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Abstract

Ordinary differential equations (ODEs) are widely used in modeling dynamic systems and have 

ample applications in the fields of physics, engineering, economics and biological sciences. The 

ODE parameters often possess physiological meanings and can help scientists gain better 

understanding of the system. One key interest is thus to well estimate these parameters. Ideally, 

constant parameters are preferred due to their easy interpretation. In reality, however, constant 

parameters can be too restrictive such that even after incorporating error terms, there could still be 

unknown sources of disturbance that lead to poor agreement between observed data and the 

estimated ODE system. In this paper, we address this issue and accommodate short-term 

interferences by allowing parameters to vary with time. We propose a new regularized estimation 

procedure on the time-varying parameters of an ODE system so that these parameters could 

change with time during transitions but remain constants within stable stages. We found, through 

simulation studies, that the proposed method performs well and tends to have less variation in 

comparison to the non-regularized approach. On the theoretical front, we derive finite-sample 

estimation error bounds for the proposed method. Applications of the proposed method to 

modeling the hare-lynx relationship and the measles incidence dynamic in Ontario, Canada lead to 

satisfactory and meaningful results.
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1 Introduction

Dynamic systems are widely used in science and engineering, and they are often modeled 

through a set of ordinary differential equations (ODEs). Most ODE dynamic systems are 

fully determined by the parameters and initial values. They usually have non-linear 

structures and non-trivial analytic solutions. Given the parameters and initial values, there 

exist various numerical methods to solve non-linear ODEs, including the well known family 

of Runge-Kutta methods. In reality, the parameters of an ODE system are often unknown 

and need to be estimated using observed data.

SUPPLEMENTARY MATERIALS
The supplementary materials include approximation of the degrees of freedom, assumptions for theoretical properties, proofs of 
Lemma 1 and Theorem 1, and additional numerical results for the modified procedure of Cao et al. (2012).
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Suppose that an ODE dynamic system has the following general structure:

(1)

where X (t) = {X1 (t), ⋯, Xm (t)}T is the state vector (also referred to as ODE curves) to 

describe the dynamic system, θ = (θ1, ⋯, θd)T denotes the unknown parameters to be 

estimated, and F (·) = {F1 (·), ⋯, Fm (·)}T is a known force functional structure, which is 

usually highly non-linear. Instead of directly observing the true state vector X (t), we assume 

that we observe the surrogate Y (t) at discrete time points

(2)

In most of the current statistics literature, the parameters θ are assumed as constants, and 

there are mainly two categories of methods for estimating the constant θ. The first category 

consists of various two-stage methods: one estimates the ODE curves X (t) and their first 

derivatives in stage-one by a nonparametric smoothing fit to the data, and then, in the second 

stage, finds the parameter estimates through the classical least-square optimization with X (t) 

and dX (t) / dt replaced by the nonparametric estimates obtained from the first stage. For 

example, Varah (1982) estimated X (t) and dX (t) / dt using a spline smoothing technique in 

stage-one. Liang and Wu (2008) extended the work of Varah (1982) by using the local 

polynomial regression as the smoothing approach and they further provided statistical 

properties of the estimator. The use of non-parametric kernel estimation was proposed and 

studied in Brunel (2008). These approaches can be easily implemented and can perform very 

well with moderate to large data sets with densely observed data points. However, if the 

level of observation noise is relatively high and/or the sample size is relatively small, the 

two-stage method may not be able to obtain sufficiently precise estimates of dX (t) / dt in the 

first stage and consequently the estimation of parameters in the second stage also suffers.

The second category of methods is built on profile estimation. The approach was introduced 

by Ramsay et al. (2007), and it has been referred to as the parameter cascade method. 

Instead of estimating the ODE curves directly from the data, one first constructs the ODE 

curves as functions of the parameters in an inner step. These estimated functions are then 

included into an outer step which minimizes a loss function between the observed data and 

the estimated ODE curves. In Ramsay et al. (2007) and several follow-up papers, a penalty 

term is included in the inner step with the intention of accommodating ODE model 

misspecifications while still maintaining the faithfulness of the estimated ODE curves 

towards the assumed system.

We note that the above methods all assume the parameters θ as constants. In reality, 

however, the parameters θ may not always remain constant as the system evolves with time. 

For example, Chen and Wu (2008) noticed that the ODE parameters in the HIV/AIDS 

dynamics could vary with time and they applied a two-stage method to estimate the time-

varying ODE parameters. Cao et al. (2012) considered a specific ODE structure in which dX 

(t) / dt is linked to a known function of X (t) and a set of other observed covariates Z (t) via 

time-varying coefficient functions. They proposed to include penalties, controlled by tuning 
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parameters, in both the inner and the outer steps of the parameter cascade method. In this 

paper, we consider a different modeling approach that allows the ODE parameters to vary 

with time, while at the same time retains the interpretation advantage of a parametric ODE 

system.

Taking the Lotka-Volterra dynamic model as an example, which is widely used to study the 

population evolution of predator and prey in ecological sciences: when the two components 

of the Lotka-Volterra model are dynamically balanced with each other, the parameters of the 

model are constants. However, when certain unpredictable interferences occur, such as 

environmentally unsound logging practice, the balance of the system may be broken and the 

ODE parameter values will change. If the interferences do not last long or they become part 

of the ecological system, after a certain time period, another balanced system will be re-

established and the parameters would again become constants, usually at different values 

from before. Note in this situation, estimation methods that treat ODE parameters as 

constants are no longer suitable, while simply assuming time varying parameters through out 

the whole time domain will result in parameter estimates that are difficult to interpret and 

lose the understanding of the system provided by constant parameters. Our modeling 

strategy, as in Ramsay et al (2007), is motivated by the desire of allowing the assumed 

parametric model to differ from the true underlying one. With the assumed model, likely 

specified by scientists for its specific meaningful interpretation, our setup focuses on 

allowing a specific type of interpretable model violation through varying coefficient 

functions.

With this setup in mind, we wish to achieve a compromise between the two. Specifically, we 

propose a semi-parametric method that encourages the ODE parameters to stay as constants 

whenever possible (for interpretability) and at the same time also allows the ODE 

parameters to vary with time when needed (for flexibility). An additional new contribution 

comes from a penalty term that we propose to add in the outer step of the parameter cascade 

method, which will be described in detail in Section 2. We also show in Section 3 that, 

under certain regularity conditions, the difference between the parameter curves estimated 

by the proposed method and the truth is bounded at a certain rate.

The rest of the paper is organized as follows. In Section 2, we propose the estimation 

method and discuss various important issues in the algorithm including the corresponding 

degrees of freedom and the choice of the penalty parameter. Non-asymptotic bounds on the 

errors of the proposed estimator are developed in Section 3. In Section 4, we compare our 

method with other methods by simulation studies. The two models we have investigated are 

the FitzHugh-Nagumo model and the Lotka-Volterra model. Additional numerical results 

and the theoretical details are provided in the supplementary materials. In Section 5, we 

apply the proposed method to analyze a lynx-hare dynamic data set and a measles incidence 

dynamic data set collected in Ontario, Canada. We conclude the paper with a short 

discussion in Section 6.
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2 Estimation Procedure

In this section, we propose a penalized method for estimating the ODE parameters and 

address issues arising in the selection of the tuning parameter. Our estimation procedure is, 

in part, motivated by the parameter cascade approach provide by Ramsay et al. (2007). We 

made two key modifications, one in the inner step and the other in the outer one, in order to 

build the estimation procedures that serve the goal of our investigation. For the purpose of 

variance reduction and estimation stability, we remove the additional penalty term 

introduced by Ramsay et al. (2007) in the inner step. The original motivation in Ramsay et 

al. (2007) of adding the penalty term was to accommodate scenarios where the ODE model 

is mis-specified. However, Ramsay and co-authors have noted the potential variation 

inflation due to this additional penalty (Poyton et al., 2006). In the numerical investigations 

in the first author’s Ph.D. dissertation (Li, 2012), it is further noted that adding such an 

additional term in the inner step in estimating X (t) via a set of B-spline basis functions 

increases the sensitivity of the results with respect to the tuning parameters, which include 

the number of B-spline bases and the penalty parameter(s); this is so even under constant-

coefficient ODE models. In comparison to the original approach, the removal of the penalty 

term from the inner step leads to outcomes that are much less affected by tuning parameters.

The penalty term we add is in the outer step, and it does not suffer from the same instability 

and variation inflation as that with the penalty in the inner step. It further serves the dual 

purposes of regularizing roughness when the estimated parameter function is not a constant 

and encouraging a constant estimate when the parameter function does not vary much with 

time. Consequently, we only need to determine a minimum number of tuning parameters.

2.1 Set-up and notation

Let θℓ(t), ℓ = 1, …, d denote the time-varying parameters in an ODE system. Using a p-

dimensional basis ψ(t) = {ψ1(t), ψ2(t), …, ψp(t)}T, we expand θℓ(t) as follows:

where ηℓ is the coefficient vector of the basis expansion, and ep,ℓ(t) represents the deviation 

of ξℓ(t) from the true parameter curve θℓ(t). Note that our expansion allows imperfect 

modeling via ep,ℓ(t). We also denote the space spanned by ψ(t) as ℒψ,p and ξℓ(·) ∈ ℒψ,p. A 

common choice of ψ(t) is the B-spline basis, which is what we will use. Throughout the 

paper, we use the notation of  and θ(·) = {θ1(·), …, θd(·)}T.

For the j-th component of ODE curves, similarly we have

where ϕ(t) = {ϕ1 (t), …, ϕq(t)}T is a q-dimensional basis vector, cj is the coefficient vector 

and eq,j (t) represents the deviation from the true ODE curve Xj (t). Denote .
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Further, we denote the initial-value vector as X[0] = {X1 (0), …, Xm(0)}T. Later, we will 

treat this vector as part of the unknown parameters. For notation convenience, we denote 

such a vector by x0. We further let , which is the entire parameter vector that 

we wish to estimate. Note that η and ξ (·) are equivalent, and we will use them 

interchangeably.

2.2 Algorithm

In what follows, we propose a two-step algorithm that regularizes the negative log-

likelihood in the outer step. Throughout, unless otherwise specified, the integration in the 

algorithm was carried out by a Riemann integral approximation.

• Inner step. Given η* = {x0, ξ (·)}, we build a profile estimator by solving for the 

ODE curves using the traditional least square criterion:

(3)

where wj’s are normalizing weights with the purpose of making the numerical 

magnitudes of different components comparable. Given η*, in this step, we 

construct the estimated ODE curves via ĉ, which will be adopted into the outer step 

as follows.

• Outer step. We estimate η* by minimizing a penalized least square criterion:

(4)

where X̂
j is estimated from the inner step, hence an implicit function of η*.

The penalty on the first derivative of ξℓ(t) serves dual purposes: encouraging interpretation 

and penalizing roughness. For the former, this penalty encourages the estimated parameter 

curve to be constant over time regions, hence providing highly interpretable results. To 

better understand the latter, we consider a general penalty term with the structure of 

. The most commonly used roughness penalty has (·) being the identity 

and s = 2, i.e. penalizing the square of the second derivative. In our case, we use s = 1, 

which corresponds to the first order roughness penalty (Green and Silverman, 1994), and 

(·) being the square-root function. This first order penalty assigns a high cost when 

neighboring values differ greatly. As a consequence, smoother estimates will be preferred, 

as discussed by Green and Silverman, provided that (·) is an increasing function in the 

range of the integration.

Note that λℓ is the tuning parameter for the ℓ-th parameter curve, which balances the 

goodness of fit between the observations and the fitted ODE curve and the flexibility of the 

estimated parameter curve. When λℓ is sufficiently large, the estimated parameter curve will 

be a constant over the entire time region, which reduces the problem to the constant 

parameter case. Furthermore, even though the inner-step is practically identical to the 
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traditional least-square ODE solver, with x0 being part of η* to be determined in the outer 

step, the final estimated x0 may not be the same as the pre-determined initial values, which 

makes the proposed estimator differ from the traditional ODE solver. This property allows 

additional flexibility and robustness against mis-specified initial values in model fitting.

Denote the objective functions in the inner and outer steps above by J (c, η*) and H (ĉ(η*), 

η*), respectively. For the latter, ĉ(η*) denotes the c-coefficients inside of X̂ obtained from 

the inner step. We now describe the optimization procedure in each step with more details. 

Treating η* as fixed, we can directly derive the gradient ∂J (c, η*) / ∂c given η* within the 

inner step. As a result, we can utilize non-linear least squares to solve the minimization in 

the inner step. For the penalty term of the outer step, we use a grid of equally spaced points 

to approximate the integral in the penalty term of the outer step. Specifically, let τ1 = T / K, 

τ2 = 2T / K, ⋯, τK = T, we approximate the penalty as

(5)

Then, we use the local quadratic approximation in Fan and Li (2001) to approximate the 

absolute value function in the above penalty. The exact procedure of how to do so is 

described by formulae and text between equations (3.6) and (3.7) in the original paper and 

we will not repeat it here. In practice, one can absorb T / K into the tuning parameter λℓ. 

Now, using the implicit function theorem as in Ramsay et al. (2007), we can obtain the 

derivative dĉ / dη*, including components of dĉ / dη and dĉ / dx0, which are used to 

construct the non-linear least square gradient in the outer step. η*, ∂J (c, η*) / ∂c = 0 at 

ĉ(η*), we have, at {ĉ(η*), η*}

Therefore,

Then, the outer step gradient at ĉ(η*) can be expressed as

Overall, using the derivatives dĉ / dη and dĉ / dx0, the discrete approximation to the integral 

and the local quadratic approximation to the absolute value function inside the penalty term, 

we can readily solve the minimization in the outer step, again via non-linear least squares.
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2.3 Tuning parameter selection

Tuning parameters are often selected using criteria such as BIC, AIC or GCV. One key 

component in the above criteria is the degrees of freedom of the fitted model. For an 

estimator μ̂, the conventional definition of the degrees of freedom is

Efron (2004) proposed a bootstrap procedure and Shen and Ye (2002), a data perturbation 

method, to estimate the degrees of freedom associated with μ̂. Even though these procedures 

can be implemented in a straightforward manner, they are computationally demanding. To 

reduce the computational cost, we design an approximation to the degrees of freedom by 

mimicking how it is estimated in ridge regression. The essential idea is to approximate the 

objective function in (4) with a ridge regression type criterion, and then to estimate the 

degrees of freedom mimicking what has been done for the ridge regression. The details are 

given in the supplementary materials. Our numerical studies indicate that the proposed 

approximation obtains similar results in estimating the degrees of freedom as the 

computationally more intensive bootstrap method.

There are also other practical issues with tuning parameter selection. For example, to further 

reduce the computational cost, we use the same value for λℓacross all ℓ. Regarding K (the 

number of grid points for the discrete integral in the penalty term) and q (the number of 

basis functions for approximating the ODE curves), we found in our numerical studies that 

the results are not sensitive to them as long as they are large enough. As for p, the number of 

basis functions that expand the parameter curves, one may use the theoretical results in 

Section 3 as a guideline, and we also found in our numerical studies that it can be much 

smaller than both K and q.

3 Theoretical Results

In this section we develop non-asymptotic bounds for our proposed estimation method. We 

outline the main results. The key assumptions and the proofs are provided in the 

supplementary materials.

3.1 Set-up and notation

To clearly present the essential concepts, we focus on the scenario that there is only one 

time-varying parameter, i.e., d = 1, and the ODE system (1) has one X with m = 1. The entire 

time range is also scaled to [0, 1], i.e., T = 1.

Recall that we use an element in ℒψ,p, the space spanned by the basis functions ψ(t), to 

approximate the ODE parameter curve θ(t), i.e.,

(6)
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Throughout, we consider bounded basis functions and conduct all the numerical studies 

using the B-spline bases. We denote ωp = ‖θ − ξ‖∞ = ‖ep‖∞, where ‖ · ‖∞ is the supremum 

norm.

With 0 < τ1 < τ2 < ⋯ < τK = 1 forming a grid of K evenly spaced points between 0 and 1, 

we let A = {∇ψ(τ1), ∇ψ(τ2), ⋯, ∇ψ(τK)}T, where ∇ψ(τk) = K {ψ(τk) − ψ(τk−1)} and τ0 = 0. 

Letting γk = K {ξ(τk) − ξ(τk−1)}, we have

(7)

where γ = (γ1, γ2, …, γK)T. For exposition simplicity in our theoretical development, we let 

K = p; consequently, A is a p × p square matrix. For certain choices of ψ, for example B-

splines, A is also invertible. Thus, there is a one-to-one correspondence between γ and η. 

This strategy is also adopted in the theoretical proofs of James et al. (2009). Denote γ* = (x0, 

γT)T. With the equivalence between γ* and η*, we may write the estimated ODE curve X̂ in 

the inner step as X̂ (t; γ*) or X̂ (t; x0, ξ).

Using the discrete approximation to the integral in the penalty with K = p evenly spaced 

points, due to (5), the outer criterion (4) becomes

(8)

where , Y = (Y1, Y2, …, Yn)T and t = (t1, t2, …, tn)T.

3.2 Main results

We need four major assumptions for our theoretical analysis and we describe them in the 

supplementary materials. We briey comment on them here before we describe the theoretical 

properties. Most of the assumptions we have are regularity ones, which ensure that the ODE 

system can be solved and that the solution follows reasonable structures. Helpful remarks 

about the regularity assumptions regarding the ODE system can be found in Qi and Zhao 

(2010). The assumption (A1) indicates that the force function F in the ODE system (1) is 

sufficiently smooth. Since we approximate the ODE solution and its derivative function by 

an element within a q-dimensional functional space, the assumption (A2) warrants the 

estimation feasibility and the precision. For example, if cubic splines are used to 

approximate the ODE curve, the assumption (A2) can be easily satisfied based on Theorem 

1 in Hall (1968). Part of our theoretical derivations extend the properties reported in Qi and 

Zhao (2010), and similar to them, we also focus on γ* that belongs to a compact set.

We now introduce Lemma 1, which provides precision in estimation of the ODE curve.

Lemma 1 Under assumptions (A1) and (A2) given in supplementary materials, for X̂ (·; x0, 

ξ) = X̂ (·; γ*) which is estimated using the inner criterion (3), we have, given γ*,

(9)
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where c2 is a constant that only depends on c1 in the assumption (A1), and rq is the upper 

bound in the assumption (A2).

This lemma indicates that, given parameter γ*, the ODE curve can be estimated with a high 

precision. The precision rate is determined only by the estimation rate rq in the assumption 

(A2), where the rate rq is determined by the number of basis functions, q, or the choice of 

knots when B-spline bases are used to approximate the ODE curve. It is worth pointing out 

that Lemma 1 holds for any parameter curve θ, not only for ξ in ℒψ,p if the assumption (A2) 

is made based on θ.

Assumption (A3) is given to ensure that the approximation of the ODE curve in ℒψ,p is 

uniquely determined by the vector η* (and equivalently γ*), and vice versa.

Our last assumption is similar to the restricted eigenvalue (RE) assumption in Bickel et al. 

(2009). This assumption for regularized estimators prevents certain problematic setups 

analogous to unregularized singular design matrices in linear models. It is known to hold for 

design matrices with orthogonal or weakly dependent columns (Raskutti et al., 2010). It also 

supports our use of B-spline basis functions, where two basis functions with disjoint 

supports are orthogonal to each other.

Before we state the major theorem, we need more notations. We use θ0(·), ξ0 (·) and 

 to respectively denote the true ODE parameter curve, the approximation 

function in ℒψ,p, and the corresponding coefficient vector. We let Jℱ = {2, …, p + 1} and J 

(γ) = {k ∈ Jℱ: γk ≠ 0}, and also let |J| denote the cardinality of J. We denote ξ̂
0(·) as the 

estimator for ξ0(·) using our method, and let Sp = |J (γ0)|, the number of non-zero 

parameters. Further, we define  and 

, where a ˅ b = max(a, b), ℳU is defined in Assumption (A3) given 

in the supplementary materials, and  denotes the k-th column of ℳU. Denote αp(t) = 

‖ψ(t)TA−1‖ and ωp,q = c2rq + c3ωp, where c2 is from Lemma 1 and c3 is from Assumption 

(A3) in the supplementary materials. Then we have the following theorem.

Theorem 1 Suppose , where ζi = εi + ei. Assume 

 and let

where . Then, under assumptions (A1)–(A4) given in the supplementary materials, 

with probability at least 1 − (p + 1)1−a2/8, we have
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In addition, if ωp = o[{log(p + 1) / n}1/2] so that approximately , then with 

probability at least 1 − (p + 1)1−a2/8, we have the following error bounds:

As in James et al. (2009), one can also establish assumptions to ensure the rates of 

αp(t)Sp{log(p + 1) / n}1/2 and/or αp(t)Spωp,q going to zero as n, p and q grow to ∞; see for 

example the assumption A3 therein. Hence, the non-asymptotic bounds could hold under the 

high-dimensional scenario when p ≫ n. One can also consider Sp to be of order n1/5 while p 

can remain to be a very large number by updating the choices of basis functions. The finite-

sample bounds we establish here enable researchers to build additional asymptotic results 

according to the scenarios fitting their specific interests.

Further, as in the case when θ(t) ≡ θ which is time invariant, we can safely use a very large 

q in the approximation of X (t). This is because, by removing the penalty in the inner step, 

there is no bias-variance tradeoff in the inner step estimation. A larger number of q simply 

leads to higher numerical precision in the spline approximation.

4 Simulation Studies

In this section, we apply the proposed method to two simulated ODE dynamic systems; both 

have wide scientific applications.

4.1 The FitzHugh-Nagumo model

This model was invented by FitzHugh (1961) and Nagumo et al. (1962) to simplify the 

Hodgkin-Huxley model (1952), which was used to study the behavior of spike potential in 

the giant axon of squid neurons. Specifically, the ODEs are

(10)

where V describes the voltage across an axon membrane, R is the recovery variable 

summarizing outward currents, and a, b, and c are ODE parameters in the dynamic system.

In this simulation study, we let the parameters a, b and c in (10) vary over time according to 

the following structure:
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where ·) is the indicator function.

The true V and R are calculated based on (10) with initial values V (0)=−1.0 and R(0)=1.0. 

We then generate 201 pairs of observed V and R on equally-distanced grids in [0, 20] with 

the observation errors drawn from N (0, 0.52). To approximate the ODE curves V (t) and 

R(t), we use cubic B-splines with knots placed at each observed time point. To estimate the 

ODE parameter curves, we use cubic B-splines with 21 equally spaced knots. For the 

penalty term in the outer-step criterion, we use 201 equally spaced τk’s to approximate the 

integral.

We consider four estimation methods, Methods I–IV. Method I is the proposed method that 

has a regularization term in the outer-step criterion. Method II is the time-varying estimation 

method without the regularization term in the outer step. In Method III, the parametric 

model with constant parameters is used. In addition to these three methods, we also consider 

Method IV, in which the true constant regions of parameters are assumed to be known. 

Specifically, within true constant regions, the parameters are estimated as constant values, 

and for non-constant regions, similar to Method II, cubic B-splines are used to approximate 

the parameter curves. Note that Method IV can only be carried out in simulation studies and 

can be considered as a benchmark. For Method I, we also compare the results using BIC, 

AIC and GCV for tuning parameter selection.

We use θ0ℓ(t), ℓ = 1, …, d, to denote the true ODE parameter curves, and θ̂ℓ(t) its estimate. 

In the current example, θ0’s are a(t), b(t) and c(t). Let  and 

. Further, let |ℱℓ| and  be the lengths of the regions of ℱℓ and 

respectively.

To compare different methods, we use the mean integrated square error (MISE), which is 

defined as follows:

Further, denote the standard error of the estimator θℓ̂ at t as SEθ̂ℓ (t) and define the average 

estimation standard error (AVSE) as

For each t, the SEθ̂
ℓ (t) is assessed using the Monte Carlo standard deviation of the 

corresponding estimates. For the estimation of the ODE curves Xj(t), which are V (t) and R(t) 

in this simulation, we also compare the MISE and AVSE, which are defined as follows:
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where X̂
j is the estimated curve for the jth ODE component Xj and SE X̂

j (t) denotes the 

standard error of X̂
j at time t.

Table 1 (upper half) contains the MISE results over 100 repetitions for both the parameter 

curves and the ODE curves. The AVSE results are also compared in Table 1 (lower half). 

From the MISE results, we can see that our method (Method I) performs the best among the 

four methods considered, and for our method, the BIC results are slightly better than those 

of AIC and GCV. The performance of Method II is the worst among all methods, especially 

for the MISE results of a(t) and b(t). For c(t), Method II performs slightly better, particularly 

in the non-constant region . This observation implies that the FitzHugh-Nagumo dynamic 

system may be more sensitive to the change in parameter c, which makes c easier to be 

estimated than a and b. The MISE results of Method III further suggest that c(t) can not be 

approximated well by a constant. It is interesting to see that Method IV performs worse than 

our method in terms of MISE. Comparison of the AVSE results explains the reason: recall 

that Method IV does not regularize the estimation in the non-constant region, which results 

in relatively high estimation standard errors, and consequently jeopardizes the MISE. In the 

comparison of the AVSE, we also note that our method has comparable standard errors with 

Method III, in which only five parameters, i.e., constants a, b, c and two initial values, need 

to be estimated.

Table 1 also contains the MISE and AVSE results for ODE curves V and R. Method I with 

BIC achieves the smallest MISE results and the smallest AVSE results, and Method III 

performs the worst.

Figure 1 shows the average estimated parameter curves, together with the true parameter 

curves. Even though it seems that Method IV outperforms Method III in Figure 1, the MISE 

results for a(t) and b(t) suggest otherwise. The reason is again due to AVSE, i.e., Method III 

gains by the smaller estimation standard errors. From Figure 1, we can also see that in the 

non-constant time regions  and , the proposed method over-shrinks the peak and 

the valley, especially at time points where the true first derivatives are zero.

4.2 The Lotka-Volterra Model

As a second example, we study the well known Lotka-Volterra dynamic model (Lotka, 

1910; Volterra, 1926). This model, also known as the predator-prey model, has wide 

applications in modeling the dynamics of ecological systems with predator-prey interactions, 

competition and disease dispersion. The model has two components H and L, described by 

the following ODEs:

(11)

Li et al. Page 12

Technometrics. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where a, b, c and d are the ODE parameters, and we specify them as follows in the 

simulation:

The initial values are set as H (0) = 3.5 and L(0) = 0.5, and we generate 101 pairs of 

observations on equally-distanced grid points between 0 and 20. The observation errors are 

drawn from N (0, 1). Cubic B-splines are used to approximate the two ODE curves with 

knots placed at each observed time point. The setting of cubic B-splines for estimating the 

parameter curves and the grid for approximating the penalty integral are the same as those in 

the previous example.

Again, we compare the performances of Methods I–IV. Table 2 contains the MISE and 

AVSE results over 100 repetitions, and the average estimated parameter curves are plotted 

in Figure 2. From Figure 2, we can see that the estimated parameter curves of Method II are 

not as much erratic as the estimation results of a(t) and b(t) in the previous example. It 

implies that the parameters in this example are easier to estimate, comparing to those in the 

FitzHugh-Nagumo model. We can also see that for both Method I and Method IV, the 

average estimated parameter curves are very close to the true curves. Table 2 suggests that, 

in terms of both MISE and AVSE, our method performs the best among the four methods 

considered. Different from the results of the previous example, Method III performs 

unanimously worse than other methods. Notice the large MISE and AVSE for H and L of 

Method III; it implies that Method III barely fits the data generated under our parameter 

setting.

Upon request from a reviewer, we have created code to carry out the procedure proposed in 

Cao et al. (2012). We note that in Cao et al. (2012), the observed covariates Z (t) are 

assumed to have time varying coefficient functions while dX (t) / dt are assumed to relate to 

these Z (t) and a known function of the unobserved X (t) via constant coefficients, thus their 

setup is different from ours and does not apply directly to our setting. Nevertheless, their 

approach is shown to have superior numerical performances than those of Chen and Wu 

(2008) under the models considered in Cao et al. (2012). When the relationships between dX 

(t) / dt and X (t) are also postulated via time-varying coefficients, we had to modify the 

estimation procedure in Cao et al. (2012) so that it can be applied, and our experience 

suggested that choosing tuning parameters in both the inner and outer steps become a 

demanding task and that the results are sensitive to the choice of tuning parameters, 

including the numbers of basis functions used to estimate X(t) and time-varying coefficients, 

respectively. The inclusion of a roughness penalty on the second derivative of the coefficient 

function in Cao et al. (2012) is no doubt beneficial. The setup in the inner step serves the 

purpose of balancing the overfit to the ODE structure by the goodness of fit to the responses, 

Y, evidenced by the best choice of the tuning parameters in the inner step being moderate. 

However, this is at the cost of variation inflation and sometimes estimation instability. 
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Nevertheless, we report the best results we obtained, corresponding to Tables 1 and 2, as 

supplementary materials. This modified procedure of Cao et al. (2012) has performance 

between those of methods III and IV, and our method still performs the best.

5 Ecology and Epidemiology Examples

In this section, we investigate two data examples, one is in ecology and the other is from 

epidemiology.

5.1 The hare and lynx data example

The numbers of trapped lynx and snowshoe hares of North Canada were collected from 

1900 to 1920 (Odum 1953), and the observed data are believed to reflect the relative 

populations of lynx and hare in the study region. The Lotka-Volterra model (11), with H (t) 

and L(t) representing the evolution function of the number of snowshoe hares and lynx 

respectively, is used to model this predator-prey dynamics. Cubic B-splines with 201 

equally-spaced knots are used to estimate the ODE curves H (t) and L(t). The parameter 

curves a(t), b(t), c(t) and d(t) are estimated with cubic B-splines with 8 equally-spaced 

knots, due to the limited number of observations. BIC is used to select the tuning parameter.

Figure 3 presents the estimated parameter curves based on three methods: the non-

regularized method (Method II), the constant fitting (Method III) and our method (Method 

I). The estimated parameter curves by Method II are erratic and fail to provide any structural 

information for interpreting the ODE dynamics. Method I, on the other hand, offers much 

improved structural information than Method II: the estimated parameter curve â(t) stays 

almost as a constant over the entire time period; the estimated parameter curve b̂(t) is 

basically a constant from 1900 to 1905, then starts to increase and later stabilizes into a 

slightly larger constant around 1912; similar to â(t), the estimated parameter curve ĉ(t) stays 

as a constant over the whole time period; the estimated parameter curve d̂(t) varies quite a 

bit and has not reached a constant-stage at the end of the time range, but comparing with the 

estimated d̂(t) of Method II, it has a much smaller variation.

Figure 4 shows the estimated ODE curves of H (t) and L(t), together with the original 

observed data. Both Methods I and II fit better at the first peaks of the H (t) and L(t) 

dynamics than Method III, similarly for the valleys in the middle of H (t) and L(t). On the 

other hand, towards the tails of H (t) and L (t), Methods I and III perform better than Method 

II. Overall, Method I performs the best among the three methods. We also conducted a 

bootstrap analysis for the purpose of variation comparison. The result, which is not reported 

here, shows that standard errors of our regularized method are comparable to those of 

Method III, and are much smaller than the standard errors of Method II.

5.2 The Canadian measles incidence data example

This data set consists of weekly measles incidence reports for the province of Ontario, 

Canada, from 1939 through 1965. Following the analysis of Hooker et al. (2011), we model 

the measles incidence using the so called SEI dynamic equations:

Li et al. Page 14

Technometrics. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where S is the susceptible class, E is the exposed (infected with the disease but not 

infectious) class and I is the infectious class. We note that S increases with a recruitment rate 

ρ(t) and moves into E with a rate of β(t) (I / p(t) + υ). E transforms into I with the rate σp(t) 

as I recovers with the rate γ. In this data set only I, the measles infectious class, is observed. 

The other two state variables S and E are unobserved. The parameters are ρ(t), β(t), p(t) (= p0 

+ p1t), υ, σ and γ. Of these parameters, ρ(t) is interpolated from the monthly birth rate data at 

a five-year lag, σ is known to be around 365/8, and γ is roughly estimated by the five-day 

mean infectious period and equals to 365/5. Only the parameters β(t), p0, p1 and υ need to be 

estimated from the data.

The structure of β(t) within each year has been studied in Bauch and Earn (2003), which 

consists of a high-level component during the summer season and a low-level one for the 

rest of the year. Adopting this yearly structure, we further use the proposed method to find 

the long-term pattern of β(t). Following Hooker et al. (2011), we let

where s(t) is a cyclic function that describes the same within-year pattern across all years, 

subject to the constraint , and α(t) is the general parameter curve that describes 

the long- term trend. We use the cyclic cubic B-splines with knots at each month to expand 

s(t) while using the regular cubic B-splines with knots at each year to approximate α(t). To 

find the long-term yearly pattern, only α(t) is regularized in the outer step of the proposed 

method.

We compare our method with two other methods: the time-varying approach without 

regularization in the outer step (Method II) and a set of short-term constant-fitting conducted 

every two years. In the latter approach, we assume α(t) = c for two neighboring years and 

only fit the data within those two years; we repeat this process for about 25 times from 1939 

to 1963. Figure 5 shows the estimated α(t), in log scale, based on these three methods. We 

can see that the estimated α(t) based on our method is relatively large in the early years and 

deceases gradually to a constant after 1958. This implies that the rate at which the 

susceptible class moving into the exposed class decreases in the long-term pattern and 

gradually becomes stabilized. This pattern of α(t) might be related to an introduction of 

measles vaccine around 1954. After the measles vaccine took effect, α(t) could be modeled 

as a constant and β(t) only contains the seasonal pattern, as shown in the bottom panel of 

Figure 5. On the other hand, the estimated α(t) of the other two methods are much more 

unstable and fail to provide any useful understanding for the long-term pattern of α(t). To 

further illustrate the differences among the three methods, we also plot the estimated I curve 

in Figure 5 from 1952 to 1954. We can see that in terms of goodness-of-fit to the data, our 

method performs similarly to the non-regularized approach; the result of the two-year 

constant fitting follows the data more closely, but there is a potential of overfitting.
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6 Summary

We have proposed a regularized parameter estimation method for the ODE dynamic system. 

The proposed method aims at keeping a balance between interpretability and flexibility of 

the parameter curves. The proposed regularization not only helps in recovering the 

parametric structure, but also plays a role in smoothing and reducing the estimation 

variance. When the parameter curves are constants over some time regions, the proposed 

method in general performs much better than the ordinary non-regularized method. Our 

theoretical analysis indicates that under certain regularity conditions, the estimated 

nonparametric curves can obtain estimation error bounds that are functions of . This 

implies that a large p may not cause much harm in prediction accuracy for the proposed 

method. Numerical studies also show that the proposed method consistently out-performs 

other competitors and provides results that are helpful for understanding the dynamic 

system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The average of the estimated parameter curves plotted with true curves in the FitzHugh-

Nagumo model. Left: Method I (solid); Method III (dash-dot); Method IV (dashed); Truth 

(dotted). Right: Method II (solid); Truth (dotted).

Li et al. Page 18

Technometrics. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The average of the estimated parameter curves plotted with true curves in the Lotka-Volterra 

model. Left: Method I (solid); Method III (dash-dot); Method IV (dashed); Truth (dotted). 

Right: Method II (solid); Truth (dotted).
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Figure 3. 
Estimated parameter curves for the lynx-hare data set through the Lotka-Volterra model. 

Left: Method I (solid); Method III (dashed). Right: Method II (solid).
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Figure 4. 
Estimated H (·) and L(·) for the lynx-hare data set. Method I (solid); Method II (dotted); 

Method III (dashed).
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Figure 5. 
Top Left: estimated α(t) based on the regularized method (solid) and the non-regularized 

method (dotted); circles are based on the two-year constant fitting. Top Right: estimated I (t) 

for 1952–1954; regularized method (solid), non-regularized method (dotted) and two-year 

constant fitting (dashed). Bottom: regularized estimate of β(t) (solid) with the regularized 

global time trend α̂(t) (dashed) imposed.
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