − λ�)y�
E (22)

and

ν�1 = 0. (23)

Simplifying further, if we let

A� =
(

0 1�
1 K�

)
, ν0 =

(
ν0
ν

)
,

and

y0 =
(

0
y�
E

)
,

then (22) and (23) can be combined to give

A�ν0 = (λ − λ�)y0.

Then if A� has full rank, we can define

b0 = (A�)−1y0

to give

θi = θ�
i + (λ − λ�)bi, ∀i ∈ E�, (24)

and

β0,λ = β�
0,λ + (λ − λ�)b0. (25)

Thus for λ�+1 < λ < λ�, the θi and β0,λ proceed linearly in λ.
In addition,

f̂ (x) = λ�

λ
[f �(x) − h�(x)] + h�(x), (26)

where

h�(x) = b0 +
∑

i∈E�

biK(x,xi).

Given λ�, (24) and (26) allow us to compute λ�+1, the λ at
which the next event will occur. This will be the largest λ less
than λ�, such that either θi for i ∈ E� reaches τ or −(1 − τ), or
one of the points in R or L reaches the elbow. The latter event
will occur for a point k when

λ = λ�

(
f �(xk) − h�(xk)

yk − h�(xk)

)
, ∀k ∈R� ∪L�.

We terminate the algorithm either when the sets R and L be-
come empty or when λ becomes sufficiently close to 0. (We set
the threshold to 10−8 in our implementation.)

2.4 Computational Cost

The major computational cost of updating the solutions at
any event � involves two aspects: solving the system of n�

E lin-
ear equations and computing h�(x). The former takes O(n�2

E )

calculations by using inverse updating and downdating, because
the elbow set usually differs by only one point between consec-
utive events, and the latter requires O(nn�

E ) computations.
In to our experience, the total number of steps taken by the

algorithm is on average some small multiple of n. Letting m be
the average size of E�, the approximate computational cost of
the algorithm is O(cn2m + nm2).

3. THE EFFECTIVE DIMENSION OF KERNEL
QUANTILE REGRESSION

It is well known that an appropriate value of λ is crucial to
the performance of the fitted model in any smoothing problems.
One advantage of computing the entire solution path is that this
facilitates selection of the regularization parameter. In practice,
one can first use the efficient algorithm in Section 2 to compute
the entire solution path, then identify the appropriate value of λ

that minimizes certain model selection criterion. This avoids the
computationally more intensive cross-validation method.
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3.1 The Schwarz Information Criterion and Generalized
Approximate Cross-Validation

Two commonly used criteria for KQR are the SIC [see (7)]
and the GACV [see (8)]. The SIC has been successfully used
in quantile regression by several authors (Koenker et al. 1994;
He, Ng, and Portnoy 1998). In the parametric setting, Machado
(1993) proved that it is a consistent model selection procedure
if one of the candidate models is actually correct. However, we
acknowledge that using the SIC in the nonparametric setting is
ad hoc and requires considerable further investigation. GACV
(Yuan 2006) and its earlier cousin ACV (Nychka et al. 1995)
are approximations to leave-one-out quantile cross-validation
(RCV) (Oh, Nychka, Brown, and Charbonneau 2004),

RCV = 1

n

n∑

i=1

ρτ

(
yi − f̂ [−i](xi)

)
,

where f̂ [−i](·) denotes the KQR model with the ith data point
omitted and RCV is an approximately unbiased estimate of the
generalized comparative Kullback–Leibler distance (GCKL),

GCKL = 1

n

n∑

i=1

EYρτ (Yi − f̂ (xi)).

Oh et al. (2004) justified using the RCV by arguing that the
difference between E(RCV) and the mean squared error (MSE)
is approximately a constant not depending on the value of λ,
where MSE is defined as

MSE = 1

n

n∑

i=1

E(f (xi) − f̂ (xi))
2.

Here we briefly compare the SIC and the GACV. We take the
logarithm of the GACV [see (8)], and it becomes

ln

(
1

n

n∑

i=1

ρτ (yi − f̂ (xi))

)
− ln

(
1 − df

n

)
. (27)

Comparing it with the SIC [see (7)], we note that the two dif-
fer only in the second term (the penalty term). Figure 3 plots
the second term of the SIC (i.e., ln n

n df ) and that of (27) [i.e.,
− ln(1 − df

n )] as functions of df /n. As we can see, the SIC pe-
nalizes more than the GACV. This explains why the SIC tends
to select smoother (i.e., smaller df /n) models than the GACV.
As we can also see, when df /n is small, − ln(1 − df /n) can be
approximated by df /n, which leads to the Akaike information
criterion for quantile regression (Koenker 2005).

3.2 The Divergence Formula

As we have seen, both the SIC and the GACV depend on a
quantity df, which is an informative measure of the complex-
ity of a fitted model. For the SIC, Koenker et al. (1994) ar-
gued heuristically that in the case of one-dimensional quantile
smoothing spline, df can be estimated by the number of interpo-
lated yi’s (i.e., |E |), whereas for the GACV and ACV, Nychka
et al. (1995) and Yuan (2006) proposed using the divergence

formula (9) in Section 1 for df. To compute
∑n

i=1
∂ f̂ (xi)
∂yi

, Nychka
et al. (1995) and Yuan (2006) approximated the check function

Figure 3. Comparison of the Penalty Term in the SIC (i.e., (ln n/n)df)
and That in the GACV [i.e., −ln(1 − df/n)], With n = 200 ( GACV;

SIC).

with a differentiable function ρτ,δ(·), which differs from ρτ (·)
within the interval (−δ, δ),

ρτ,δ(r) =






τ r, r ≥ δ

τ r2/δ, 0 ≤ r < δ

(1 − τ)r2/δ, −δ ≤ r < 0
−(1 − τ)r, r < −δ,

where δ is a small positive number.
Notice that the divergence formula (9) measures the sum of

the sensitivity of each fitted value with respect to the corre-
sponding observed value. This quantity first appeared under the
framework of Stein’s unbiased risk estimation (SURE) theory
(Stein 1981). Given x, and assuming that y is generated accord-
ing to a homoscedastic model, we have

y ∼ (µ(x), σ 2),

where µ is the true mean and σ 2 is the common variance. Then
the degrees of freedom of a fitted model f̂ (x) can be defined as

n∑

i=1

cov(f̂ (xi), yi)/σ
2. (28)

Stein showed that under mild conditions,
∑n

i=1 ∂ f̂ (xi)/∂yi is
an unbiased estimate of (28). Since then, many authors have
argued that

∑n
i=1 ∂ f̂ (xi)/∂yi can be considered an estimate of

the effective dimension for a general modeling procedure (e.g.,
Efron 1986; Ye 1998; Meyer and Woodroofe 2000; Koenker
2005). For a detailed discussion and complete references, see
the article by Efron (2004).

It turns out that in the case of KQR, for every fixed λ,∑n
i=1 ∂ f̂ (xi)/∂yi has an extremely simple formula,

n∑

i=1

∂ f̂ (xi)

∂yi
= |E |. (29)
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Therefore, |E | is a convenient estimate for the effective di-
mension of f̂ (x), which agrees with the heuristic conjecture of
Koenker et al. (1994). Plugging (29) into (7) and (8), we arrive
at new formulas for the SIC and GACV,

SIC(λ) = ln

(
1

n

n∑

i=1

ρτ (yi − f̂ (xi))

)
+ ln n

2n
|E | (30)

and

GACV(λ) =
∑n

i=1 ρτ (yi − f̂ (xi))

n − |E | . (31)

We outline the proof of (29) in this section, and defer all of
the details to the Appendix. Note that the proof relies closely on
our algorithm in Section 2 and follows the spirit of Zou, Hastie,
and Tibshirani (2005).

As discussed in Section 2, for a fixed response vector y =
(y1, . . . , yn)

�, there is a sequence of λ’s, ∞ = λ0 > λ1 > λ2 >

· · · > λL = 0, such that in the interior of any interval (λ�+1, λ�),
the sets R,L, and E are constant with respect to λ. These sets
change only at each λ�. We thus define these λ�’s as event
points.

The essence of Lemmas 1–3 is to show that when we make
a small enough perturbation to the dataset, the sets R,L, and E
stay the same.

Lemma 1. For any fixed λ > 0, the set of y = (y1, . . . , yn)
�

such that λ is an event point is a finite collection of hyperplanes
in R

n.

Denote this set as Nλ. Then for any y ∈ R
n\Nλ, λ is not an

event point. Note that Nλ is a null set and R
n\Nλ is of full

measure.

Lemma 2. For any fixed λ > 0, θλ(y) is a continuous func-
tion of y.

Lemma 3. For any fixed λ > 0 and any y ∈ R
n\Nλ, the sets

R,L, and E are locally constant with respect to y.

Theorem 1. For any fixed λ > 0 and any y ∈ R
n\Nλ, we have

the divergence formula

n∑

i=1

∂ f̂ (xi)

∂yi
= |E |.

4. ASYMPTOTIC THEORY

In this section we develop an asymptotic theory for the KQR.
We consider the general problem

min
f∈F

1

n

n∑

i=1

ρτ (yi − f (xi)) + λJ(f ), (32)

where F is a function class and J(f ) is a regularization term that
measures the complexity of f . Here F may depend on n; for
example, given a positive definite kernel function K(·, ·), F =
HK = {f : f (x) = β0 + 1/λ

∑n
i=1 θiK(x,xi)} and J(f ) = ‖f ‖2

HK
.

We outline the main results here and defer the details to the
Appendix. Denote

Rτ (f ) = E
[
ρτ (Y − f (X))

]
(33)

and

eτ (f , f ∗) = Rτ (f ) − Rτ (f
∗), (34)

where f ∗(x) = 100τ% quantile of Y given x. Hence f ∗(x) sat-
isfies Pr(Y ≤ f ∗(x)) = τ and Pr(Y ≥ f ∗(x)) = 1 − τ for ∀x. We
focus on the asymptotic performance of f̂ (x), which is the so-
lution of (32), using eτ (f̂ , f ∗).

The following lemma presents the difference between f
and f ∗ in terms of the check function.

Lemma 4. For any f ∈ F ,

ρτ (y − f (x)) − ρτ (y − f ∗(x)) = gτ (x, y) + hτ (x, y), (35)

where

gτ (x, y) = (τ − 1)I(y ≤ f ∗(x))(f ∗(x) − f (x))

+ τ I(y ≥ f ∗(x))(f ∗(x) − f (x))

and

hτ (x, y) = I
(
f ∗(x) ≤ y ≤ f (x)

)
(f (x) − y)

+ I
(
f (x) ≤ y ≤ f ∗(x)

)
(y − f (x)).

We note that hτ (x, y) ≥ 0 for ∀x and E[gτ (X,Y)] = 0. Thus
eτ (f , f ∗) = E[hτ (X,Y)] ≥ 0 and f ∗ = arg minf Rτ (f ). Without
loss of generality, we assume that eτ (f , f ∗) ≤ 1.

Before proceeding further, we define the L2-metric entropy
with bracketing that measures the size of the function class F .
Given any ε > 0, the set {(f �

j , f u
j ), j = 1, . . . ,m} is called an

“ε-bracketing function” of F if ‖f u
j − f �

j ‖2 ≤ ε for all j =
1, . . . ,m, where ‖ · ‖2 is the L2-norm, and for any f ∈ F , there
exists j such that f �

j ≤ f ≤ f u
j . The L2-metric entropy HB(ε,F)

of F with bracketing is then defined as logarithm of the cardi-
nality of ε-bracketing function of F of the smallest size.

We also make two technical assumptions as follows:

• Assumption A. There exist constants c1 > 0 and 0 < α ≤ 1
such that

(
E[hτ (X,Y)])α ≥ c1E|f (X) − f ∗(X)| (36)

for any f ∈F .
• Assumption B. Denote

F(k) = {f ∈F : J(f ) ≤ k},
F = {f ∈F : J(f ) < ∞},

and

J0 = max{J(f ∗),1}.
We assume that for some positive constants c2, c3, and c4 there
exists some δn > 0 such that

sup
k≥1

φ(δn, k) ≤ c2n1/2, (37)

where

φ(δn, k) = 1

D

∫ c1/2
3 Dα/2

c4D
H1/2

B (u,F(k))du

and

D = D(δn, λ, k) = min{δ2
n + λJ0(k − 1),1}.
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Theorem 2. Suppose that Assumptions A and B are satisfied
and that f ∗ ∈ F and ρτ (y − f (x)) ≤ T for some T > 0 and for
∀f ∈ F . Then for any solution f̂ of (32) with τ(1 − τ) > η,
η > 0, there exists a constant c5 > 0 such that

Pr(eτ (f̂ , f ∗) ≥ δ2
n) ≤ 3.5 exp(−c5n(λJ0)

2−α), (38)

provided that λJ0 ≤ δ2
n/2.

Corollary 1. Under the assumptions of Theorem 2,

eτ (f̂ , f ∗) = Op(δ
2
n) and

(39)
E|eτ (f̂ , f ∗)| = O(δ2

n),

provided that n(λJ0)
2−α is bounded away from 0.

Theorem 2 and Corollary 1 provide probability and risk
bounds for eτ (f̂ , f ∗). As these bounds indicate, there is a cor-
respondence between the value of λ and the performance. To
achieve the best performance, we need to choose the value of λ

that provides the best balance between the size of F and n.
To illustrate the asymptotic theory, we consider the follow-

ing simple example. Let y = x + ε, where x ∈ [−1,1] and ε

is uniformly distributed on [−1,1]. It is easy to verify that
f ∗(x) = x + 2τ − 1 and x − 1 ≤ y ≤ x + 1. Let F1 = {f : f (x) =
β0 +1/λ

∑n
i=1 θiK(x, xi), f (x) ∈ [x−1, x+1], J(f ) ≤ b}, where

K is the radial basis kernel and b > 0 is a constant.
To verify assumption A, we note that

EY|X=x(f (x) − Y)I
(
f ∗(x) ≤ Y ≤ f (x)

) =
∫ f (x)

f ∗(x)

1

2
(f (x) − u)du

= 1

4
|f (x) − f ∗(x)|2.

Then

E[hτ (X,Y)] = 1

2
E|f (X) − f ∗(X)|2

≥ 1

2

(
E|f (X) − f ∗(X)|)2

.

Thus assumption A is satisfied with α = 1/2 and c1 = 2−1/2.
Using the property of RKHS with a radial basis kernel (Zhou
2002), we have HB(u,F(k)) = O(log2(k/u)) for any given k.
Because F1 ⊂ F(b), we have HB(u,F1) = O(log2(1/u)). Let

φ1(δn, k) = c3 log(1/D)/D1−α/2.

Then for some c > 0, we have

sup
k≥1

φ(δn, k) ≤ φ1(δn,1)

= c log(1/δn)/δ
2−α
n .

Solving (37), we get the rate

δ2
n =

(
log2 n

n

)1/(2−α)

, when λJ0 ∼ δ2
n .

Using Corollary 1 and α = 1/2, we can conclude that eτ (f̂ ,

f ∗) = O((
log2 n

n )2/3) except for a set with probability tending
to 0.

5. NUMERICAL RESULTS

In this section we use both simulation and real-world data to
demonstrate our algorithm and the selection of λ through the
new SIC [see (30)] and the new GACV criterion [see (31)].

5.1 Computational Cost

We first compare the computational cost of the path algo-
rithm with that of the interior point algorithm. Both algorithms
have been implemented in the R programming language, and
the comparison was done using an IBM notebook PC with an
Intel Pentium CPU running at 1.7 GHz, with 256 MB of mem-
ory.

Simulations were based on the function given by Yuan
(2006),

y = 40 exp
[
8
(
(x1 − .5)2 + (x2 − .5)2)]

× (
exp

[
8
(
(x1 − .2)2 + (x2 − .7)2)]

+ exp
[
8
(
(x1 − .7)2 + (x2 − .2)2)])−1 + ε, (40)

where x1 and x2 are distributed as uniform(0,1). We used
four different error distributions: standard normal, t-distribution
with 3 degrees of freedom, double exponential, and a mixture
distribution,

.1 · N(0,52) + .9 · N(0,1).

We used the radial basis kernel with σ = .2 and generated
n = 50,100,200, and 400 training observations from (40), as-
sociated with each of the four error distributions. We consid-
ered three different values of τ : 10%,30%, and 50%. Because
the error distributions are all symmetric, these τ ’s are also rep-
resentative of the upper quantiles 70% and 90%.

For each simulation dataset, we first ran our path algorithm
to compute the entire solution path and retrieved the sequence
of event points, λ0 > λ1 > λ2 > · · · > λL; then for each λ�, we
ran the interior point algorithm to get the corresponding solu-
tion. Elapsed CPU times (in seconds) were carefully recorded
using the system.time() function in R. We repeated this
100 times and computed the average elapsed CPU times and
their corresponding standard errors; the results are summarized
in Table 1. Because the results for the four error distributions are
similar, for simplicity of exposition, we show results only for
the normal error distribution. To see the picture more clearly,
we also recorded and summarized the number of steps along
the path (or the number of event points L) and the average size
of the elbow |E | in Table 2. As we can see, in terms of the
elapsed CPU time in computing the entire solution path, our
path algorithm dominates the interior point algorithm by sev-
eral orders. We can also see that the number of steps increases
linearly with the size of the training data, and, interestingly, the
average elbow size does not seem to increase much as the size
of the training dataset increases.

We note that these timings should be viewed with some cau-
tion, because they can be sensitive to the details of implemen-
tation. We also note that the interior point algorithm was im-
plemented using the cold start scheme; that is, for every value
of λ�, the training was done from scratch. To get a more fair
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Table 1. Elapsed CPU Times (in seconds)

Path Interior point

n τ = .1 τ = .3 τ = .5 τ = .1 τ = .3 τ = .5

50 .09(.03) .13(.01) .14(.02) 2.70(.32) 4.14(.43) 4.74(.52)
100 .20(.02) .33(.03) .38(.04) 12.19(1.58) 21.12(1.91) 23.67(1.90)
200 .52(.09) .89(.11) .97(.10) 104.00(10.03) 179.85(17.54) 196.29(16.17)
400 3.26(.21) 4.18(.35) 4.58(.38) 1,986.23(56.26) 2,561.75(68.31) 2,706.64(75.07)

NOTE: The first column n is the size of the training data. # Steps is the number of event points; |E | is the average elbow size at the event points. All results are
averages of 100 independent simulations. The numbers in the parentheses are the corresponding standard errors.

comparison of our path algorithm and the interior point algo-
rithm, we also computed the average elapsed CPU time of the
interior point algorithm for a single value of λ�, defined as

average elapsed CPU time for a single value of λ

= total elapsed CPU time

number of steps
.

The results are summarized in Table 3. Comparing Tables 1,
2, and 3, we can see that it takes our algorithm about 1–3 times
as long to compute the entire solution path as it takes the inte-
rior point algorithm to compute a single solution. We also note
that the path algorithm gives a full presentation of the solution
path without knowing the locations of the event points a pri-
ori, whereas the interior point algorithm requires a sequence of
prespecified λ�’s.

5.2 Simulation Data

The setups of the function and the error distributions are sim-
ilar to those in Section 5.1. We generated 200 training observa-
tions from (40), associated with each of the four error distribu-
tions, along with 10,000 validation observations and 10,000 test
observations. We used the radial basis kernel with σ = .2.
Again, we considered three different values of τ : 10%,30%,
and 50%. We then found the λ’s that minimized the SIC and
the GACV criterion. We used the validation set to select the
gold standard λ’s that minimized the prediction error. Using
these λ’s, we calculated the prediction error and the mean ab-
solute deviation with the test data for each criterion. Suppose
that the fitted quantile function is f̂ (x) and the true quantile
function is f (x); then the prediction error and the mean absolute
deviation are defined as

prediction error = 1

10,000

10,000∑

i=1

ρτ (yi − f̂ (xi))

and

mean absolute deviation = 1

10,000

10,000∑

i=1

|f (xi) − f̂ (xi)|.

We repeated this 100 times and computed the average predic-
tion error, the average mean absolute deviation, and their cor-
responding standard errors. We also compared the degrees of
freedom selected by the three different methods. The results are
summarized in Tables 4–6.

We can see, several trends in the results when using (30)
and (31) to select the regularization parameter λ:

1. In terms of the prediction error and the mean absolute de-
viation, both the SIC and the GACV perform close to the
gold standard, and they get closer to the gold standard as
τ gets closer to .5.

2. As τ gets closer to .5, the performance of the SIC and the
GACV also get closer.

3. The SIC always performs slightly better than the GACV.
4. The variance of the GACV is always slightly greater than

that of the SIC.
5. The SIC tends to select a simpler model than the gold

standard, whereas the GACV tends to select a more com-
plicated model than the gold standard.

5.3 Real Data

In this section we consider applications to a real dataset: the
annual salary of baseball players.

Annual Salary of Baseball Players. This is a widely ana-
lyzed dataset, provided by He et al. (1998), comprising records
of 263 North American major league baseball players for the
1986 season. We reanalyzed the data to further demonstrate our
algorithm and compare the SIC and GACV criterion. Following
He et al. (1998) and Yuan (2006), we used the number of home
runs in the latest year (performance measure) and the number
of years played (seniority measure) as predictor variables. The
response variable is the annual salary of each player (in thou-
sands of dollars). The multiplicative spline kernel was used.
The results are given in Figure 4. As shown, for the 50% quan-
tile surface, the SIC and the GACV give similar results, but for
the 25% and the 75% quantile surfaces, the SIC fits are again
smoother than the GACV fits.

Table 2. Characteristics of the Path

Average |E | Average number of steps

n τ = .1 τ = .3 τ = .5 τ = .1 τ = .3 τ = .5

50 19.70(2.16) 18.24(1.35) 19.09(1.38) 49.70(5.18) 78.30(7.62) 91.30(9.45)
100 24.46(1.78) 24.18(1.33) 24.63(1.68) 94.64(11.90) 172.20(14.91) 199.62(14.59)
200 27.01(1.91) 27.35(1.97) 27.73(1.55) 179.50(16.87) 342.8(18.23) 381.6(26.66)
400 43.70(3.58) 42.33(2.24) 42.39(2.65) 539.25(47.71) 822.75(53.87) 892.75(62.68)

NOTE: The first column n is the size of the training data. # Steps is the number of event points; |E | is the average elbow size at the event points. All results are
averages of 100 independent simulations. The numbers in the parentheses are the corresponding standard errors.
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Table 3. Average Elapsed CPU Time (in seconds) of the Interior Point
Algorithm for a Single Value of λ�

n τ = .1 τ = .3 τ = .5

50 .054(.004) .053(.002) .052(.001)
100 .129(.003) .123(.003) .119(.003)
200 .579(.017) .524(.076) .514(.020)
400 3.692(.378) 3.167(.223) 3.073(.274)

Table 4. Simulation Example, τ = 10%

SIC GACV Gold standard

Prediction error
Normal .216(.016) .355(.165) .208(.011)
DE .324(.065) .532(.212) .296(.010)
T3 .352(.073) .567(.226) .323(.011)
Mixture .382(.059) .590(.220) .350(.012)

Mean absolute deviation
Normal .505(.075) .857(.379) .478(.072)
DE .761(.133) 1.235(.437) .672(.114)
T3 .842(.212) 1.494(.496) .724(.133)
Mixture .904(.337) 1.491(.610) .697(.165)

Degrees of freedom
Normal 23.2(4.8) 52.5(28.1) 22.0(3.5)
DE 22.1(6.8) 53.1(28.4) 18.4(3.8)
T3 21.9(9.2) 60.2(27.1) 18.0(4.2)
Mixture 22.7(12.4) 56.1(26.6) 18.1(4.2)

NOTE: Prediction errors of the true conditional quantile functions are .173 (normal), .258 (DE),
.285 (T3), and .311 (mixture).

Table 5. Simulation Example, τ = 30%

SIC GACV Gold standard

Prediction error
Normal .393(.016) .470(.111) .384(.011)
DE .503(.019) .603(.167) .490(.012)
T3 .551(.018) .644(.195) .538(.011)
Mixture .570(.022) .606(.093) .557(.013)

Mean absolute deviation
Normal .398(.058) .683(.347) .368(.052)
DE .462(.071) .737(.361) .423(.061)
T3 .493(.088) .779(.453) .440(.070)
Mixture .478(.082) .602(.414) .405(.051)

Degrees of freedom
Normal 18.9(4.5) 52.3(23.1) 25.0(4.2)
DE 17.2(4.1) 44.1(21.1) 23.6(3.5)
T3 15.8(4.5) 43.9(25.3) 23.3(3.8)
Mixture 15.5(4.2) 34.2(17.9) 24.3(4.2)

NOTE: Prediction errors of the true conditional quantile functions are .346 (normal), .448 (DE),
.493 (T3), and .515 (mixture).

Table 6. Simulation Example, τ = 50%

SIC GACV Gold standard

Prediction error
Normal .448(.017) .481(.077) .438(.010)
DE .561(.021) .591(.111) .545(.012)
T3 .615(.023) .655(.136) .600(.013)
Mixture .619(.022) .626(.050) .606(.010)

Mean absolute deviation
Normal .375(.062) .538(.237) .348(.048)
DE .397(.073) .463(.238) .355(.060)
T3 .429(.077) .482(.214) .384(.054)
Mixture .425(.075) .490(.247) .384(.051)

Degrees of freedom
Normal 18.3(4.0) 43.1(19.6) 26.0(4.2)
DE 16.2(3.3) 30.9(13.3) 26.6(4.8)
T3 15.6(3.7) 28.6(12.9) 24.6(5.0)
Mixture 15.5(3.5) 28.8(15.5) 24.7(4.8)

NOTE: Prediction errors of the true conditional quantile functions are .398 (normal), .503 (DE),
.553 (T3), and .565 (mixture).

6. CONCLUSION

In this article we have proposed an efficient algorithm that
computes the entire regularization path of the KQR; we have
derived a simple formula for the effective dimension of the fit-
ted KQR model, which can be used to select the regularization
parameter λ; we also have developed an asymptotic theory for
the KQR.

We acknowledge that in this article we have taken the loss +
penalty approach to the problem of nonparametric estimation of
conditional quantile functions. There is also an extensive litera-
ture covering the same problem using the local polynomial ap-
proach (e.g., Stone 1977; Chaudhuri 1991; Yu and Jones 1998).

Finally, we would like to point out an interesting direction
where our work can be extended. As Koenker et al. (1994)
pointed out, in the case of L1 loss + L1 penalty, the solution
path is piecewise constant in τ (for fixed λ). We plan to in-
vestigate whether a similar result holds for the KQR, that is,
whether the solution path is also piecewise linear in τ . When
changing τ , one disturbing problem in quantile regression is
that the fitted quantile curves (or surfaces) can cross each other
(He 1997). For example, in the right column of Figure 4, the
fitted median surface is higher than the 75% quantile surface in
the region of Year > 20 and Home Run > 30. Although this
is due to lack of data in that region, avoiding such confusion is
of practical importance.

APPENDIX: PROOFS

Proof of Lemma 1

For any fixed λ > 0, suppose that R,L, and E are given; then we
have

1

λ

(
β0,λ +

∑

i∈E
θiK(xk,xi) − (1 − τ )

∑

i∈L
K(xk,xi)

+ τ
∑

i∈R
K(xk,xi)

)
= yk, ∀k ∈ E, (A.1)

and
∑

i∈E
θi − (1 − τ )nL + τnR = 0. (A.2)

These can be reexpressed as
(

0 1�
1 KE

)(
β0,λ

θE

)
=

(
b

λyE − a

)
,

where KE is a nE × nE matrix, with entries equal to K(xk,xk′),
k, k′ ∈ E , and θE and yE are vectors of length nE , with elements equal
to θk and yk, k ∈ E . Here a is also a vector of length nE , with elements
equal to −(1 − τ )

∑
i∈L K(xk,xi) + τ

∑
i∈R K(xk,xi), k ∈ E , and b

is a scalar b = −(1 − τ )nL + τnR. Note that λ,R,L, and E are fixed,
KE ,a, and b are also fixed.

Then β0,λ and θE can be expressed as
(

β0,λ

θE

)
= K̃

(
b

λyE − a

)
,

where

K̃ =
(

0 1�
1 KE

)−1
.

Note that β0,λ and θE are linear in yE .
Now, corresponding to the three events listed at the beginning of

Section 2.3, if λ is an event point, then one of the following conditions
must be satisfied:
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Figure 4. Baseball Data. The left column contains the SIC results; the right column, the GACV results. The first row corresponds to the 25% quan-
tile surfaces, the middle row corresponds to the 50% quantile surfaces, and the third row corresponds to the 75% quantile surfaces.

1. θk = −(1 − τ ), ∃k ∈ E
2. θk = τ , ∃k ∈ E
3. yk = 1

λ
(β0,λ + ∑

i∈E θiK(xk,xi) − (1 − τ )
∑

i∈L K(xk,xi) +
τ

∑
i∈R K(xk,xi)), ∃k ∈L∪R.

For any fixed λ,R,L, and E , each of the foregoing conditions defines
a hyperplane of y in R

n. Taking into account all possible combinations

of R,L, and E , the set of y such that λ is an event point is a collection
of finite number of hyperplanes.

Proof of Lemma 2

For any fixed λ > 0 and any fixed y0 ∈ R
n, we wish to show that if a

sequence ym converges to y0, then θ(ym) converges to θ(y0). Because
θ(ym) is bounded, it is equivalent to show that for every converging
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subsequence, say θ(ymk ), the subsequence converges to θ(y0). Sup-
pose that θ(ymk ) converges to θ∞; we show that θ∞ = θ(y0). De-
note (6) as g(θ(y),y), and let

�g(θ(y),y,y′) = g(θ(y),y) − g(θ(y),y′).

Then we have

g(θ(y0),y0) = g
(
θ(y0),ymk

) + �g
(
θ(y0),y0,ymk

)

≥ g
(
θ
(
ymk

)
,ymk

) + �g
(
θ(y0),y0,ymk

)

= g
(
θ
(
ymk

)
,y0

) + �g
(
θ
(
ymk

)
,ymk ,y0

)

+ �g
(
θ(y0),y0,ymk

)
. (A.3)

Using the fact that |a| − |b| ≤ |a − b| and ymk → y0, it is easy to show
that for sufficiently large mk , we have

�g
(
θ
(
ymk

)
,ymk ,y0

) + �g
(
θ(y0),y0,ymk

) ≤ c
∥∥y0 − ymk

∥∥
1,

where c > 0 is a constant. Furthermore, using ymk → y0 and θ(ymk ) →
θ∞, we reduce (A.3) to

g(θ(y0),y0) ≥ g(θ∞,y0).

Because θ(y0) is the unique minimizer of g(θ ,y0), we have that
θ∞ = θ(y0).

Proof of Lemma 3

For any fixed λ > 0 and any fixed y0 ∈ R
n\Nλ, because R

n\Nλ is
an open set, we can always find a small enough ε > 0 such that
Ball(y0, ε) ⊂ R

n\Nλ. Thus λ is not an event point for any y ∈
Ball(y0, ε). We claim that if ε is small enough, then the sets R,L,
and E stay the same for all y ∈ Ball(y0, ε). Consider y and y0. Let
Ry,Ly, Ey, R0, L0, and E0 denote the corresponding sets and θy, f y,
θ0, and f 0 denote the corresponding fits. For any i ∈ E0, because λ is
not an event point, we have −(1− τ ) < θ0

i < τ . Therefore, by continu-

ity, we also have −(1−τ ) < θ
y
i < τ , i ∈ E0 for y close enough to y0 or,

equivalently, E0 ⊆ Ey, ∀y ∈ Ball(y0, ε) for small enough ε. Similarly,
for any i ∈R0, because y0

i − f 0(xi) > 0, again, by continuity, we have
yi − f y(xi) > 0 for y close enough to y0 or, equivalently, R0 ⊆ Ry,
∀y ∈ Ball(y0, ε) for small enough ε. The same applies to L0 and Ly
as well. Overall, we then must have E0 = Ey, R0 = Ry, and L0 = Ly
for all y ∈ Ball(y0, ε) when ε is small enough.

Proof of Theorem 1

Using Lemma 3, we know that there exists ε > 0 such that for all
y ∈ Ball(y, ε), the sets R,L, and E stay the same. This implies that for
points in E , we have

∂ f̂ (xi)

∂yi
= 1, i ∈ E .

Furthermore, from (A.1) and (A.2), we can see that for points in
R and L, their θi’s are fixed at either τ or τ − 1, and the other θi’s
are determined by yE . Hence

∂ f̂ (xi)

∂yi
= 0, i ∈R∪L.

Overall, we have

n∑

i=1

∂ f̂ (xi)

∂yi
= |E |.

Proof of Lemma 4

The desired result can be proved directly by expressing ρτ (y −
f (x)) − ρτ (y − f ∗(x)) using the definition of the check function with
all possible orderings among f , f ∗, and y.

Proof of Theorem 2

We first introduce some notations. Denote zi = (xi, yi), Zi =
(Xi,Yi), �τ (f , zi) = ρτ (yi − f (xi)), and �̃τ (f , zi) = �τ (f , zi) + λJ(f ).
We let

Aij = {
f ∈F : 2i−1δ2

n ≤ eτ (f , f ∗) < 2iδ2
n,2j−1J0 ≤ J(f ) < 2jJ0

}
,

i, j = 1,2, . . . ,

and

Ai0 = {
f ∈F : 2i−1δ2

n ≤ eτ (f , f ∗) < 2iδ2
n, J(f ) < J0

}
, i = 1,2, . . . .

We then define the scaled empirical process, En(�̃τ (f ,Z)− �̃τ (f ∗,Z)),
as

En
(
�̃τ (f ,Z) − �̃τ (f ∗,Z)

)

= n−1
n∑

i=1

(
�̃τ (f ,Z) − �̃τ (f ∗,Z) − E[�̃τ (f ,Z) − �̃τ (f ∗,Z)])

= En[�τ (f ,Z) − �τ (f ∗,Z)].
To bound Pr(eτ (f̂ , f ∗) ≥ δ2

n), we use theorem 3 of Shen and Wong
(1994), a large deviation inequality for empirical processes by control-
ling the corresponding mean and variance. First, we note that

{eτ (f̂ , f ∗) ≥ δ2
n}

⊂
{

sup
{f∈F : eτ (f ,f ∗)≥δ2

n}
n−1

n∑

i=1

(
�̃τ (f ∗,Zi) − �̃τ (f ,Zi)

) ≥ 0

}
.

Hence

Pr(eτ (f̂ , f ∗) ≥ δ2
n)

≤ ∗
Pr

(
sup

{f∈F : eτ (f ,f ∗)≥δ2
n}

n−1
n∑

i=1

(
�̃τ (f ∗,Zi) − �̃τ (f ,Zi)

) ≥ 0

)
,

(A.4)

where Pr∗ denotes the outer probability measure. We denote the prob-
ability on the right side of (A.4) as I. To bound I, it is sufficient to
bound Pr∗(sup{f∈Aij} n−1 ∑n

i=1(�̃τ (f ∗,Zi) − �̃τ (f ,Zi)) ≥ 0) for each
i, j. Toward this end, we need some inequalities regarding the first and
second moments of �̃τ (f ∗,Zi) − �̃τ (f ,Zi) for f ∈ Aij.

For the first moment, using the definition of Aij, we have

inf
Aij

E[�̃τ (f ,Zi) − �̃τ (f ∗,Zi)]

≥ 2i−1δ2
n + λ(2j−1 − 1)J0

def= M(i, j) (A.5)

and

inf
Ai0

E[�̃τ (f ,Zi) − �̃τ (f ∗,Zi)] ≥ 2i−2δ2
n

def= M(i,0), (A.6)

where i, j ≥ 1. Note that (A.6) follows from the assumption that
λJ0 ≤ δ2

n/2 and the fact that 2i − 1 ≤ 2i−1.
For the second moment, because �τ is bounded by T , we have

E[�τ (f ,Z) − �τ (f ∗,Z)]2 ≤ T · E|�τ (f ,Z) − �τ (f ∗,Z)|.
Furthermore, using Lemma 4, we get

E|�τ (f ,Z) − �τ (f ∗,Z)| ≤ E
[|gτ (X,Y)| + |hτ (X,Y)|]. (A.7)

Note that E|hτ (X,Y)| = E[hτ (X,Y)] = eτ (f , f ∗), and using Assump-
tion A,

E|gτ (X,Y)| = τ (1 − τ )E|f (X) − f ∗(X)|
≤ c−1

1 τ (1 − τ )
(
E[hτ (X,Y)])α

= c−1
1 τ (1 − τ )(eτ (f , f ∗))α.
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Thus we have

E[�τ (f ,Z) − �τ (f ∗,Z)]2 ≤ T(c−1
1 τ (1 − τ ) + 1)(eτ (f , f ∗))α.

(A.8)

The first and second moments can then be connected as follows. For
any f ∈ Aij, we have

sup
Aij

E[�τ (f ,Z) − �τ (f ∗,Z)]2 ≤ T(c−1
1 τ (1 − τ ) + 1)(2iδ2

n)α

≤ c3(M(i, j))α
def= v(i, j)2,

where c3 = 4αT(c−1
1 τ (1 − τ ) + 1).

Now we are ready to bound I. Using (A.5) and (A.6), we get

I ≤
∑

i≥1,j≥0

Pr ∗(
sup
Aij

En
(
�̃τ (f ∗,Zi) − �̃τ (f ,Zi)

) ≥ 0
)

≤
∑

i≥1,j≥0

Pr ∗(
sup
Aij

En
(
�τ (f ∗,Zi) − �τ (f ,Zi)

) ≥ M(i, j)
)

= I1 + I2,

where

I1 =
∑

i,j≥1

Pr ∗(
sup
Aij

En
(
�τ (f ∗,Zi) − �τ (f ,Zi)

) ≥ M(i, j)
)

and

I2 =
∑

i≥1

Pr ∗(
sup
Ai0

En
(
�τ (f ∗,Zi) − �τ (f ,Zi)

) ≥ M(i,0)
)
.

Next, we use the large deviation inequality of Shen and Wong (1994)
to bound I1 and I2. We first verify the required conditions (4.5)–(4.7)
in theorem 3 of Shen and Wong (1994).

To compute the metric entropy in (4.7) of Shen and Wong (1994),
we need to construct a bracketing function of �τ (f ∗,Z) − �τ (f ,Z).
Denote F�τ

(k) = {�τ (f , z) − �τ (f ∗, z) : f ∈ F(k)}. We let

��
j = min{�τ (f �

j , z), �τ (f u
j , z),0} − �τ (f ∗, z)

and

�u
j = max{�τ (f �

j , z), �τ (f u
j , z)} − �τ (f ∗, z).

Then for any f ∈F with J(f ) ≤ 2j, there exists j ∈ {1, . . . ,m} such that
f �
j ≤ f ≤ f u

j , which implies that ��
j ≤ �τ (f , z) − �τ (f ∗, z) ≤ �u

j . Hence

{(��
k, �

u
k), k = 1, . . . ,m} is a bracket function set of �τ (f , z)−�τ (f ∗, z).

Furthermore, using the property of �τ , we have

‖�u
k − ��

k‖2 ≤ max(τ,1 − τ )‖f u
j − f �

j ‖2 ≤ ‖f u
j − f �

j ‖2.

Hence HB(u,F�τ
(2j)) ≤ HB(u,F(2j)).

Using the fact that
∫ v(i,j)

aM(i,j) H1/2
B (u,F(2j))du/M(i, j) is nonincreas-

ing in i and M(i, j), we have
∫ v(i,j)

aM(i,j)
H1/2

B (u,F(2j))du/M(i, j)

≤
∫ √

c3M(1,j)α/2

aM(1,j)
H1/2

B (u,F(2j))du/M(1, j)

≤ φ(δn,2j),

where a = ε/32 with ε as defined later. Thus (4.7) of Shen and Wong
(1994) holds with M = n1/2M(i, j) and v = v(i, j)2, as does (4.5).
Without loss of generality, we assume that M(i, j) ≤ 1 and v(i, j)2 ≤ 1.
Then, M(i, j)/v(i, j)2 ≤ c−1

3 = ε/(4T) implies (4.6) of Shen and Wong

(1994) with ε = 4Tc−1
3 = 22−2α(c−1

1 τ (1 − τ ) + 1)−1. Note that

0 < δn ≤ 1 and λJ0 ≤ δ2
n/2. Thus, an application of theorem 3 of Shen

and Wong (1994) yields

I1 ≤
∞∑

j=1

∞∑

i=1

3 exp

(
− (1 − ε)nM(i, j)2

2(4v(i, j)2 + M(i, j)T/3)

)

≤
∞∑

j=1

∞∑

i=1

3 exp
(−c5nM(i, j)2−α

)

≤
∞∑

j=1

∞∑

i=1

3 exp
(−c5n

[
(2i−1δ2

n)2−α + ((2j−1 − 1)λJ0)2−α
])

≤
∞∑

j=1

∞∑

i=1

3 exp
(−c5n[i(λJ0)2−α + (j − 1)(λJ0)2−α])

≤ 3 exp(−c5n(λJ0)2−α)/
[
1 − exp(−c5n(λJ0)2−α)

]2
,

where c5 > 0 is a generic constant. I2 can be bounded in a similar way.
Finally, we have

I ≤ 6 exp(−c5n(λJ0)2−α)/
[
1 − exp(−c5n(λJ0)2−α)

]2
,

which implies that I1/2 ≤ (5/2 + I1/2) exp(−c5n(λJ0)2−α). Because
I ≤ I1/2 ≤ 1, we finally have

I ≤ 3.5 exp(−c5n(λJ0)2−α),

which is the desired result.

Proof of Corollary 1

To show that eτ (f̂ , f ∗) = Op(δ2
n), it is sufficient to show that

Pr(e(f̂ , f ∗) ≥ Gδ2
n) ≤ 3.5 exp(−c5nG(λJ0)2−α)

for any G ≥ 1.
Toward this end, we need to modify the proof of Theorem 2 only

slightly. We redefine

Aij = {
f ∈F : 2i−1δ2

nG ≤ eτ (f , f ∗) < 2iδ2
nG,

2j−1J0G ≤ J(f ) < 2jJ0G
}
, i, j = 1,2, . . . ,

and

Ai0 = {
f ∈F : 2i−1δ2

nG ≤ eτ (f , f ∗) < 2iδ2
nG, J(f ) < J0G

}
,

i = 1,2, . . . .

Using these new definitions, an analogous proof to that of Theorem 2
can be obtained with M(i, j) = 2i−1δ2

nG + λ(2j−1 − 1)J0G, and the
desired result then follows.

[Received September 2005. Revised July 2006.]
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